3.3V, 7-Channel Analog Video Switch

Features

- Designed specifically to switch VGA signals
- 7-Channels for VGA signals (R,G,B, Hsync, Vsync, DDC Data, and DDC CLK)
- $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-10 \%$
- DDC path will operate as a 5 V to 3.3 V level shifter
- H/V output buffer with $+/-24 \mathrm{~mA}$ drive
- ESD tolerance on video I/O pins is up to 12 kV HBM per JEDEC standard
- -3 dB BW of 1.7 GHz (typ)
- Low Xtalk, (-38dB typ)
- Low and Flat ON-STATE resistance $\left(\mathrm{R}_{\text {on }}=4.8-O h m\right.$, $\mathrm{R}_{\text {on }}($ Flat $)=0.5 \mathrm{ohm}$, typ $)$
- Low input/output capacitance $($ Con $=5.6 \mathrm{pF}$, typ)
- Packaging (Pb-free and Green):
-32-contact TQFN (ZLE)

Description

Pericom's PI3V713-A is a 7-channel video mux/demux used to switch between multiple VGA sources or end points. In a notebook application where analog video signals are found in both the notebook and the dock, a switch solution is required to switch between the two video port locations. With the high bandwidth of $\sim 1.7 \mathrm{GHz}$, the signal integrity will remain strong even through the long FR4 trace between the notebook and the docking station. In addition to high signal performance, the video signals are also protected against high ESD with integrated diodes to V_{DD} and GND that will support up to12kV HBM ESD protection.

Application

Routing VGA signals with low signal attenuation and high ESD.

Applications

- Routes physical layer signals for high bandwidth digital video

Block Diagram

Pin Diagram

Pin Description

Pin Number	Pin Name	Pin Type	Description
1	R	I/O	Red signal from VGA Transmitter
2	G	I/O	Green signal from VGA Transmitter
3	GND	Ground	Ground
4	$\mathrm{V}_{\text {DD }}$	Power	$3.3 \mathrm{~V}+/-10 \%$ power rail
5	B	I/O	Blue signal from VGA Transmitter
6	H_SOURCE	I	Horizontal Synchronous signal from VGA Transmitter
7	V_SOURCE	I	Vertical Synchronous signal from VGA Transmitter
8	Reserved	I	For normal operation, this pin needs to be tied HIGH
9	SDA_SOURCE	I/O	DDC, data signal from VGA Transmitter
10	SCL_SOURCE	I/O	DDC, clock signal from VGA Transmitter
11	GND	Ground	Ground
12	SDA1	I/O	DDC, data signal for VGA output port 1
13	SDA2	I/O	DDC, data signal for VGA output port 2
14	SCL1	I/O	DDC, clock signal for VGA output port 1
15	SCL2	I/O	DDC, clock signal for VGA output port 2
16	$5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$	Power	$5 \mathrm{~V}+/-10 \%$ Power rail
17	V2_OUT	O	Vertical Synchronous buffered signal for VGA output port 2
18	V1_OUT	O	Vertical Synchronous buffered signal for VGA output port 1
19	H2_OUT	O	Horizontal Synchronous buffered signal for VGA output port 2
20	H1_OUT	O	Horizontal Synchronous buffered signal for VGA output port 1
21	B2	I/O	Blue signal for VGA port 2
22	B1	I/O	Blue signal for VGA port 1
23	V_{DD}	Power	$3.3 \mathrm{~V}+/-10 \%$ power rail
24	G2	I/O	Green signal for VGA port 2
25	G1	I/O	Green signal for VGA port 1
26	R2	I/O	Red signal for VGA port 2
27	R1	I/O	Red signal for VGA port 1
28	GND	Ground	Ground
29	TEST	Input	Description is TEST pin to enable TEST mode. IF this pin is LOW, then test mode is enabled. For normal usage disable TEST mode by holding this pin high, or floating. There is an internal 100 Kohm pull-up on this pin
30	SEL	I	Control signal. If pin 30 is LOW, port 1 is chosen If pin 30 is HIGH , port 2 is chosen
31	GND	Ground	Ground
32	VDD	Power	$3.3 \mathrm{~V}+/-10 \%$ power rail

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

$$
\begin{aligned}
& \text { Storage Temperature.................................... }-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& \text { Supply Voltage to Ground Potential................ }-0.5 \mathrm{~V} \text { to }+4.0 \mathrm{~V} \\
& \text { DC Input Voltage... }
\end{aligned}
$$

Truth Table

SEL	Result
0	Port 1 is active
1	Port 2 is active

DC Electrical Characteristics for Video Switching over Operating Range

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, 5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right)$

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage (SEL/Priority and MS pins)	Guaranteed HIGH level	2	-	-	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (SEL/Priority, and MS pins)	Guaranteed LOW level	-0.5	-	0.8	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\text {SELx }}=-18 \mathrm{~mA}$	-	-0.8	-1.2	
I_{IH}	Input HIGH Current (SEL/Priority)	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ., \mathrm{V}_{\text {SELx }}=\mathrm{V}_{\mathrm{DD}}$	-	-	± 5	$\mu \mathrm{A}$
IIL	Input LOW Current (SEL/Priority)	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {SELx }}=\mathrm{GND}$	-	-	± 5	
IOFF_H/V/DDC	Power Down Leakage Current for H/V and DDC channels only	$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \leq 3.6$	-	-	± 5	
$\mathrm{R}_{\text {ON }}$	Switch On-Resistance for RGB path (3)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Min., } 0 \mathrm{~V} \leq \mathrm{V}_{\text {input }} \leq 1.2 \mathrm{~V}, \\ & \mathrm{I}_{\text {input }}=-40 \mathrm{~mA} \end{aligned}$	-	4.8	5.6	Ω
$\mathrm{R}_{\text {FLAT(ON) }}$	On-Resistance Flatness for RGB path (4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} ., \mathrm{V}_{\text {input }} @ 0 \mathrm{~V} \text { and } 1.2 \mathrm{~V}, \\ & \mathrm{I}_{\text {input }}=-40 \mathrm{~mA} \end{aligned}$	-	0.5	+1	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On-Resistance match from center ports to any other port (RGB path only)(4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Min., } 0 \mathrm{~V} \leq \mathrm{V}_{\text {input }} \leq 1.2 \mathrm{~V}, \\ & \mathrm{I}_{\text {input }}=-40 \mathrm{~mA} \end{aligned}$	-	0.1	1	
$\mathrm{V}_{\mathrm{OH}(\mathrm{H} / \mathrm{V})}$	Output high for H/V signals	$5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0		$\begin{aligned} & 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	V
$\mathrm{V}_{\mathrm{OL}(\mathrm{H} / \mathrm{V})}$	Output low for H/V signals	$5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	0		0.8	

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameters ${ }^{(4)}$	Description	Test Conditions ${ }^{(1)}$	Typ. ${ }^{(2)}$	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance		2.0	pF
C OFF	RGB Capacitance, Switch OFF		2.4	
CON	RGB Switch Capacitance, Switch ON		5.6	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between input and output pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two pins.
4. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
I_{CC} _ 3.3 V rail	Quiescent Power Supply Current for 3.3 V power rail	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Max.,} \mathrm{~V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SEL}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$	-	250	500	$\mu \mathrm{A}$
I_{CC} [5V V ${ }_{\text {DD }}$	Quiescent Power supply current for $5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & 5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SEL}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$		100	500	nA

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Dynamic Electrical Characteristics Over the Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$)

Parameters	Description	Test Conditions		Min.	Typ. ${ }^{(2)}$	Max.	Units
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{f}=250 \mathrm{MHz}$, See Fig. 2		-	-38	-	
OIRR	OFF Isolation	$\mathrm{f}=250 \mathrm{MHz}$, See Fig. 3		-	-46	-	
BW	Bandwidth -3 dB	See Fig. 1		-	1.7	-	GHz
$\mathrm{I}_{\text {LOSS }}$	Insertion Loss for RGB path	with 75-Ohm load	Freq $=10 \mathrm{MHz}(\mathrm{VGA})$		-1.77		dB
			Freq $=100 \mathrm{MHz}(\mathrm{XGA})$		-1.88		
			Freq $=300 \mathrm{MHz}(\mathrm{UXGA})$		-2.09		

Switching Characteristics

Parameters	Description	Min.	Typ. ${ }^{(2)}$	Max.	Units
$\mathrm{t}_{\text {PD }}$	Propagation Delay (2,3)	-	0.25		ns
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Line Enable Time - SEL to Input, Output	0.5	-	15	
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Line Disable Time - SEL to Input, Output	0.5	-	10	
$\mathrm{t}_{\mathrm{SK}(\mathrm{p})}$	Skew between opposite transitions of the same output $\left(\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right)(2)$	-	0.1	0.2	
Trise (H/V)	Horizontal/Vertical synchronous output rise time (H1_out, V1_out, H2_out, and V2_out) with 15 pF load		1.5		
Tfall (H/V)	Horizontal/Vertical synchronous output fall time (H1_out, V1_out, H2_out, and V2_out) with 15 pF load		1.6		

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Guaranteed by design.
3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

Test Circuit for Electrical Characteristics ${ }^{(1)}$

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\quad \mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\text {OUT }}$ of the Pulse Generator
3. All input impulses are supplied by generators having the following characteristics: $\mathrm{f}=10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
4. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
t pLZ, $^{\|c\|}$ tPZL (output on I-side)	6.0 V
t $_{\text {PHZ }}$, t $_{\text {PZH }}$ (output on I-side)	GND
Prop Delay	Open

Test Circuit for Dynamic Electrical Characteristics

Figure 1. Bandwidth -3dB Testing

HP4396B

Figure 2. Crosstalk Test Setup

HP4396B

Figure 3. Off Isolation Test Setup

Switching Waveforms

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, the output enables or select pins may be driven low to 0 V and high to 3.6 V . Driving IN Rail-to-Rail $\mathbb{R}^{(}$minimizes power consumption.

NOTE :

1. ALL DIMENSIONS ARE $\operatorname{IN} \mathrm{mm}$. ANGLES IN DEGREES.
2. COPLANARITY APPLIES TO THE EXPOSED THERMAL PAD AS WELL AS THE TERMINALS.
3. REFER JEDEC MO-220.
4. RECOMMENDED LAND PATTERN IS FOR REFERENCE ONLY.
5. THERMAL PAD SOLDERING AREA

| DRabling Serial Connectivity |
| :--- | :---: |\quad DATE: 10/09/09

09-0125
Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI3V713-A ZLE	ZL	Pb-free \& Green, 32-pin TQFN

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

