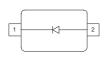


Silicon Schottky Diodes

- For low-loss, fast-recovery, meter protection, bias isolation and clamping application
- Integrated diffused guard ring
- Low forward voltage
- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

BAT64


BAT64-02W BAT64-02V

3 D1 D1 D2

BAT64-04

BAT64-05 BAT64-05W BAT64-06 BAT64-06W

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Package	Configuration	L _S (nH)	Marking
BAT64	SOT23	single	1.8	63s
BAT64-02V	SC79	single	0.6	t
BAT64-02W*	SCD80	single	0.6	64
BAT64-04	SOT23	series	1.8	64s
BAT64-04W	SOT323	series	1.4	64s
BAT64-05	SOT23	common cathode	1.8	65s
BAT64-05W	SOT323	common cathode	1.4	65s
BAT64-06	SOT23	common anode	1.8	66s
BAT64-06W	SOT323	common anode	1.4	66s

^{*} Not for new design

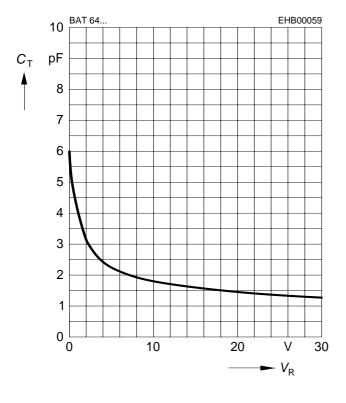
Maximum Ratings at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	40	V
Forward current	I _F	250	mA
Non-repetitive peak surge forward current	I _{FSM}	800	
(<i>t</i> ≤ 10ms)			
Average rectified forward current (50/60Hz, sinus)	I _{FAV}	120	
Total power dissipation	P _{tot}		mW
BAT64, <i>T</i> _S ≤ 86°C		250	
BAT64-02W, -02V $T_{S} \le 121^{\circ}$ C		250	
BAT64-04, BAT64-06, <i>T</i> _S ≤ 61°C		250	
BAT64-04W, BAT64-06W, <i>T</i> _S ≤ 111°C		250	
BAT64-05, <i>T</i> _S ≤ 36°C		250	
BAT64-05W, $T_{S} \le 104^{\circ}\text{C}$		250	
Junction temperature	T _j	150	°C
Storage temperature	T _{stg}	-55 150	

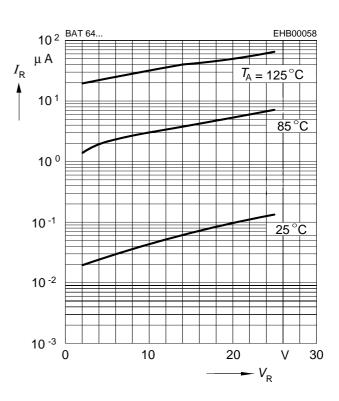
Thermal Resistance

Symbol	Value	Unit
R _{thJS}		K/W
	≤ 255	
	≤ 115	
	≤ 355	
	≤ 155	
	≤ 455	
	≤ 185	
		R _{thJS} ≤ 255 ≤ 115 ≤ 355 ≤ 155 ≤ 455

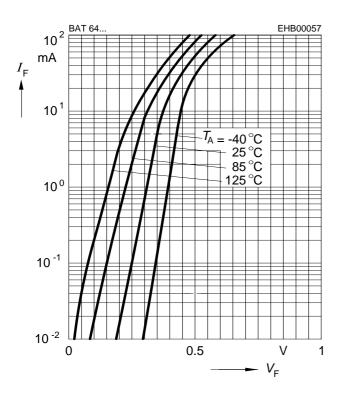
 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note AN077 (Thermal Resistance Calculation)


Electrical Characteristics at T_A = 25 °C, unless otherwise specified

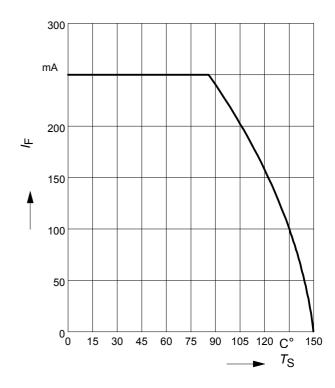
Parameter	Symbol		Unit			
		min.	typ.	max.	<u> </u>	
DC Characteristics	•	•	•	•	•	
Breakdown voltage	$V_{(BR)}$	40	-	-	V	
$I_{(BR)} = 10 \ \mu A$						
Reverse current	I_{R}				μA	
V _R = 30 V		-	-	2		
V_{R} = 30 V, T_{A} = 85 °C		-	-	200		
Forward voltage	V _F				mV	
$I_{F} = 1 \; mA$		270	320	350		
$I_{\rm F}$ = 10 mA		310	385	430		
$I_{F} = 30 \text{ mA}$		370	440	520		
$I_{\rm F}$ = 100 mA		500	570	750		
AC Characteristics						
Diode capacitance	C _T	-	4	6	pF	
$V_{R} = 1 \text{ V}, f = 1 \text{ MHz}$						
Reverse recovery time	t _{rr}	-	-	5	ns	
$I_{\rm F}$ = 10 mA, $I_{\rm R}$ = 10 mA, measured $I_{\rm R}$ = 1 mA ,						
R_{L} = 100 Ω						


Diode capacitance $C_T = f(V_R)$

f = 1MHz

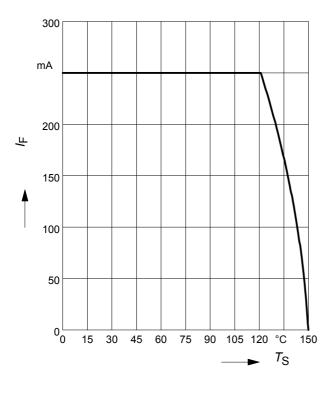

Reverse current $I_R = f(V_R)$

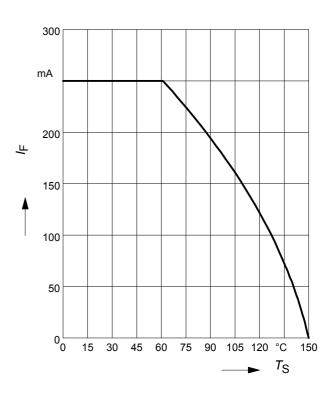
 T_A = Parameter


Forward current $I_F = f(V_F)$

 T_A = Parameter

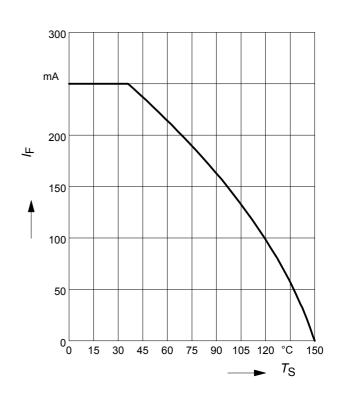
Forward current $I_F = f(T_S)$


BAT64

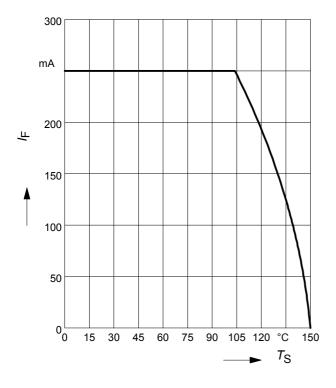

Forward current $I_F = f(T_S)$

BAT64-02W, -02V

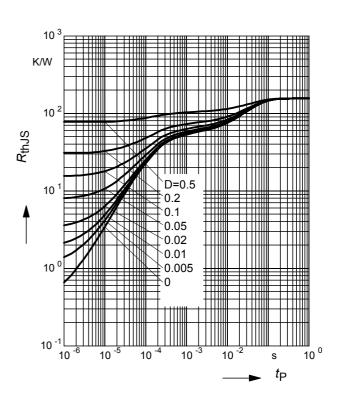
Forward current $I_F = f(T_S)$


BAT64-04, BAT64-06

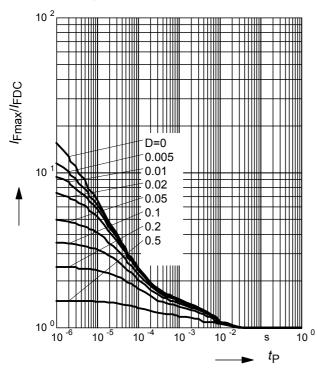
Forward current $I_F = f(T_S)$ BAT64-04W, BAT64-06W


Forward current $I_F = f(T_S)$

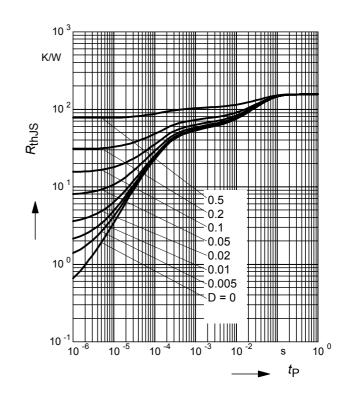
BAT64-05



Forward current $I_F = f(T_S)$ BAT64-05W

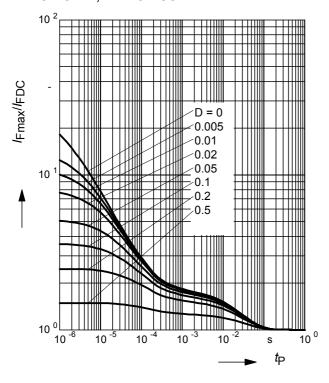


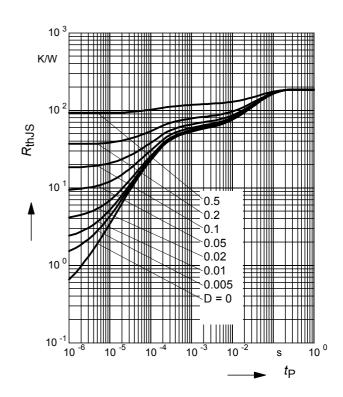
Permissible Puls Load $R_{thJS} = f(t_p)$ BAT64-02W, -02V


Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAT64-02W, -02V

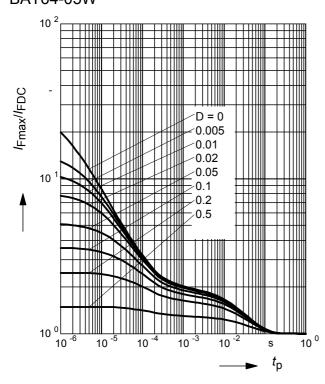
Permissible Puls Load R_{thJS} = $f(t_p)$


BAT64-04W, BAT64-06W

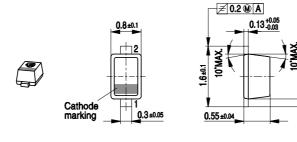


Permissible Pulse Load

 $I_{\text{Fmax}} / I_{\text{FDC}} = f (t_{\text{p}})$ BAT64-04W, BAT64-06W

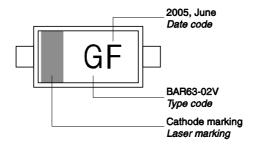


Permissible Puls Load $R_{thJS} = f(t_p)$ BAT64-05W



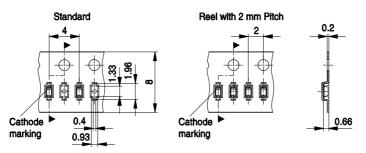
Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAT64-05W



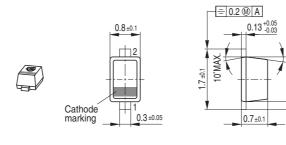
Foot Print

Marking Layout (Example)



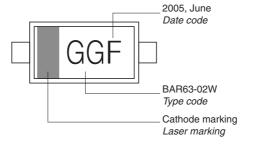
Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel


Reel ø180 mm = 8.000 Pieces/Reel (2 mm Pitch)

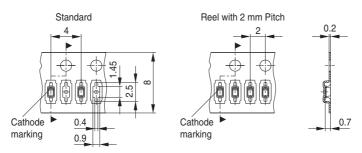
Reel ø330 mm = 10.000 Pieces/Reel

8



Foot Print

Marking Layout (Example)



Standard Packing

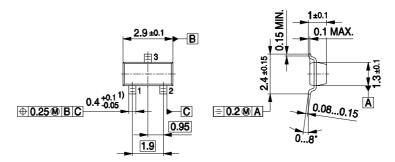
Reel ø180 mm = 3.000 Pieces/Reel

Reel ø180 mm = 8.000 Pieces/Reel (2 mm Pitch)

Reel ø330 mm = 10.000 Pieces/Reel

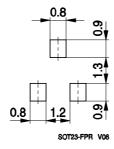
9

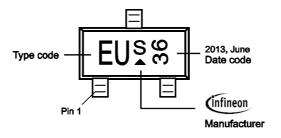
2014-02-11


Date Code marking for discrete packages with one digit (SCD80, SC79, SC75¹⁾) CES-Code

Month	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
01	а	р	Α	Р	а	р	Α	Р	а	р	Α	Р
02	b	q	В	Q	b	q	В	Q	b	q	В	Q
03	С	r	С	R	С	r	С	R	С	r	С	R
04	d	S	D	S	d	S	D	S	d	S	D	S
05	е	t	Е	T	е	t	Е	Т	е	t	Е	Т
06	f	u	F	U	f	u	F	U	f	u	F	U
07	g	٧	G	V	g	٧	G	٧	g	٧	G	V
08	h	Х	Η	Х	h	Х	Н	Х	h	Х	Η	Х
09	j	у	7	Υ	j	у	J	Υ	j	у	7	Υ
10	k	Z	K	Z	k	Z	K	Z	k	Z	K	Z
11	I	2	L	4	I	2	L	4	I	2	L	4
12	n	3	N	5	n	3	N	5	n	3	N	5

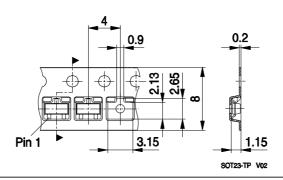
¹⁾ New Marking Layout for SC75, implemented at October 2005.



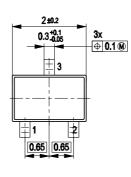

1) Lead width can be 0.6 max. in dambar area

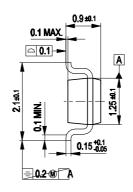
SOT23-PO V08

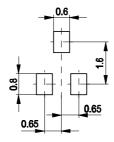
Foot Print

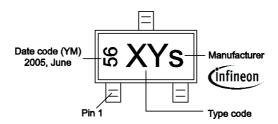


Marking Layout

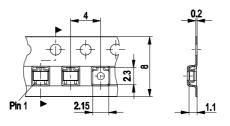

Standard Packing


Reel o 180 mm: 3.000 Pieces / Reel Reel o 330 mm = 10.000 Pieces / Reel





Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.