
International **ICR** Rectifier

IRLMS2002PbF

- Ultra Low On-Resistance
- N-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- 2.5V Rated
- Lead-Free

PD- 95675

Description

These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

The Micro6™ package with its customized leadframe produces a HEXFET® power MOSFET with R_{DS(on)} 60% less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and R_{DS(on)} reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

Absolute	Maximum	Ratings
----------	---------	---------

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	6.5	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	5.2	А
I _{DM}	Pulsed Drain Current ①	20	
P _D @T _A = 25°C	Power Dissipation	2.0	W
P _D @T _A = 70°C	Power Dissipation	1.3	vv
	Linear Derating Factor	0.016	W/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

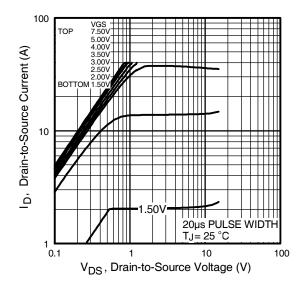
	Parameter	Max.	Units
R _{0JA}	Maximum Junction-to-Ambient3	62.5	°C/W
www.irf.com			1

www.irf.com

International

		<u>``</u>				
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.016		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.030	Ω	V _{GS} = 4.5V, I _D = 6.5A ②
				0.045		V _{GS} = 2.5V, I _D = 5.2A ②
V _{GS(th)}	Gate Threshold Voltage	0.60		1.2	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
g fs	Forward Transconductance	13			S	$V_{DS} = 10V, I_D = 6.5A$
1	Drain to Source Leakage Current			1.0		$V_{DS} = 16V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
lass	Gate-to-Source Forward Leakage			-100	nA	$V_{GS} = -12V$
I _{GSS}	Gate-to-Source Reverse Leakage			100		V _{GS} = 12V
Qg	Total Gate Charge		15	22		I _D = 6.5A
Q _{gs}	Gate-to-Source Charge		2.2	3.3	nC	$V_{DS} = 10V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		3.5	5.3		V _{GS} = 5.0V ②
t _{d(on)}	Turn-On Delay Time		8.5			V _{DD} = 10V
tr	Rise Time		11			I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		36		ns	$R_{G} = 6.0\Omega$
t _f	Fall Time		16			R _D = 10Ω ②
Ciss	Input Capacitance		1310			V _{GS} = 0V
Coss	Output Capacitance		150		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		36			f = 1.0 MHz

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)


Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.0		MOSFET symbol
	(Body Diode)			2.0	Α	showing the
I _{SM}	Pulsed Source Current			20		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 1.7A, V_{GS} = 0V$ (2)
t _{rr}	Reverse Recovery Time		19	29	ns	T _J = 25°C, I _F = 1.7A
Q _{rr}	Reverse Recovery Charge		13	20	nC	di/dt = 100A/µs ②

Notes:

① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) 3 Surface mounted on FR-4 board, $t\leq$ 5sec.

⁽²⁾ Pulse width \leq 400µs; duty cycle \leq 2%.

International

Fig 1. Typical Output Characteristics

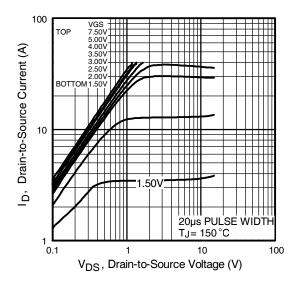


Fig 2. Typical Output Characteristics

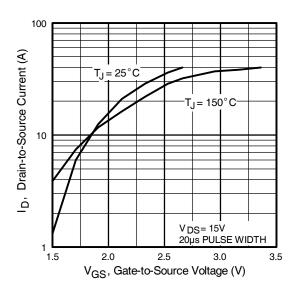
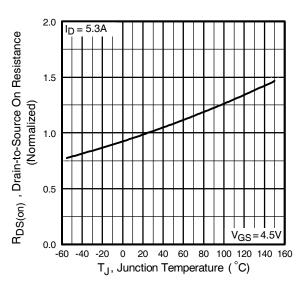
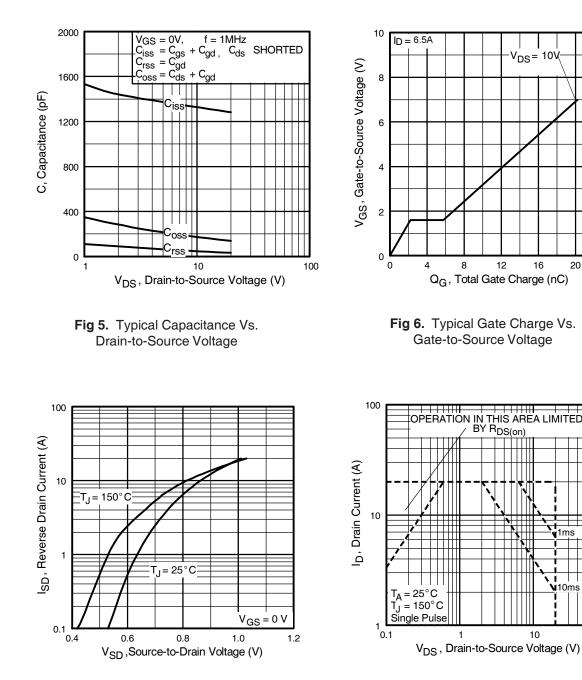


Fig 3. Typical Transfer Characteristics



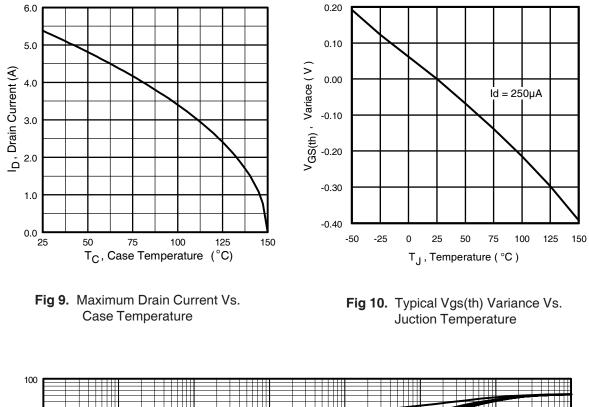

Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com

International **TOR** Rectifier

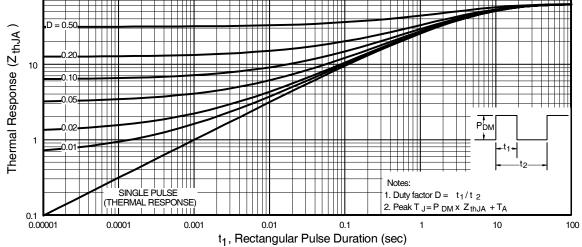
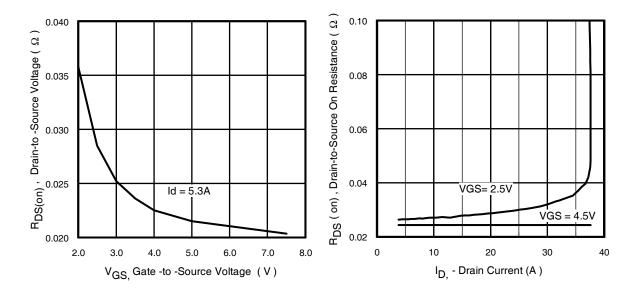
20

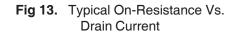
24



www.irf.com

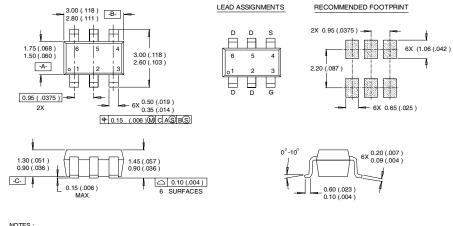
100


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

www.irf.com

International **TOR** Rectifier



Micro6 (SOT23 6L) Package Outline

Dimensions are shown in milimeters (inches)

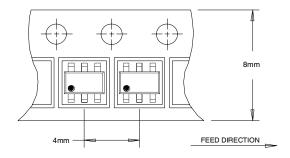
NOTES : 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982. 2. CONTROLLING DIMENSION : MILLIMETER. 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

Micro6 (SOT23 6L) Part Marking Information

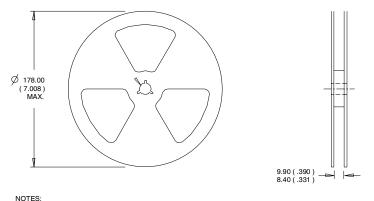
W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR WORK WEEK YEAR W Y = YFAR2001 01 A B 1 W= WEEK PART NUMBER 2002 2 02 2003 2004 03 04 3 4 C D AYWIC 5 6 7 2005 н нн IOT 2006 2007 CODE TOP 8 9 2008 ١ ŧ 2009 2010 0 24 Х 25 26 PART NUMBER CODE REFERENCE: v ż A = IRLMS1902 W = (27-52) IF PRECEDED BY ALETTER B = IRLMS1503 C = IRLMS6702 WORK WEEK D = IRLMS5703YEAR γ W E = IRLMS68022001 A B A B C D E F G H 27 F = IRLMS45022002 28 2003 29 C D G = IRI MS2002 2004 30 H = IRLMS68032005 2006 2007 Note: A line above the work week 2008 (as shown here) indicates Lead-Free. ١ 2009 J K T 50 51 2010 X Y

Micro6™

www.irf.com


7

52


International **TOR** Rectifier

Micro6 Tape & Reel Information

Dimensions are shown in milimeters (inches)

NOTES : 1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

CONTROLLING DIMENSION : MILLIMETER.
OUTLINE CONFORMS TO EIA-481 & EIA-541.

This product has been designed and gualified for the consumer market. Qualification Standards can be found on IR's Web site. Data and specifications subject to change without notice.

> International **ICR** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 01/05 8 www.irf.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.