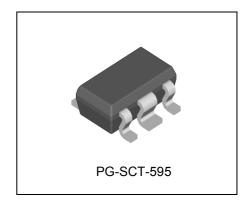


Low Dropout Linear LED Driver


TLE 4240-2/3 M

Features

- Typ. 58 mA constant output current
- Low dropout voltage
- Tiny SMD package PG-SCT595-5
- Open load detection (Version TLE 4240-3 M only)
- 45 V input voltage operation range
- Safe operation area monitoring
- Output protected against short circuit to GND and supply
- Reverse polarity protection
- Wide temperature range: -40 °C ≤ T_i ≤ 150 °C
- Overtemperature shutdown
- Suitable for use in automotive electronics

Functional Description

The TLE 4240-2/3 M is a monolithic integrated low dropout linear constant current source. It is designed to supply white or color LEDs in order to achive constant brightness and extended LED lifetime independent from supply voltage or LED forward voltage class.

Protection circuits prevent from damage to the device in case of overload, short circuit, reverse polarity and overheat. The LEDs connected are protected against reverse polarity transients as well as against voltages up to 45 V. The Safe Operation Area (SOA) monitoring function limits the output current in case of a very high drop voltage across the regulator. For details see graph "Output Current versus Drop Voltage".

Version TLE 4240-3 M is equipped with a status output indicating an open load failure condition.

The TLE 4240-2/3 M is supplied in a space-saving PG-SCT595-5 package offering minimal thermal resistance.

Туре	Package	Remark	Marking
TLE 4240-2 M	PG-SCT595-5	-	42
TLE 4240-3 M	PG-SCT595-5	Open load detection	43

Datasheet 1 Rev. 1.1, 2006-12-07

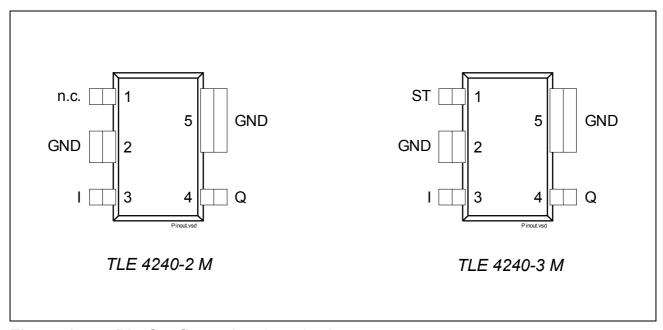


Figure 1 Pin Configuration (top view)

Table 1 Pin Definitions and Functions

Pin No.	Symbol	Function
1	n.c.	Version TLE 4240-2 M only: Internally not connected.
1	ST	Version TLE 4240-3 M only: Status output; open collector output. Low level indicates open load. Connect to a positive voltage rail with an external pull-up resistor. Leave open, if not needed.
2	GND	Ground; connect to heatsink area. Interconnect with pin 5.
3	I	Input; IC supply
4	Q	Output;
5	GND	Ground; connect to heatsink area. Interconnect with pin 2.

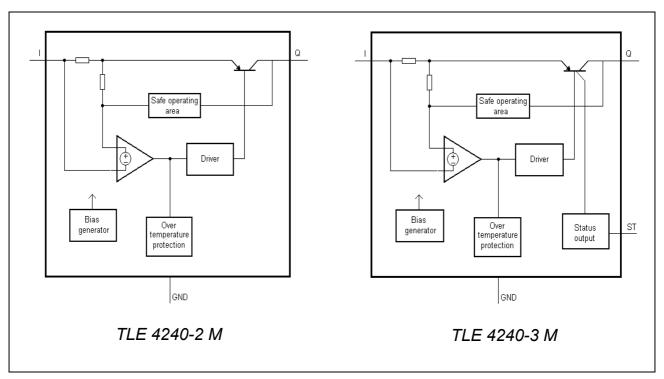


Figure 2 Block Diagram

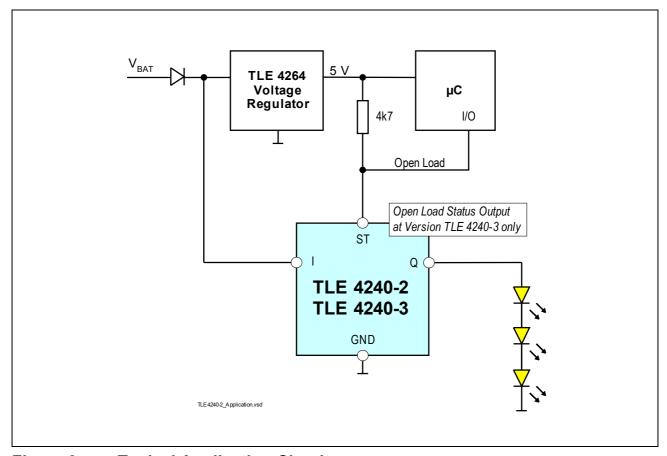


Figure 3 Typical Application Circuit

 Table 2
 Absolute Maximum Ratings

-40 °C ≤ T_{i} ≤ 150 °C

Parameter	Symbol	Limit	Values	Unit	Remarks
		Min.	Max.		
Input I	-	1	- 1	1	
Voltage	V_1	-16	45	V	_
Current	I_{I}	_	_	mA	internally limited
Output Q					
Voltage	V_{Q}	-1	40	V	_
Current	I_{Q}	_	_	mA	internally limited
Status ST (TLE 4240-3	M)	•		1	
Voltage	V_{ST}	-0.3	12	V	_
Current	I_{ST}	_	_	mA	internally limited
ESD Susceptibility					
ESD Resistivity	$V_{\rm ESD,HBM}$	4	_	kV	TLE 4240-2 M; HBM ¹⁾
	$V_{\rm ESD,CDM}$	2	_	kV	TLE 4240-2 M; CDM ²⁾
ESD Resistivity	$V_{\rm ESD,HBM}$	2	_	kV	TLE 4240-3 M; HBM ¹⁾
	$V_{\rm ESD,CDM}$	2	_	kV	TLE 4240-3 M; CDM ²⁾
Temperatures	•			•	
Junction temperature	T_{j}	-40	150	°C	_
Storage temperature	T_{stg}	-50	150	°C	_
1) CCD augaentibility "burnen b	and and all ALIDA	1\" rd	in a to IECD	22 4444	

¹⁾ ESD susceptibility "human body model (HBM)" according to JESD22-A114.

Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

²⁾ ESD susceptibility "charged device model (CDM)" according to JESD22-C101

Table 3 Functional Range

Parameter	Symbol	Limit	Values	Unit	Remarks	
		Min.	Max.			
Input voltage	V_{I}	3	45	V	_	
Status output voltage (Version TLE 4240-3 M only)	V_{ST}	_	15	V	-	
Junction temperature	$T_{\rm j}$	-40	150	°C	_	

Table 4 Thermal Resistance

Parameter	Symbol	Typ. Limit Values	Unit	Remarks
Junction ambient	$R_{th,j-a}$	179	K/W	A: footprint only ¹⁾
		99	K/W	A = 300 mm ¹⁾
		87	K/W	A = 600 mm ¹⁾
Junction pin 5	$R_{ m th,j-pin5}$	26	K/W	measured to pin 5

¹⁾ Mounted an a PCB $80 \times 80 \times 1.5 \text{ mm}^3$, horizontal position, zero airflow.

 Table 5
 Electrical Characteristics

 $V_{\rm I}$ = 13.5 V; $V_{\rm Q}$ = 6 V; -40 °C $\leq T_{\rm j} \leq$ 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		Min.	Тур.	Max.		

Regulator:

Output current	I_{Q}	51	57	63	mA	$T_{\rm j}$ = 100 °C
		46	58	70	mA	9 V ≤ V _I ≤ 16 V
						$T_{\rm j} \leq$ 125 °C
Dropout voltage	V_{dr}	_	0.5	0.7	V	$I_{\rm Q}$ = 40 mA
$V_{\rm dr} = V_{\rm l} - V_{\rm Q}$						

Datasheet 5 Rev. 1.1, 2006-12-07

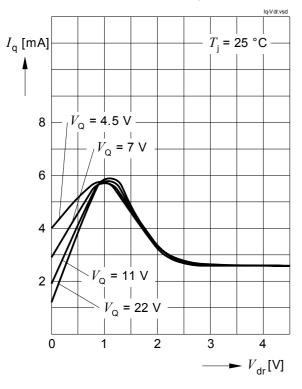
Table 5 Electrical Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; $V_{\rm Q}$ = 6 V; -40 °C $\leq T_{\rm j} \leq$ 150 °C; unless otherwise specified

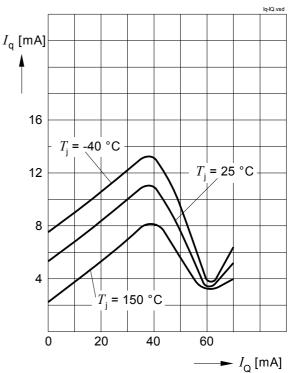
Parameter	Symbol	Limit Values			Unit	Test Condition
		Min.	Тур.	Max.		
Reverse output current	I_{Q}	-5	_	_	mA	$V_{\rm I}$ = -16 V $V_{\rm Q}$ = 0 V
		-5	_	_	mA	$V_{\rm I}$ = 0 V $V_{\rm Q}$ = 16 V
Current consumption $I_q = I_l - I_Q$	I_{q}	_	7	10	mA	<i>V</i> _{dr} = 1 V
Current consumption open load Version TLE 4240-3 M	I_{q}	_	30	40	mA	$I_{\rm Q}$ = 0 mA

Open Load Detection (Version TLE 4240-3 M only):

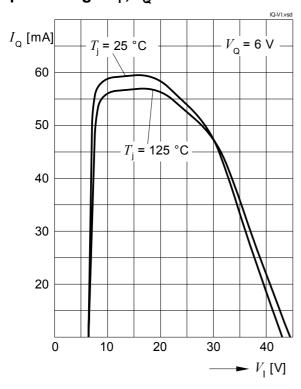
Lower status	$V_{IQ,L}$	_	_	0.8	V	Ramping down
switching threshold	,					$(V_{I} - V_{Q})$
$V_{IQ,L} = V_I - V_Q$						

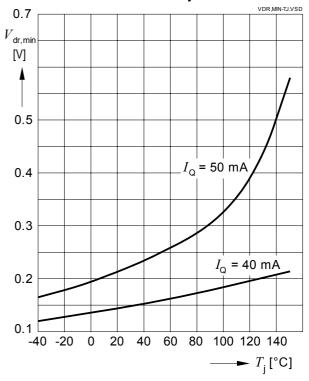

Status Output ST (Version TLE 4240-3 M only):

Status low voltage	$V_{\mathrm{ST,low}}$	_	_	0.4	V	$I_{\rm ST}$ = 1 mA $I_{\rm Q}$ = 5 mA
Status sink current limitation	$I_{ST,MAX}$	1.5	_	_	mA	V _{ST} = 1 V
Status leakage current	$I_{\mathrm{ST,high}}$	_	_	2	μA	$V_{\rm ST} = 5 \text{ V}$ $(V_{\rm I} - V_{\rm Q}) > 1 \text{ V}$



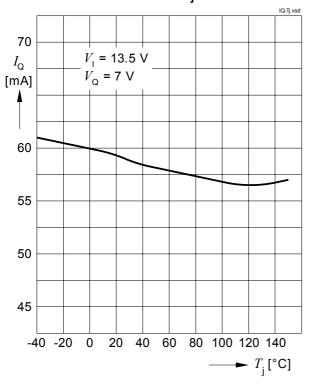
Typical Performance Characteristics


Current Consumption I_q vs. Drop Voltage V_{dr} = $(V_l - V_Q)$

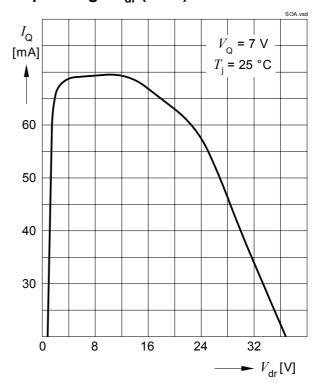

Current Consumption $I_{\rm q}$ vs. Output Current $I_{\rm Q}$

Output Current $I_{\rm Q}$ vs. Input Voltage $V_{\rm I}$; $V_{\rm Q}$ = 6 V

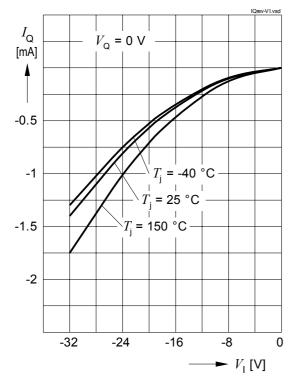
Dropout Voltage V_{dr} vs. Junction Temperature T_{i}

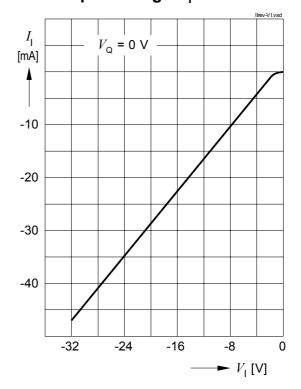


Datasheet 7 Rev. 1.1, 2006-12-07

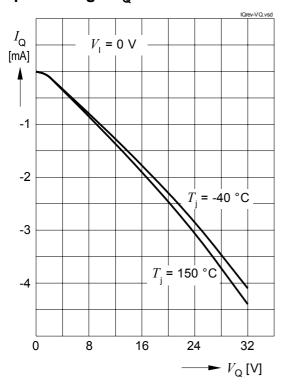


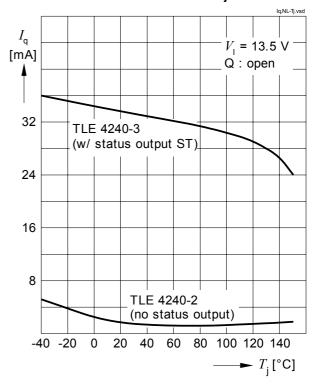
Typical Performance Characteristics


Output Current I_Q vs. Junction Temperature T_i


Output Current I_Q vs. Drop Voltage V_{dr} (SOA)

Reverse Current $I_{\rm Q}$ versus Reverse Input Voltage $V_{\rm I}$


Reverse Current I_1 versus Reverse Input Voltage V_1



Typical Performance Characteristics

Reverse Output Current $I_{\rm Q}$ versus Output Voltage $V_{\rm Q}$

Current Consumption $I_{\rm q}$ in open load condition vs. $T_{\rm j}$

Package Outline

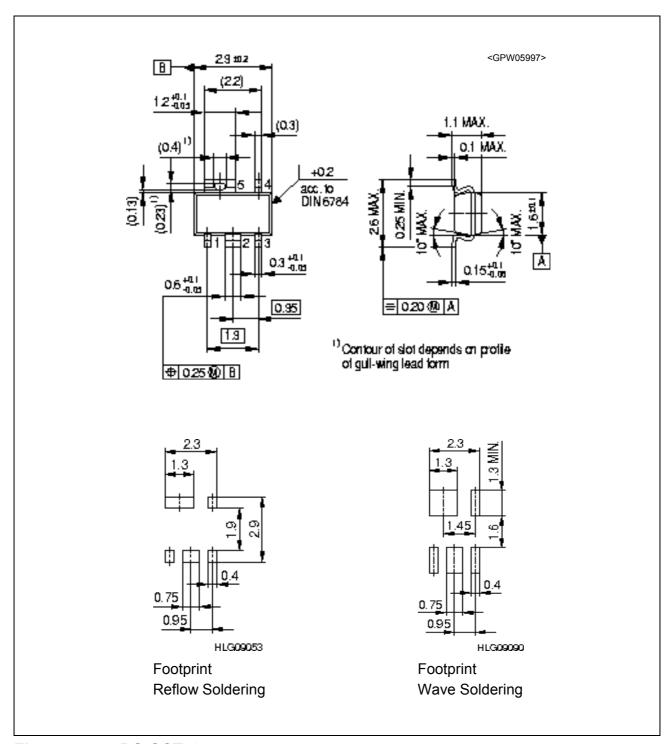


Figure 4 PG-SCT595-5

Find all packages, sorts of packing and others at Infineon Internet Page "Packages": http://www.infineon.com/packages.

SMD = Surface Mounted Device

Dimensions in mm

Edition 2006-12-07 Published by Infineon Technologies AG, 81726 München, Germany

© Infineon Technologies AG 2006. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.