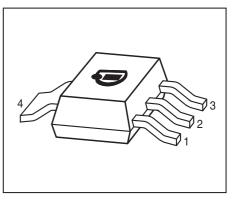


NPN Silicon AF Transistor

- For general AF applications
- High collector current
- High current gain
- Low collector-emitter saturation voltage
- Complementary type: BCP69 (PNP)
- Pb-free (RoHS compliant) package¹⁾
- Qualified according AEC Q101


Туре	Marking	Pin Configuration						Package
BCP68-25	*	1=B	2=C	3=E	4=C	-	-	SOT223

* Marking is the same as the type-name

Maximum Ratings

Parameter	Symbol	Value	Unit	
Collector-emitter voltage	V _{CEO}	20	V	
Collector-emitter voltage	V _{CES}	25		
Collector-base voltage	V _{CBO}	25		
Emitter-base voltage	V _{EBO}	5		
Collector current	I _C	1	А	
Peak collector current, $t_p \le 10 \text{ ms}$	I _{CM}	2		
Base current	I _B	100	mA	
Peak base current	/ _{BM}	200		
Total power dissipation-	P _{tot}	3	W	
<i>T</i> _S ≤ 114 °C				
Junction temperature	Ti	150	°C	
Storage temperature	T _{stg}	-65 150		

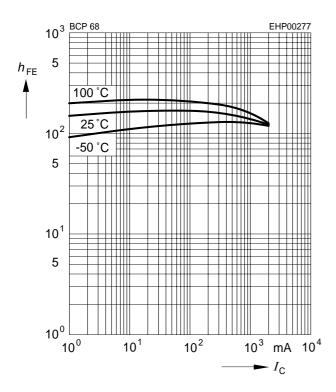
¹Pb-containing package may be available upon special request

Thermal Resistance

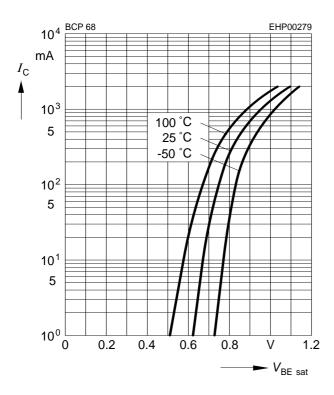
Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	≤ 12	K/W

Electrical Characteristics at $T_A = 25^{\circ}$ C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics			•	•	
Collector-emitter breakdown voltage	V _{(BR)CEO}	20	-	-	V
<i>I</i> _C = 30 mA, <i>I</i> _B = 0					
Collector-base breakdown voltage	V _{(BR)CBO}	25	-	-	
$I_{\rm C}$ = 10 µA, $I_{\rm E}$ = 0					
Collector-emitter breakdown voltage	V _{(BR)CES}	25	-	-	
$I_{\rm C}$ = 10 µA, $V_{\rm BE}$ = 0					
Emitter-base breakdown voltage	V _{(BR)EBO}	5	-	-	
$I_{\rm E}$ = 10 µA, $I_{\rm C}$ = 0					
Collector-base cutoff current	I _{CBO}				μA
$V_{\rm CB}$ = 25 V, $I_{\rm E}$ = 0		-	-	0.1	
V_{CB} = 25 V, I_{E} = 0 , T_{A} = 150 °C		-	-	100	
DC current gain ²⁾	h _{FE}				-
<i>I</i> _C = 5 mA, <i>V</i> _{CE} = 10 V		50	-	-	
<i>I</i> _C = 500 mA, <i>V</i> _{CE} = 1 V		160	250	375	
$I_{\rm C}$ = 1 A, $V_{\rm CE}$ = 1 V		60	-	-	
Collector-emitter saturation voltage ²⁾	V _{CEsat}	-	-	0.5	V
<i>I</i> _C = 1 A, <i>I</i> _B = 100 mA					
Base-emitter voltage ²⁾	V _{BE(ON)}				
<i>I</i> _C = 5 mA, <i>V</i> _{CE} = 10 V		-	0.6	-	
$I_{\rm C}$ = 1 A, $V_{\rm CE}$ = 1 V		-	-	1	
AC Characteristics					

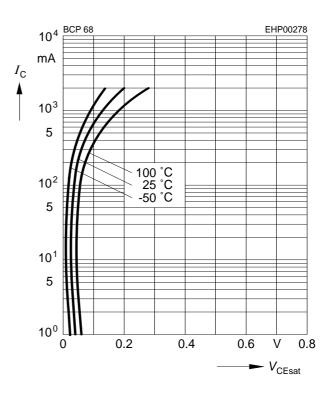

Transition frequency	f _T	-	100	-	MHz
<i>I</i> _C = 100 mA, <i>V</i> _{CE} = 5 V, <i>f</i> = 100 MHz					

¹For calculation of R_{thJA} please refer to Application Note Thermal Resistance ²Pulse test: t < 300µs; D < 2%

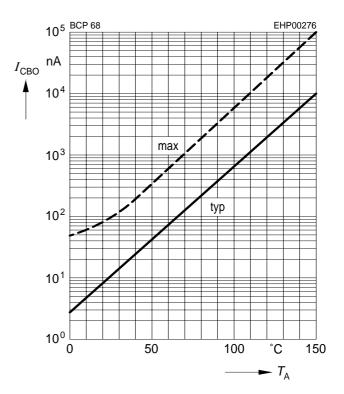


DC current gain $h_{\text{FE}} = f(I_{\text{C}})$

 $V_{CE} = 1 V$

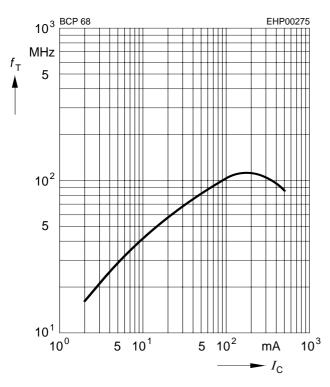


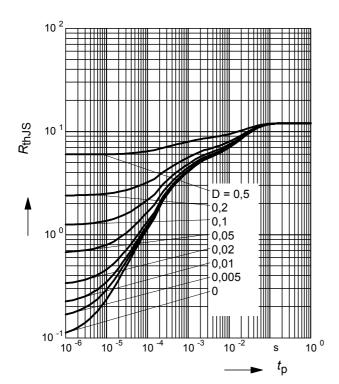
Base-emitter saturation voltage $I_{\rm C} = f(V_{\rm BEsat}), h_{\rm FE} = 10$



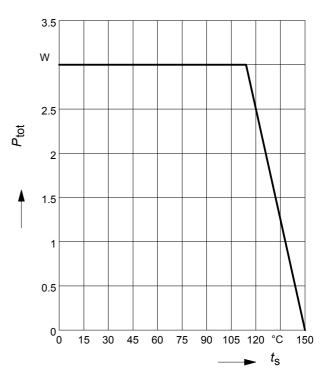
Collector-emitter saturation voltage

 $I_{\rm C} = f(V_{\rm CEsat}), h_{\rm FE} = 10$

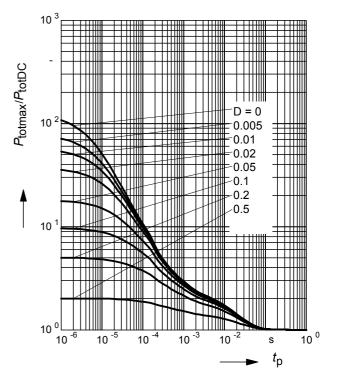

Collector cutoff current $I_{CBO} = f(T_A)$ $V_{CBO} = 25 \text{ V}$



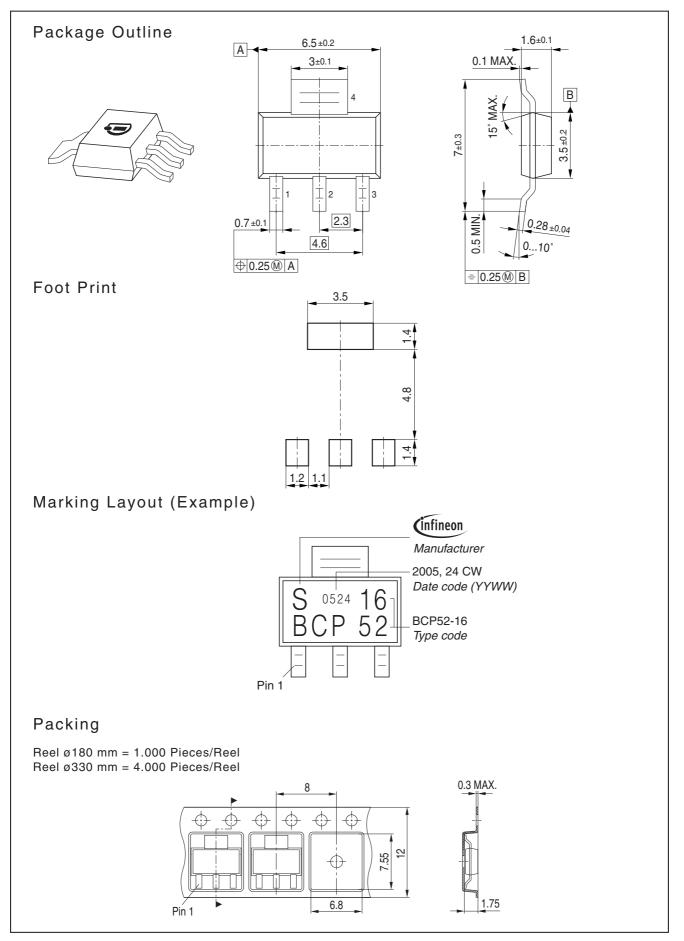
Transition frequency $f_{\rm T} = f(I_{\rm C})$


V_{CE} = 5 V

Permissible Pulse Load $R_{\text{thJS}} = f(t_p)$



Total power dissipation $P_{tot} = (T_S)$



Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_p)$

Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.