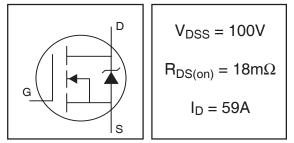
PD - 95466A

International


Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

This HEXFET[®] Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

IRF3710ZPbF IRF3710ZSPbF IRF3710ZLPbF HEXFET® Power MOSFET

TO-220AB IRF3710ZPbF

D²Pak TO-262 IRF3710ZSPbF IRF3710ZLPbF

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	59	А
$I_{\rm D} @ T_{\rm C} = 100^{\circ}{\rm C}$	Continuous Drain Current, V _{GS} @ 10V (See Fig. 9)	42	
I _{DM}	Pulsed Drain Current \oplus	240	
P _D @T _C = 25°C	Maximum Power Dissipation	160	W
	Linear Derating Factor	1.1	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 2	170	mJ
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ②	200	
I _{AR}	Avalanche Current ①	See Fig.12a,12b,15,16	A
E _{AR}	Repetitive Avalanche Energy ©		mJ
TJ	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw	10 lbf∙in (1.1N•m)	

Absolute Maximum Ratings

	Parameter	Тур.	Max.	Units
_		1 ур.		
$R_{\theta JC}$	Junction-to-Case		0.92	°C/W
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		
R_{\thetaJA}	Junction-to-Ambient		62	
$R_{ ext{ heta}JA}$	Junction-to-Ambient (PCB Mount, steady state)®		40	

 $\mathsf{HEXFET}^{\circledast}$ is a registered trademark of International Rectifier. www.irf.com

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.10		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		14	18	mΩ	V _{GS} = 10V, I _D = 35A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
gfs	Forward Transconductance	35			S	$V_{DS} = 50V, I_{D} = 35A$
IDSS	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 100V, V_{GS} = 0V$
				250	İ	$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200	İ	V _{GS} = -20V
Q _g	Total Gate Charge		82	120	nC	I _D = 35A
Q _{gs}	Gate-to-Source Charge		19	28	1	$V_{DS} = 80V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		27	40	1	V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		17		ns	$V_{DD} = 50V$
t _r	Rise Time		77		1	I _D = 35A
t _{d(off)}	Turn-Off Delay Time		41		1	$R_{G} = 6.8\Omega$
t _f	Fall Time		56		1	V _{GS} = 10V ④
L _D	Internal Drain Inductance		4.5		nH	Between lead,
						6mm (0.25in.)
Ls	Internal Source Inductance		7.5		1	from package
						and center of die contact
C _{iss}	Input Capacitance		2900		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		290		1	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		150		t	f = 1.0MHz, See Fig. 5
C _{oss}	Output Capacitance		1130		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MI$
C _{oss}	Output Capacitance		170		1	$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MH$
C _{oss} eff.	Effective Output Capacitance		280		1	$V_{GS} = 0V$, $V_{DS} = 0V$ to 80V

Static @ T_J = 25°C (unless otherwise specified)

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			59		MOSFET symbol
	(Body Diode)				А	showing the
I _{SM}	Pulsed Source Current			240		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 35A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		50	75		T _J = 25°C, I _F = 35A, V _{DD} = 25V
Q _{rr}	Reverse Recovery Charge		100	160	nC	di/dt = 100A/µs
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax}, starting T_J = 25°C, L = 0.27mH, R_G = 25Ω, I_{AS} = 35A, V_{GS} =10V. Part not recommended for use above this value.
- 3 I_{SD} \leq 35A, di/dt \leq 380A/µs, V_{DD} \leq V_{(BR)DSS}, T_{J} \leq 175°C.
- ④ Pulse width \leq 1.0ms; duty cycle \leq 2%.
- $\ensuremath{\textcircled{S}}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- ⑥ Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ⑦ This value determined from sample failure population. 100% tested to this value in production.
- Inis is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

International **TOR** Rectifier

IRF3710Z/S/LPbF

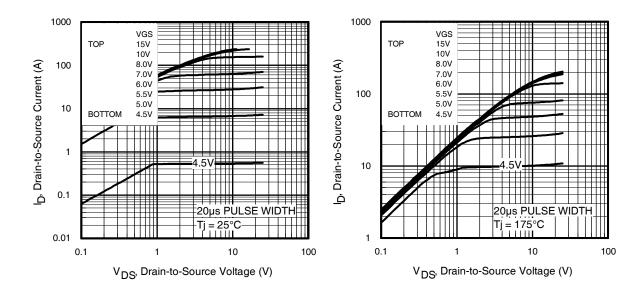
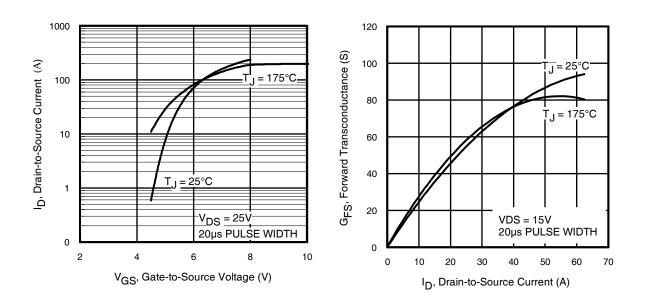
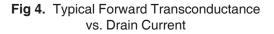
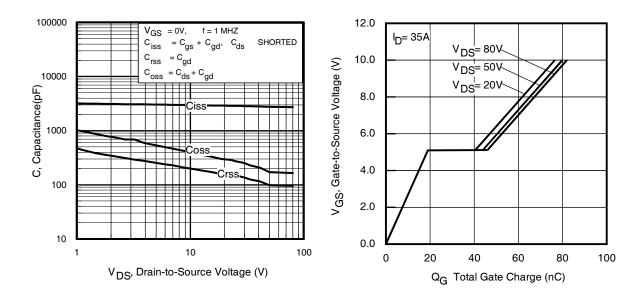
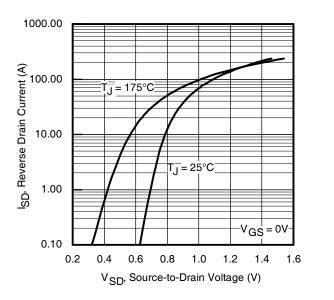
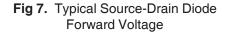
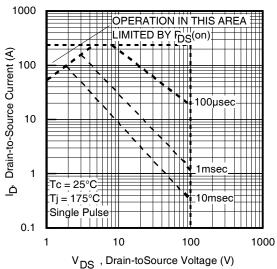




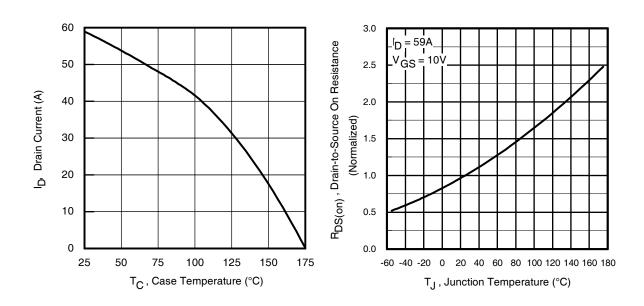
Fig 2. Typical Output Characteristics



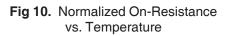

www.irf.com


International **TOR** Rectifier




Fig 8. Maximum Safe Operating Area

www.irf.com


4

International **TOR** Rectifier

IRF3710Z/S/LPbF

Fig 9. Maximum Drain Current vs. Case Temperature

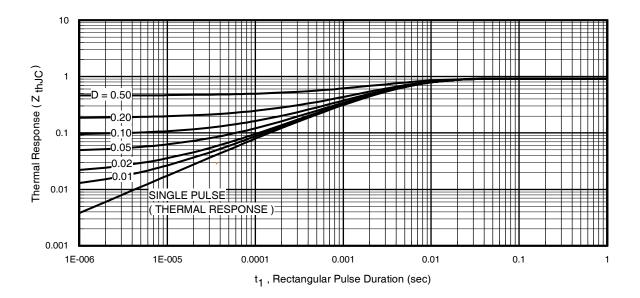


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com

International

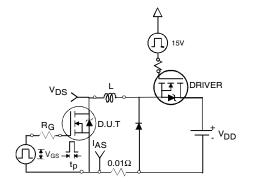


Fig 12a. Unclamped Inductive Test Circuit

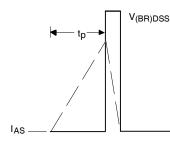
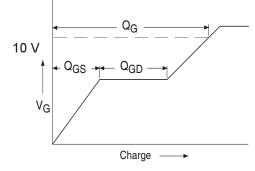
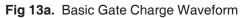
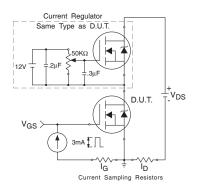





Fig 12b. Unclamped Inductive Waveforms

Fig 13b. Gate Charge Test Circuit 6

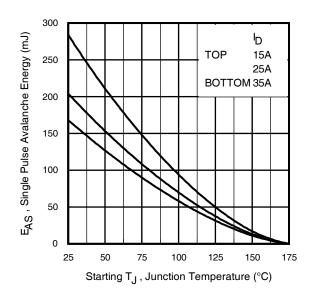


Fig 12c. Maximum Avalanche Energy vs. Drain Current

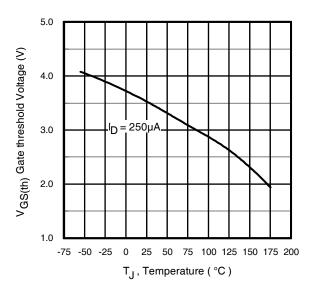


Fig 14. Threshold Voltage vs. Temperature www.irf.com

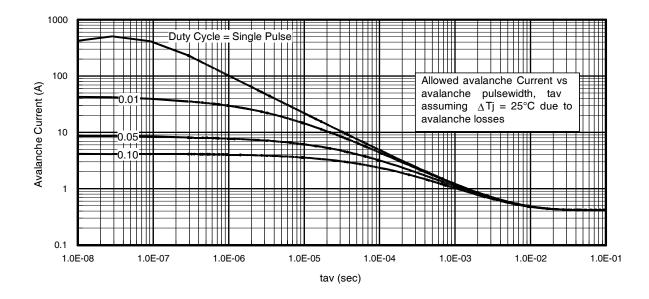
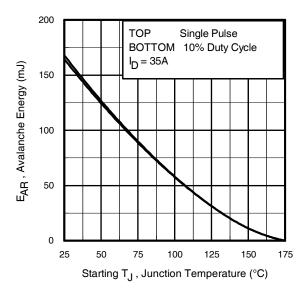
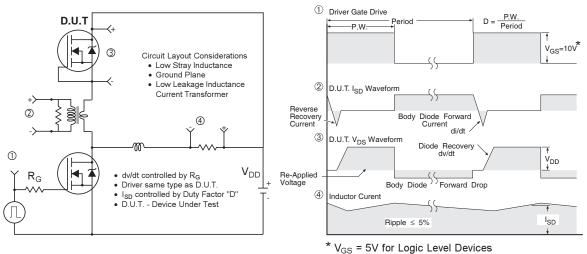


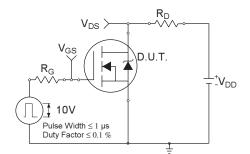
Fig 15. Typical Avalanche Current vs.Pulsewidth




Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- P_D (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. Δ T = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 15, 16).
 - t_{av} = Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

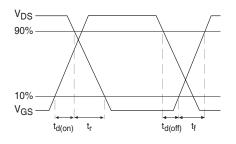
 $Z_{thJC}(D, t_{av}) = Transient thermal resistance, see figure 11)$

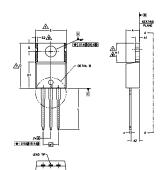

$$\begin{split} P_{D~(ave)} &= 1/2~(~1.3{\cdot}BV{\cdot}I_{av}) = \, {\rm \Delta}T/\,Z_{thJC} \\ I_{av} &= 2\,{\rm \Delta}T/\,[1.3{\cdot}BV{\cdot}Z_{th}] \\ E_{AS~(AR)} &= P_{D~(ave)}{\cdot}t_{av} \end{split}$$

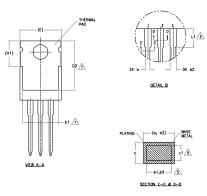
International

V_{GS} = 5V 101 LOGIC LEVEL DEVICES

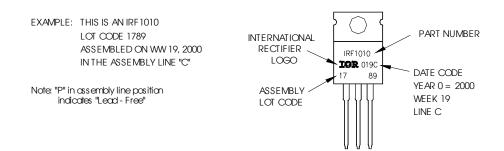
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET[®] Power MOSFETs




Fig 18b. Switching Time Waveforms


International **TOR** Rectifier

IRF3710Z/S/LPbF


TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

TO-220AB package is not recommended for Surface Mount Application

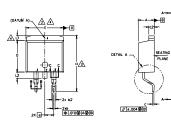
Notes:

1. For an Automotive Qualified version of this part please see <u>http://www.irf.com/product-info/datasheets/data/auirf3710z.pdf</u> 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

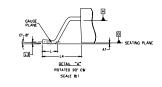
www.irf.com

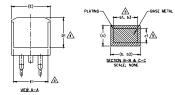
NOTES

- 1.-2.-3.-4.-
- S DURINGIONING AND TOLERANCING AS PER ASIVE Y14.5 M- 1994. DURINGIONIS ARE SHOWIN IN INCHES [MILLIHETERS]. LEAD DURINGINS ARE SHOWIN IN INCHES [MILLIHETERS]. LEAD DURINGING AND FINISH UNCONTROLLED IN 1.1 DURINGING LOT AL E DO NOT INQUIDE MOLD FLASH. SHALL NOT EXCEED .035' (0.127) PER SDLE. THISE DURINGING ARE MEASURED AT THE OUTENANGE SHERKING ST ATE ALSING BOOY. DURINGING IS, 5Å & CI APPLY TO BASE METAL INIX. CONTROLLING DURINGSING : NO-CHASING SHEATLA DURY. CONTROLLING DURINGSING : NO-CHASING BOTONAL. WITHING AND CONTOUR DETROALL. WITHIN MENSIONS EHLOR. AND SNOLLATION RRECULARITES ARE ALLOWED OUTLING CONFORMS TO JEDECT CALL, REVER AL CONFORD.
- <u>6.-</u> 7.-8.-
- 9,-
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

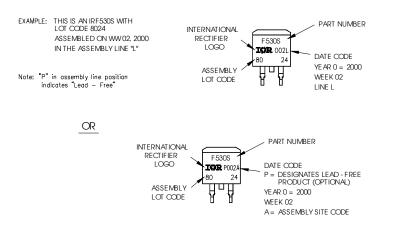

		DIMEN	ISIONS		
SYMBOL	MILLIM	ETERS	INC	HES	1
	Min.	MAX.	MIN.	MAX.	NOTES
A	3.56	4.83	.140	.190	
A1	0.51	1,40	.020	.055	
A2	2,03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
ь1	0.38	0.97	.015	.038	5
b2	1,14	1,78	.045	.070	
bЗ	1.14	1.73	.045	.068	5
с	0.36	0,61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16,51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11,68	12.88	.460	,507	7
Ε	9,65	10,67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
е	2.54	BSC	.100	.100 BSC	
el	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12,70	14,73	.500	.580	
L1	3.56	4.06	.140	.160	3
øP	3.54	4.08	.139	.161	
Q	2,54	3.42	.100	.135	

LEAD ASSIGNMENTS HEXFET 1.- Cate 2.- Drain 3.- Source ICBTs. CoPACK 1.- GATE 2.- Collector 3.- Evitter DIODES 1.- ANODE 2.- CATHODE 3.- ANODE


International **tor** Rectifier


D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)


S Y	DIMENSIONS				
M B	MILLIM	ETERS	INC	HES	N O T
0 L	MIN.	MAX.	MIN.	MAX.	Ē
A	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	5
b2	1,14	1.78	.045	.070	
bЗ	1,14	1.73	.045	.068	5
c	0.38	0.74	.015	.029	
c1	0.38	0,58	.015	.023	5
c2	1,14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6,86	-	.270		4
E	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
e	2.54	BSC	.100	BSC	
н	14.61	15.88	.575	.625]
L	1.78	2.79	.070	.110	
L1	-	1.65	-	.066	4
L2	-	1.78	-	.070	
L3	0.25 BSC		.010	BSC	1
L4	4.78	5.28	.188	.208]
			-		

Notes 1. Divensioning and toleranding per aske 114.5M-1994 2. Divensioning and toleranding per aske 114.5M-1994 2. Divensioning are shown in Milliketers (accres). \bigcirc Divensioning are solved by the solves are veralized at the outwost extremes of the plastic body at datum in \bigcirc Divension bit and cappy to base veral only. I, di & et. \bigcirc Divension in and cappy to base veral only.

7. CONTROLLING DIMENSION: INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

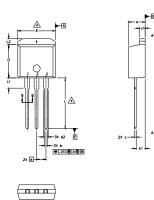
D²Pak (TO-263AB) Part Marking Information

Notes:

- 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf3710z.pdf
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/


10

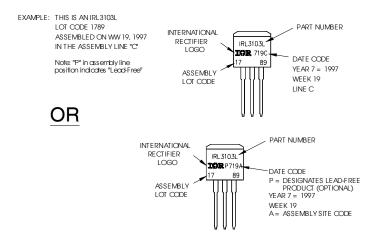
International


IRF3710Z/S/LPbF

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

S Y M B O		DIMEN	ISIONS		N
B	MILLIN	IETERS	INC	HES	N O T E S
	MIN.	MAX.	MIN.	MAX.	S
A	4.06	4.83	.160	.190	
A1	2.03	2.92	.080	.115	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	4
b2	1.14	1,40	.045	.055	
с	0.38	0.63	.015	.025	4
c1	1.14	1,40	.045	.055	
c2	0.43	.063	.017	.029	
D	8.51	9.65	.335	.380	3
D1	5.33		.210		
E	9.65	10.67	.380	.420	3
E1	6.22		.245		
e	2.54	2.54 BSC		BSC	
L	13.46	14.09	.530	.555	
L1	3.56	3.71	.140	.146	
L2		1,65		.065	

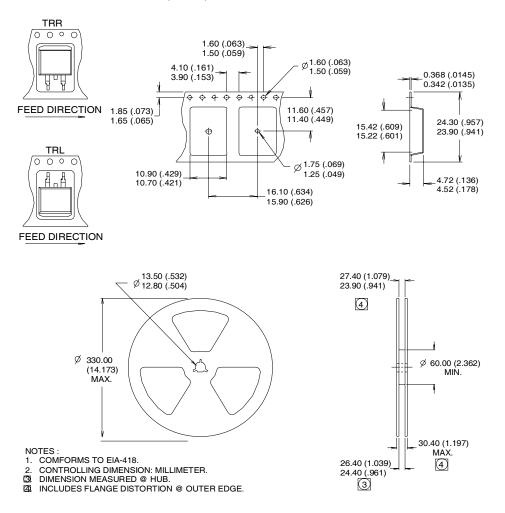

LEAD ASSIGNMENTS

i.

HEXFET 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

		ICB I
1	-	GATE
5	-	COLLECTOR
3	-	EMITTER

TO-262 Part Marking Information



Notes:

For an Automotive Qualified version of this part please see<u>http://www.irf.com/product-info/auto/</u>
For the most current drawing please refer to IR website at <u>http://www.irf.com/package/</u>
WWW.irf.com

D²Pak Tape & Reel Infomation

Dimensions are shown in millimeters (inches)

TO-220AB package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2010 www.irf.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.