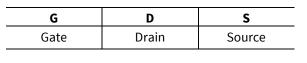


RoHS

MOSFET StrongIRFET™

Applications


- UPS and Inverter applications
- Half-bridge and full-bridge topologies
- Resonant mode power supplies
- DC/DC and AC/DC converters
- OR-ing and redundant power switches
- Brushed and BLDC Motor drive applications
- Battery powered circuits

Benefits

- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dv/dt and di/dt Capability
- Pb-Free ; RoHS Compliant ; Halogen-Free

	V _{DSS}	250V
	R _{DS(on)} typ.	18mΩ
G	max	22m Ω
s	ID	69A

Base part number	Backago Typo	Standard Pack		Orderable Part Number	
Base part number	Package Type	Form Qua		Olderable Part Nulliber	
IRF250P225	TO-247AC	Tube	25	IRF250P225	

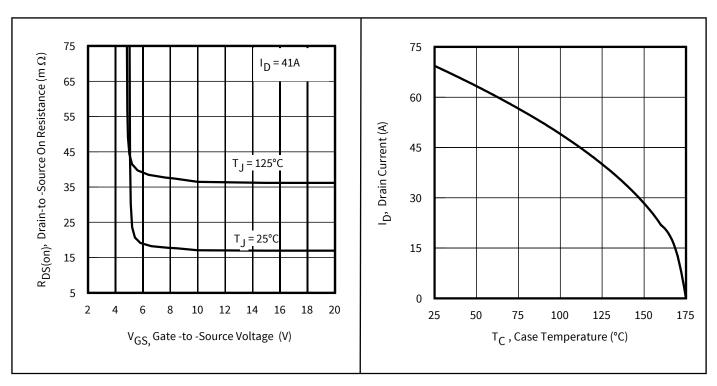


Figure 1 Typical On-Resistance vs. Gate Voltage

Figure 2 Maximum Drain Current vs. Case Temperature

IRF250P225

Table of Contents

Table of Contents

Applications		1
Benefits		1
•		
	ters	
2 Maximur	m ratings, Thermal, and Avalanche characteristics	4
	al characteristics	
4 Electrica	al characteristic diagrams	6
Package Information	on	14
Qualification Inform	nation	15
Revision History		16

IRF250P225

Parameters

1 Parameters

Table1Key performance parameters

Parameter	Values	Units
V _{DS}	250	V
R _{DS(on) max}	22	mΩ
I _D	69	A

IRF250P225

Maximum ratings and thermal characteristics

2 Maximum ratings and thermal characteristics

Table 2 Maximum ratings (at T_=25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Values	Unit	
Continuous Drain Current	ID	T _c = 25°C, V _{GS} @ 10V	69		
Continuous Drain Current	ID	$T_{C} = 100^{\circ}C, V_{GS} @ 10V$	49	A	
Pulsed Drain Current ①	I _{DM}	T _c = 25°C	276		
Maximum Power Dissipation	PD	T _c = 25°C	313	W	
Linear Derating Factor		T _c = 25°C	2.1	W/°C	
Gate-to-Source Voltage	V _{GS}	-	± 20	V	
Operating Junction and Storage Temperature Range	TJ T _{STG}	-	-55 to + 175	20	
Soldering Temperature, for 10 seconds (1.6mm from case)	-	-	300	°C	
Mounting Torque, 6-32 or M3 Screw	-	-	10 lbf·in (1.1 N·m)	-	

Table 3 Thermal characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Junction-to-Case 🗇	$R_{\theta JC}$	T」 approximately 90°C	-	-	0.48	
Case-to-Sink, Flat Greased Surface	$R_{\theta CS}$	-	-	0.24	-	°C/W
Junction-to-Ambient	$R_{ extsf{ heta}JA}$	-	-	-	40	

Table 4 Avalanche characteristics

Parameter	Symbol	Values	Unit	
Single Pulse Avalanche Energy ②	E _{AS} (Thermally limited)	444		
Single Pulse Avalanche Energy ⑧	E _{AS} (Thermally limited)	489	mJ	
Avalanche Current ①	I _{AR}		А	
Repetitive Avalanche Energy ①	E _{AR}	See Fig 16, 17, 23a, 23b	mJ	

Notes:

 \mathcal{O} Repetitive rating; pulse width limited by max. junction temperature.

- \oslash Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.52mH, $R_G = 50\Omega$, $I_{AS} = 41A$, $V_{GS} = 10V$.
- ③ $I_{SD} \le 41A$, $di/dt \le 926A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 175$ °C.
- *④* Pulse width \leq 400 μ s; duty cycle \leq 2%.
- (3) Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDs is rising from 0 to 80% VDss.

© Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.

 \oslash R_{θ} is measured at T_{J} approximately 90°C.

@ Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 1mH, $R_G = 50\Omega$, $I_{AS} = 31A$, $V_{GS} = 10V$.

IRF250P225

Electrical characteristics

3 Electrical characteristics

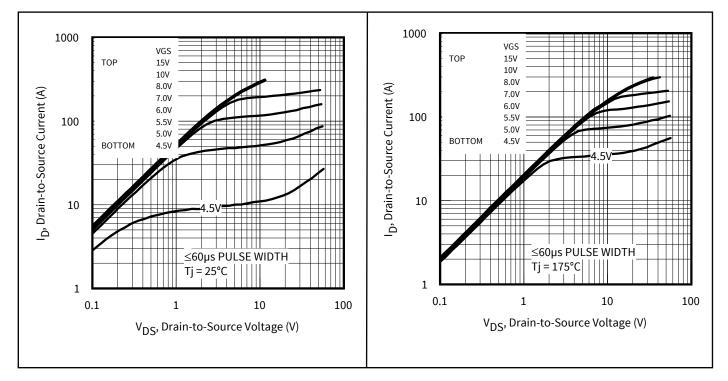
Table 5 Static characteristics

Parameter	Symbol Conditions -		Values			Unit
Parameter			Min.	Тур.	Max.	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 1mA$	250	-	-	V
Breakdown Voltage Temp. Coefficient	$\Delta V_{(BR)DSS} / \Delta T_{J}$	Reference to 25°C, I_D = 2.5mA (1)	-	0.17	-	V/°C
Static Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10V, I_{D} = 41A$	-	18	22	mΩ
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 270 \mu A$	2.0	-	4.0	V
		V _{DS} =200V, V _{GS} =0V	-	-	1.0	
Drain-to-Source Leakage Current	I _{DSS}	$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	-	-	100	μA
Gate-to-Source Forward Leakage	I _{GSS}	V _{GS} = 20V	-	-	100	nA
Gate Resistance	R _G		-	2.7	-	Ω

Table 6Dynamic characteristics

Deverseter	Gumbal	Symbol Conditions		Values		
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward Trans conductance	gfs	V_{DS} = 50V, I_{D} =41A	72	-	-	S
Total Gate Charge	Qg		-	64	96	
Gate-to-Source Charge	Q _{gs}	$I_D = 41A$ $V_{DS} = 125V$	-	24	-	nC
Gate-to-Drain Charge	Q _{gd}	$V_{DS} = 125V$ $V_{GS} = 10V$	-	12	-	
Total Gate Charge Sync. (Qg– Qgd)	Q _{sync}		-	52	-	
Turn-On Delay Time	t _{d(on)}	V _{DD} = 163V	-	17	-	
Rise Time	tr	$I_D = 41A$	-	54	-	
Turn-Off Delay Time	$t_{d(off)}$	$R_G = 2.7\Omega$	-	52	-	ns
Fall Time	t _f	$V_{GS} = 10V$	-	36	-	
Input Capacitance	C _{iss}	$V_{GS} = 0V$	-	4897	-	
Output Capacitance	Coss	$V_{DS} = 50V$	-	505	-	
Reverse Transfer Capacitance	C _{rss}	<i>f</i> = 1.0MHz, See Fig.7	-	6.1	-	рF
Effective Output Capacitance (Energy Related)	Coss eff.(ER)	$V_{GS} = 0V, V_{DS} = 0V$ to 200V (6)	-	372	-	P.
Output Capacitance (Time Related)	Coss eff.(TR)	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 200V $	-	607	-	

Table 7 Reverse Diode


Parameter	Symbol	Symbol Conditions		Values			
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Continuous Source Current (Body Diode)	Is	MOSFET symbol showing the	-	-	69	А	
Pulsed Source Current (Body Diode) ①	I _{SM}	integral reverse p-n junction diode.	-	-	276	A	
Diode Forward Voltage	V_{SD}	$T_{J} = 25^{\circ}C, I_{S} = 41A, V_{GS} = 0V$ (4)	-	-	1.2	V	
Peak Diode Recovery dv/dt ③	dv/dt	$T_J = 175^{\circ}C, I_S = 41A, V_{DS} = 250V$	-	25	-	V/ns	
Reverse Recovery Time	t _{rr}	$T_{J} = 25^{\circ}C$ $V_{DD} = 213V$	-	113	-	ns	
	Crr	$T_J = 125^{\circ}C$ $I_F = 41A$,	-	155	-	115	
Boyorso Bosoyory Chargo	0	$T_J = 25^{\circ}C$ di/dt = 100A/µs ④	-	427	-	nC	
Reverse Recovery Charge	Qrr	T _J = 125°C	-	878	-	IIC	
Reverse Recovery Current	I _{RRM}	T _J = 25°C	-	5.7	-	А	

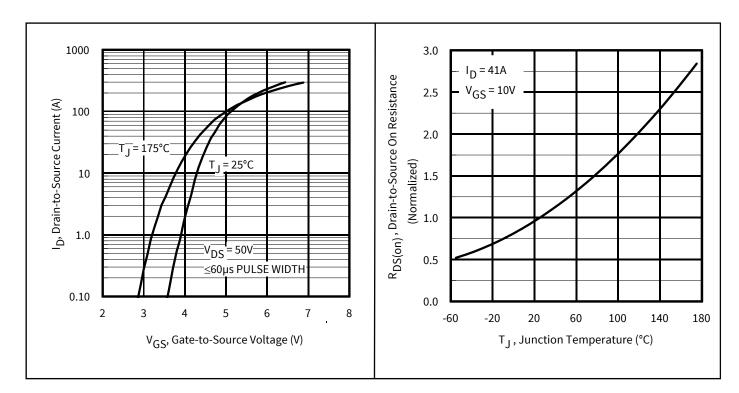
IRF250P225

Electrical characteristic diagrams

4 Electrical characteristic diagrams

Figure 3 Typical Output Characteristics

Figure 4 Typical Output Characteristics



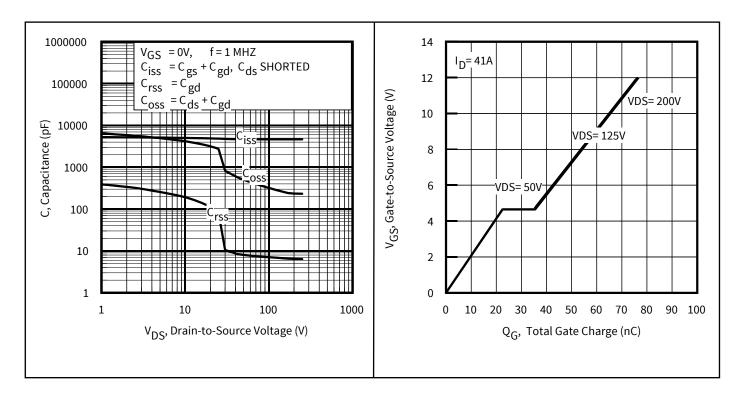
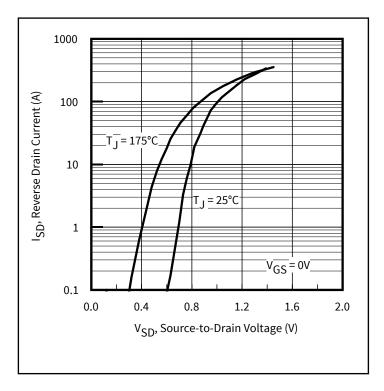


Figure 6 Normalized On-Resistance vs. Temperature


IRF250P225

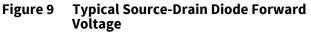

Electrical characteristic diagrams

Figure 7 Typical Capacitance vs. Drain-to-Source I Voltage

Figure 8 Typical Gate Charge vs. Gate-to-Source Voltage

IRF250P225 Electrical characteristic diagrams

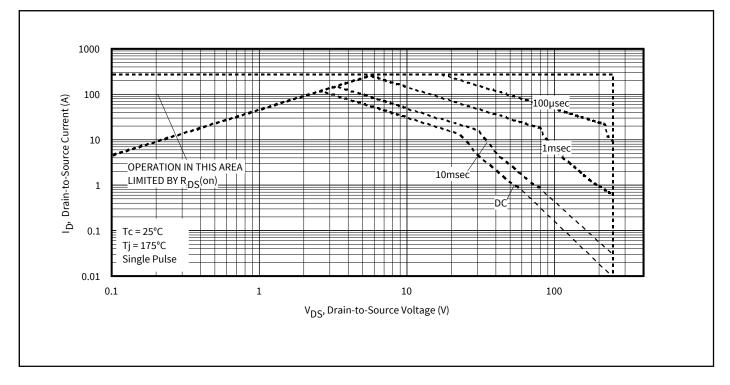


Figure 10 Maximum Safe Operating Area

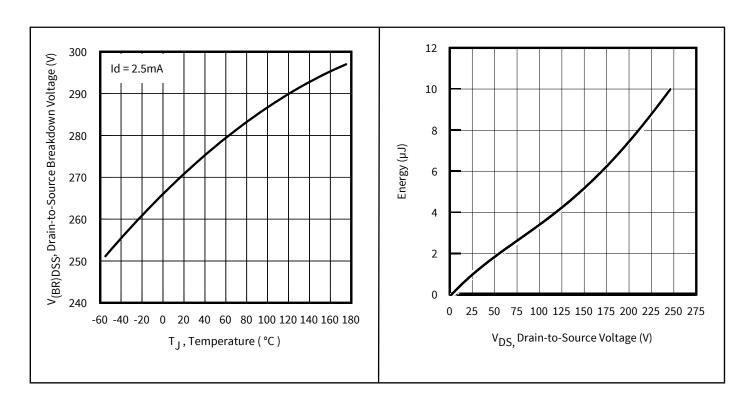


Figure 12 Typical Coss Stored Energy

Electrical characteristic diagrams

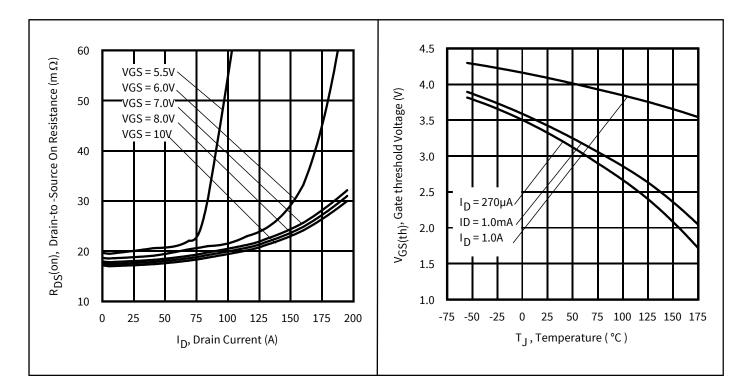
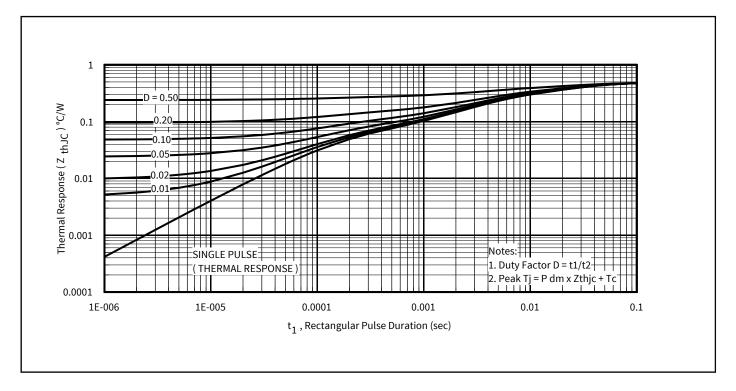



Figure 13 Typical On-Resistance vs. Drain Current

Figure 14 Threshold Voltage vs. Temperature

IRF250P225

Electrical characteristic diagrams

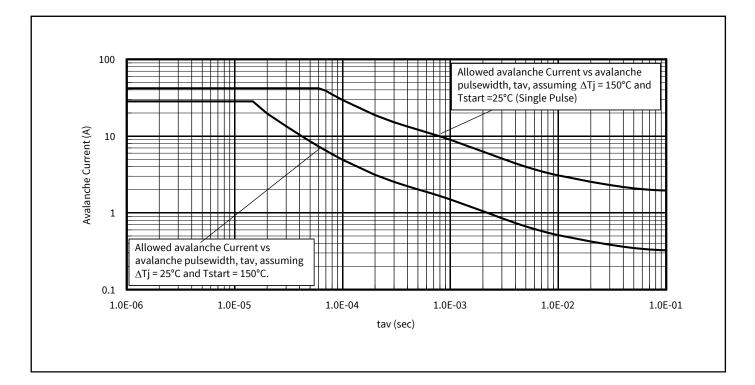


Figure 16 Avalanche Current vs. Pulse Width

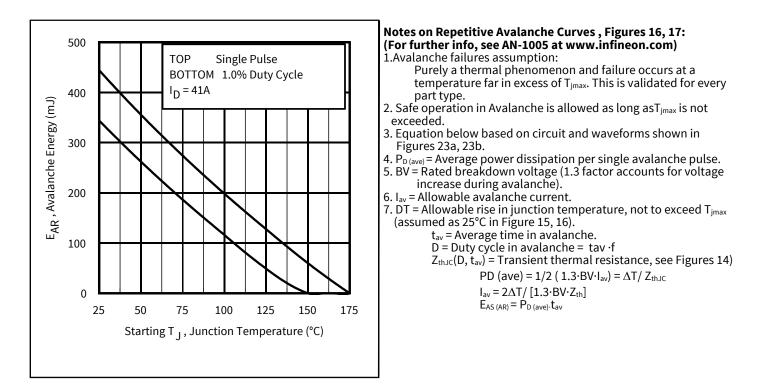


Figure 17 Maximum Avalanche Energy vs. Temperature

IRF250P225

Electrical characteristic diagrams

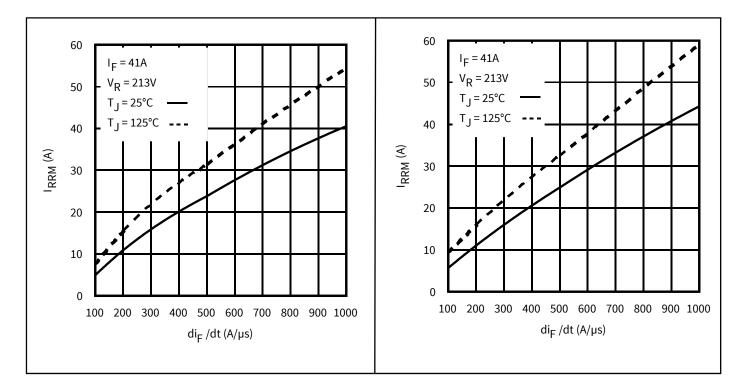


Figure 18 Typical Recovery Current vs. dif/dt

Figure 19 Typical Recovery Current vs. dif/dt

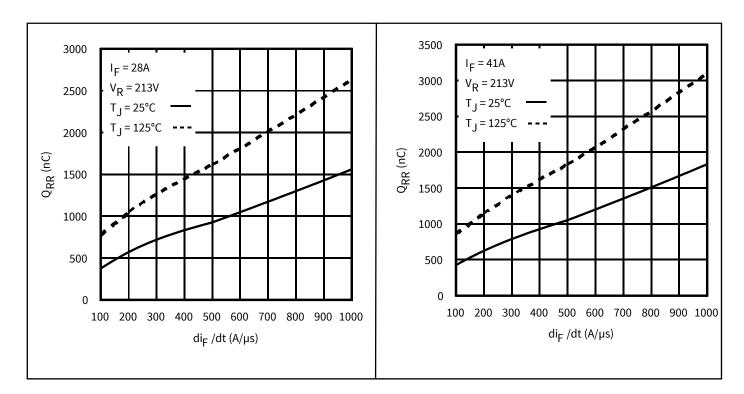


Figure 21 Typical Stored Charge vs. dif/dt

Electrical characteristic diagrams

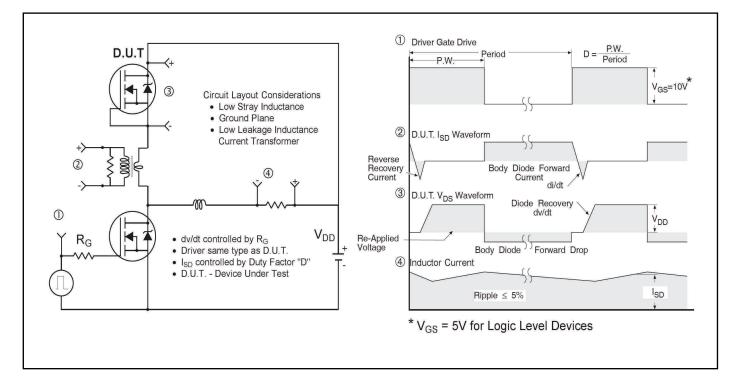
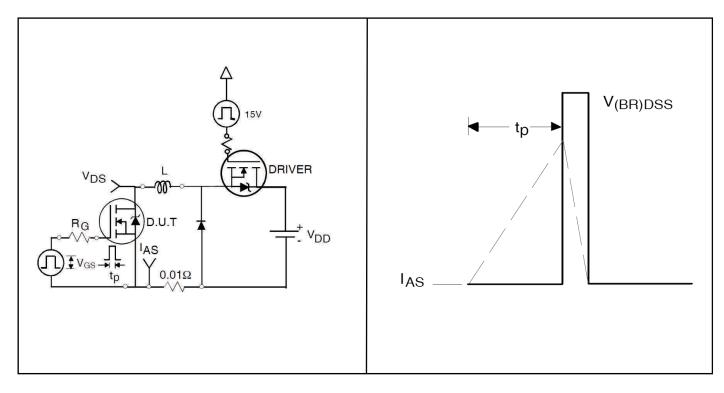


Figure 22 Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET™ Power MOSFETs



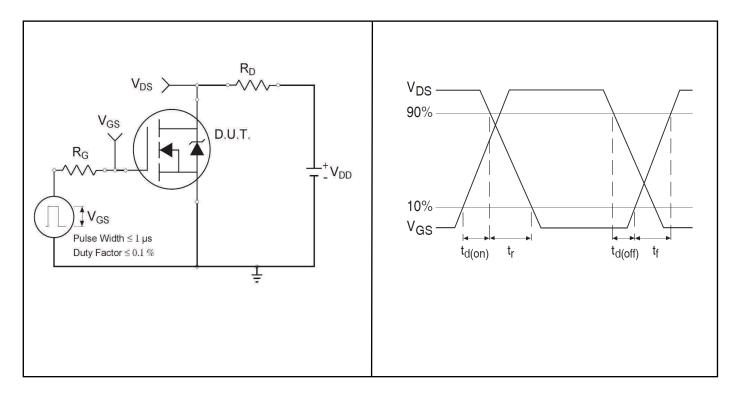
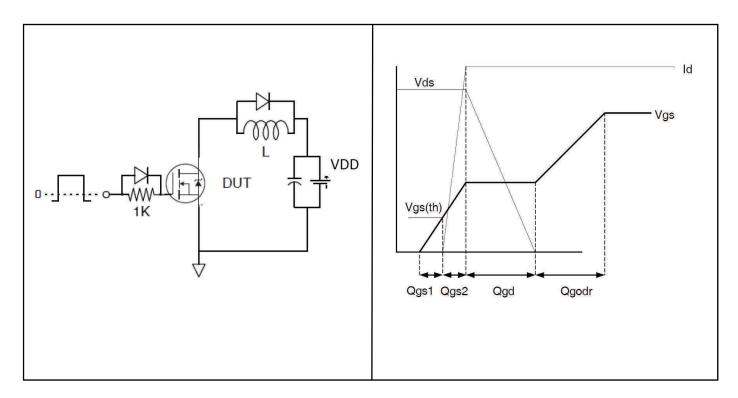

Figure 23a Unclamped Inductive Test Circuit

Figure 23b Unclamped Inductive Waveforms


IRF250P225

Electrical characteristic diagrams

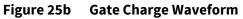
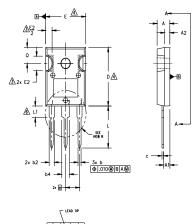
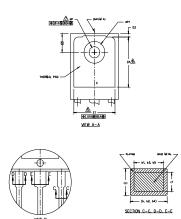


Figure 24a Switching Time Test Circuit

Figure 24b Switching Time Waveforms

Figure 25a Gate Charge Test Circuit





5 Package Information

TO-247AC Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

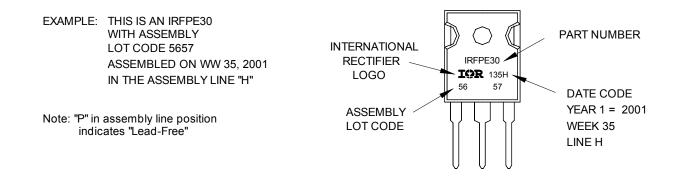
- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- 2. DIMENSIONS ARE SHOWN IN INCHES.
- 3 CONTOUR OF SLOT OPTIONAL.
- 4. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127)
 - PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- $\frac{1}{5}$ Thermal pad contour optional within dimensions d1 & e1.
- 6. LEAD FINISH UNCONTROLLED IN L1.
- ØP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 ' TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

SYMBOL	INC	HES	Milli	ETERS	1
	Min.	MAX.	Min.	MAX.	NOTES
A	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
b1	.039	.053	0.99	1.35	
b2	.065	.094	1.65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3.43	
b5	.102	.133	2.59	3.38	
с	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19.71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1.35	
E	.602	.625	15.29	15.87	4
E1	,530	-	13.46	-	
E2	.178	.216	4.52	5.49	
е	.215	BSC	5.46	5.46 BSC	
Øk	.0	10	0.	0.25	
L	.559	.634	14.20	16.10	
L1	.146	.169	3.71	4.29	
ØP	.140	.144	3.56	3.66	
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5.69	
S	.217	BSC	5.51	BSC	

<u>LEAD ASSIGNMENTS</u>

HEXFET 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBTs, CoPACK


1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

<u>DIODES</u>

1.- ANODE/OPEN

2.- CATHODE

TO-247AC Part Marking Information

TO-247AC package is not recommended for Surface Mount Application.

^{3.-} ANODE

6 Qualification Information

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) †				
Moisture Sensitivity Level	TO-247AC	N/A			
RoHS Compliant	Yes				

† Applicable version of JEDEC standard at the time of product release.

IRF250P225

Revision History

Revision History

Major changes since the last revision

Page or Reference	Revision	Date	Description of changes
All pages	2.0	2017-03-16	• First release data sheet.
All pages	2.1	2020-01-07	 Update from "IR MOSFT/StrongIRFET™" to "StrongIRFET™" -all pages Update Package picture -page1

Trademarks of Infineon Technologies AG

µHVIC[™], µIPM[™], µPFC[™], AU-ConvertIR[™], AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], CoolDP[™], CoolGaN[™], COOLIR[™], CoolMOS[™], CoolSET[™], CoolSiC[™], DAVE[™], DI-POL[™], DirectFET[™], DrBlade[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPACK[™], EconoPIM[™], EiceDRIVER[™], eupec[™], FCOS[™], GaNpowIR[™], HEXFET[™], HITFET[™], HybridPACK[™], iMOTION[™], IRAM[™], ISOFACE[™], IsoPACK[™], LEDrivIR[™], LITIX[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OPTIGA[™], OptiMOS[™], ORIGA[™], PowIRaudio[™], PowIRStage[™], PrimePACK[™], PrimeSTACK[™], PROFET[™], PRO-SIL[™], RASIC[™], REAL3[™], SmartLEWIS[™], SOLID FLASH[™], SPOC[™], StrongIRFET[™], SupIRBuck[™], TEMPFET[™], TRENCHSTOP[™], TriCore[™], UHVIC[™], XMC[™]

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

IMPORTANT NOTICE

Edition 2015-05-06 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.