infineon

AUIRF3808S

HEXFET[®] Power MOSFET

75V

5.9mΩ

7.0mΩ

106A

Features

- Advanced Planar Technology
- Low On-Resistance
- Dynamic dV/dT Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

D TER S
D ² Pak AUIRF3808S

G	D	S
Gate	Drain	Source

Bass part number	Deekege Type	Standard Pack		Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
AUIRF3808S	D ² Dok	Tube	50	AUIRF3808S
AUIRE30003	D²-Pak	Tape and Reel Left	800	AUIRF3808STRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	106	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	75	А
I _{DM}	Pulsed Drain Current ①	550	
P _D @T _C = 25°C	Maximum Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 2	430	mJ
I _{AR}	Avalanche Current ①	82	А
E _{AR}	Repetitive Avalanche Energy	See Fig. 12a, 12b, 15, 16	mJ
dv/dt	Peak Diode Recovery 3	5.5	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case®		0.75	°C \\
R _{0JA}	Junction-to-Ambient (PCB Mount, steady state) 🛛		40	°C/W

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at <u>www.infineon.com</u>

VDSS

 I_D

R_{DS(on)}

typ.

max.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	75			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.086		V/°C	Reference to 25°C, I_D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.9	7.0	mΩ	V _{GS} = 10V, I _D = 82A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} = V _{GS} , I _D = 250μA
g _{fs}	Forward Transconductance	100			S	V _{DS} = 25V, I _D = 82A
1	Drain to Source Lookage Current			25		V _{DS} = 75V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} = 60V,V _{GS} = 0V,T _J =150°C
I _{GSS}	Gate-to-Source Forward Leakage			200	54	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Diode Cha	aracteristics					
C _{oss eff.}	Effective Output Capacitance (Time Related)		1140			$V_{GS} = 0V, V_{DS} = 0V$ to $60V$
C _{oss}	Output Capacitance		570			$V_{GS} = 0V, V_{DS} = 60V, f = 1.0MHz$
C _{oss}	Output Capacitance		6010		pF	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{rss}	Reverse Transfer Capacitance		130		~ 5	f = 1.0MHz, See Fig.5
C _{oss}	Output Capacitance		890			V _{DS} = 25V
C _{iss}	Input Capacitance		5310			V _{GS} = 0V
Ls	Internal Source Inductance		7.5		n H	from package
L _D	Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
t _f	Fall Time		120			V _{GS} = 10V④
t _{d(off)}	Turn-Off Delay Time		68		ns	R _G = 2.5Ω,
t _r	Rise Time		140			I _D = 82A
t _{d(on)}	Turn-On Delay Time		16			V _{DD} = 38V
Q _{gd}	Gate-to-Drain Charge		50	76		V _{GS} = 10V④
Q_{gs}	Gate-to-Source Charge		31	47	nC	V _{DS} = 60V
Q _q	Total Gate Charge		150	220		I _D = 82A

	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			106		MOSFET symbol
I _S	(Body Diode)			106	^	showing the
	Pulsed Source Current			550	A	integral reverse
I _{SM}	(Body Diode) ①			550		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 82A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		93	140	ns	T _J = 25°C ,I _F = 82A
Q _{rr}	Reverse Recovery Charge		340	510	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsi	c turn-c	on time	is neglig	gible (turn-on is dominated by $L_{S}+L_{D}$)

Notes:

① Repetitive rating; pulse width limited by max. junction temperature. (See fig.11)

 \odot Starting T_J = 25°C, L = 0.130mH, R_G = 25 Ω , I_{AS} = 82A. (See fig.12)

 $\label{eq:ISD} \ensuremath{\mathbb{S}} \ensuremath{$

④ Pulse width \leq 400µs; duty cycle \leq 2%.

 \odot C_{oss eff.} is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.

© Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

 $\label{eq:rescaled} \begin{tabular}{ll} \hline & R_\theta \mbox{ is measured at } T_J \mbox{ of approximately } 90^\circ C \end{tabular}$

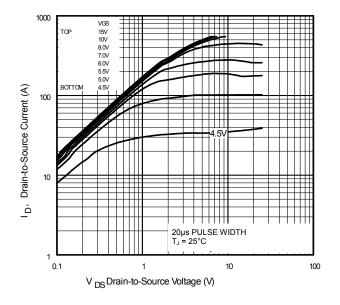


Fig. 1 Typical Output Characteristics

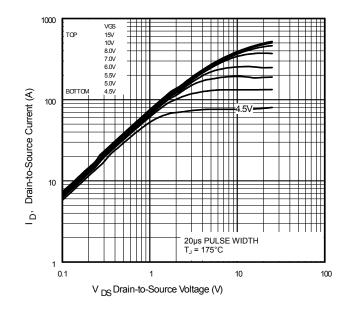
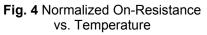



Fig. 2 Typical Output Characteristics

Fig. 3 Typical Transfer Characteristics

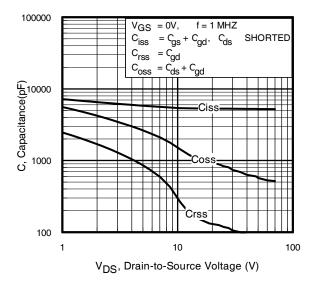


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

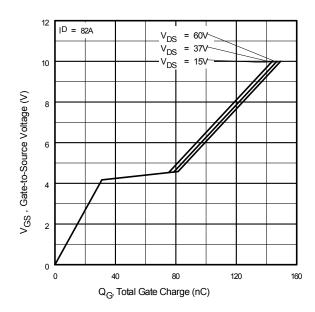


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

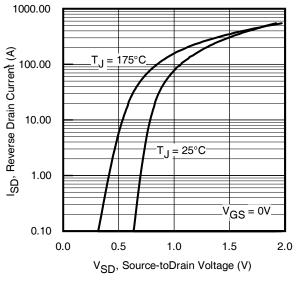


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

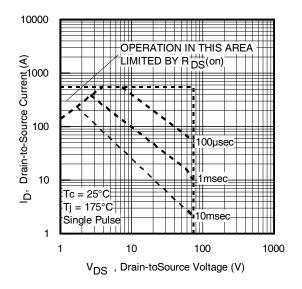


Fig 8. Maximum Safe Operating Area

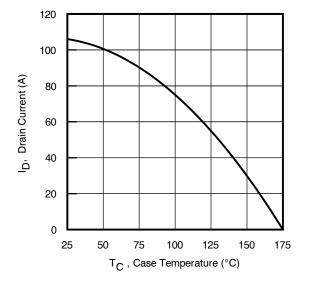


Fig 9. Maximum Drain Current vs. Case Temperature

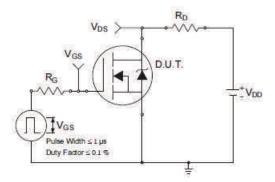


Fig 10a. Switching Time Test Circuit

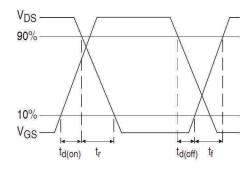


Fig 10b. Switching Time Waveforms

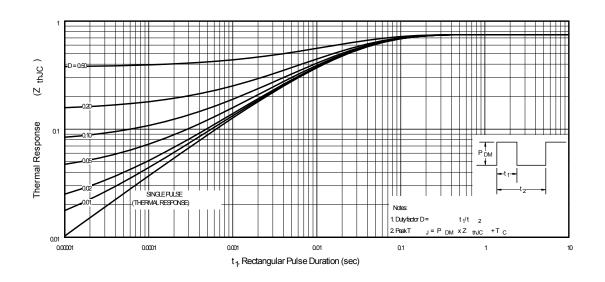


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

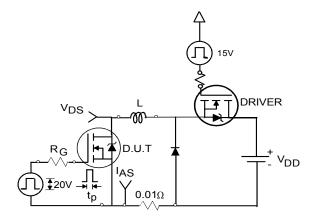


Fig 12a. Unclamped Inductive Test Circuit

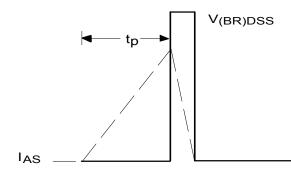


Fig 12b. Unclamped Inductive Waveforms

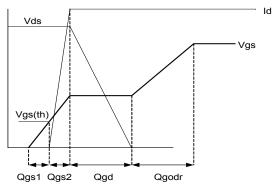


Fig 13a. Gate Charge Waveform

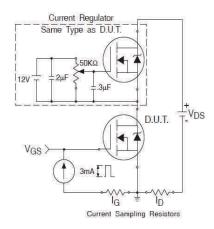


Fig 13b. Gate Charge Test Circuit

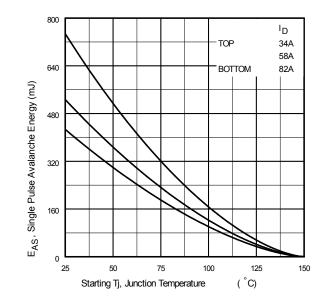


Fig 12c. Maximum Avalanche Energy vs. Drain Current

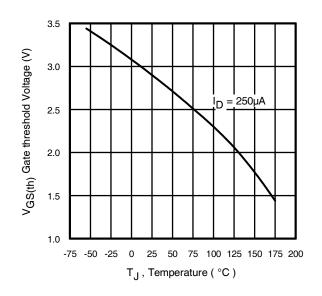


Fig 14. Threshold Voltage vs. Temperature

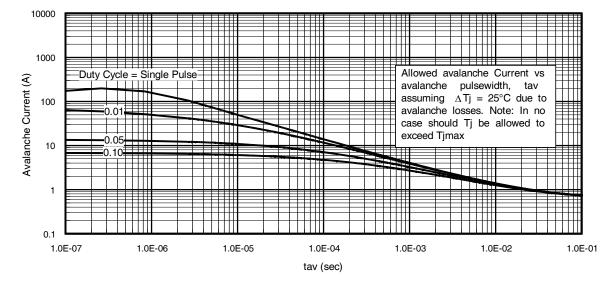
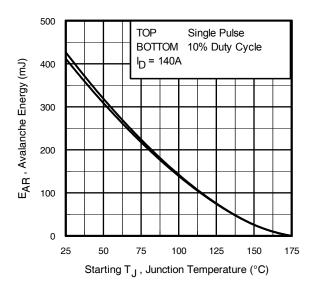
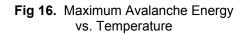




Fig 15. Typical Avalanche Current vs. Pulse width

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Timax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. lav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).
 - tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} \mathsf{P}_{D \ (ave)} &= 1/2 \ (\ 1.3 \cdot \mathsf{BV} \cdot \mathsf{I}_{av}) = \Delta T / \ \mathsf{Z}_{thJC} \\ \mathsf{I}_{av} &= 2 \Delta T / \ [1.3 \cdot \mathsf{BV} \cdot \mathsf{Z}_{th}] \\ \mathsf{E}_{AS \ (AR)} &= \mathsf{P}_{D \ (ave)} \cdot \mathsf{t}_{av} \end{split}$$

Peak Diode Recovery dv/dt Test Circuit

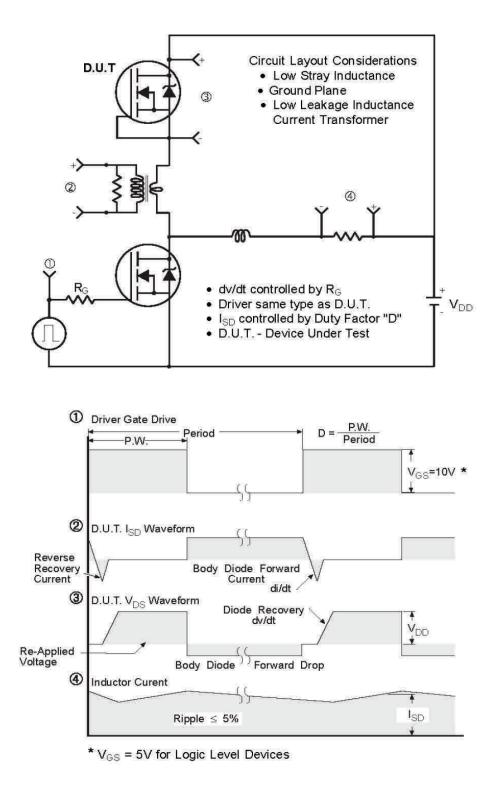
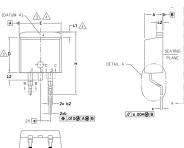
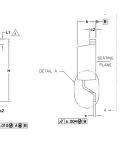



Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs



AUIRF3808S

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

AD TIF

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.

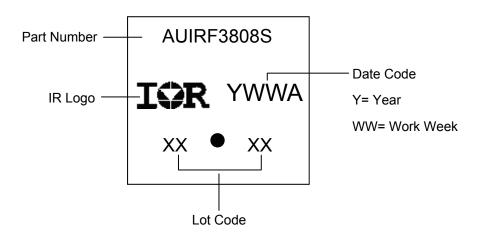
7. CONTROLLING DIMENSION: INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

<u>______6</u> |--−b1, b3---| PLATING -BASE METAL \triangle 1 🛆 —(b, b2)ţţ SECTION B-B & C-C SCALE: NONE VIEW A-A н DETAIL "A" ROTATED 90° CW SCALE 8:1 B SEATING PLANE A1_ 13

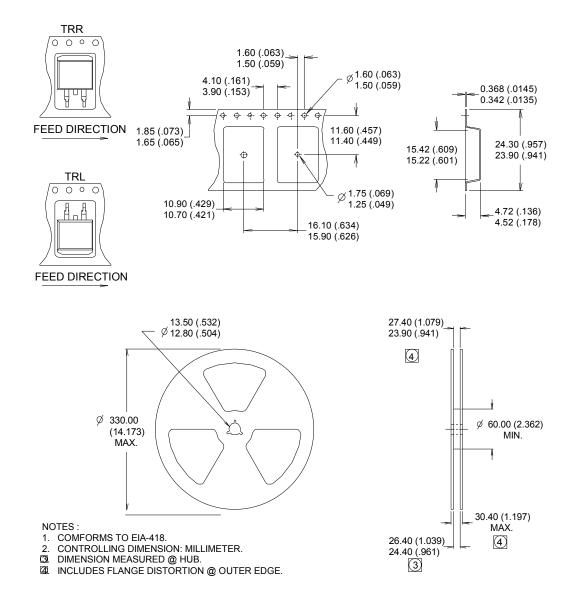
S Y	DIMENSIONS					
M B O	MILLIM	ETERS	INC	HES	O T E S	
L	MIN.	MAX.	MIN.	MAX.	L S	
А	4.06	4.83	.160	.190		
A1	0.00	0.254	.000	.010		
Ь	0.51	0.99	.020	.039		
Ь1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
b3	1.14	1.73	.045	.068	5	
С	0.38	0.74	.015	.029		
с1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	_	.270	_	4	
Е	9.65	10.67	.380	.420	3,4	
E1	6.22	—	.245	—	4	
е	2.54	BSC	.100	BSC		
Н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	_	1.68	-	.066	4	
L2	_	1.78	-	.070		
L3	0.25	BSC	.010	BSC		

LEAD ASSIGNMENTS


HEXFET

1.- GATE 2, 4.- DRAIN 3.- SOURCE

DIODES 1.- ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.- CATHODE 3.- ANODE


> IGBTS, COPACK 1.- GATE 2, 4.- COLLECTOR 3.- EMITTER

D²Pak (TO-263AB) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

		Automotive (per AEC-Q101)				
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture S	Sensitivity Level	D ² -Pak	MSL1			
	Machine Model		Class M4 (+/- 800V) [†]			
		AEC-Q101-002				
	Human Bady Madal	Class H2 (+/- 4000V) [†]				
ESD	Human Body Model	AEC-Q101-001				
Charged Device Model		Class C5 (+/- 2000V) [†]				
		AEC-Q101-005				
RoHS Compliant		Yes				

+ Highest passing voltage.

Revision History

Date	Comments			
11/13/2015	Updated datasheet with corporate template			
11/13/2013	Corrected ordering table on page 1.			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

<u>WARNINGS</u>

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.