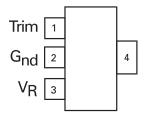
4.9V LOW POWER PRECISION REFERENCE SOURCE

DESCRIPTION

The ZRT050 is a monolithic integrated circuit providing a precise stable reference voltage of 4.9V at $500\mu A$.

The circuit features a knee current of $150\mu A$ and operation over a wide range of temperatures and currents.


The ZRT050 is available in a SOT223 package for surface mount applications. This device offers a trim facility whereby the output voltage can be adjusted as shown in Fig.1. This facility is used when compensating for system errors or setting the reference output to a particular value. When the trim facility is not used, the pin should be left open circuit.

SOT223

FEATURES

- · Trimmable output
- · Excellent temperature stability
- Low output noise figure
- Available in two temperature ranges
- 1 and 2% initial voltage tolerance versions available
- No external stabilizing capacitor required in most cases
- Low slope resistance
- SOT223 small outline package

SOT223 Package suffix G Top view (pin 4 floating or connected to pin 2)

ORDERING INFORMATION

DEVICE	TOL%	OPERATING TEMP.	PACKAGE	PARTMARK
ZRT050GC2	2	-40 to 85°C	SOT223	ZRT050C2
ZRT050GC1	1	-40 to 85°C	SOT223	ZRT050C1
ZRT050GA1	1	-55 to 125°C	SOT223	ZRT050A1

A grade

-55°C to 125°C -40°C to 85°C

ISSUE 3 - DECEMBER 2003

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT
Reverse current (1)		60	mA
Operating temperature:	T _{OMP}		
A grade		-55 to 125	°C
C grade		-40 to 85	°C
Storage temperature	T _{STG}	-55 to 150	°C

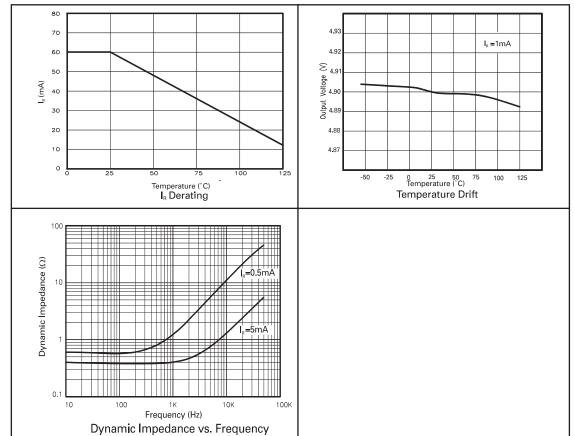
 $^{^{(1)}}$ Above 25°C this figure should be linearly derated to 12mA at 125°C

POWER DISSIPATION (at T_{amb} = 25°C unless otherwise stated)

PACKAGE	VALUE	UNIT
SOT223	2	W

TEMPERATURE DEPENDENT ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER		INITIAL VOLTAGE	GRADE A		GRADE C		UNIT
		TOLERANCE %	TYP	MAX	TYP	MAX	
ΔV_R	Output voltage change over relevant temperature range(See note (a))	1 & 2	13.5	45.0	5.4	17.2	mV
T_CV_R	Output voltage temperature coefficient (See note (b))	1 & 2	15.0	50.0	15.0	50.0	ppm/°C


ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _R	Output voltage					
	1% tolerance (A1,C1)	I _R =500μA	4.85	4.90	4.95	V
	2% tolerance (C2)		4.80	4.90	5.00	V
ΔV_{TRIM}	Output voltage adjustment range	$R_T=100k\Omega$		±5		%
$T_C \Delta V_{TRIM}$	Change in T _C V _R with output adjustment			2.5		ppm/°C/%
I _R	Operating current range	See note (c)	0.15		60	mA
t _{on} t _{off}	Turn-on time Turn-off time	$R_L=1k\Omega$		100 0.3		μS μS
e _{np-p}	Output voltage noise (over the range 0.1 to 10Hz)	Peak to peak measurement		50		μV
R _S	Slope resistance	I _R = 0.5mA to 5mA See note (d)		1.25	2.0	Ω

ISSUE 3 - DECEMBER 2003

TYPICAL CHARACTERISTICS

NOTES:

(a) Output change with temperature

The absolute maximum difference between the maximum output voltage and the minimum output voltage over the specified temperature range:

$$\Delta V_R = V_{max} - V_{min}$$

(b) Output temperature coefficient (T_CV_R)

The ratio of the output change with temperature to the specified temperature range expressed in ppm/°C:

$$T_{c}V_{R} = \frac{\Delta V_{R} \times 10^{6}}{V_{R} \times \Delta T} ppm^{\circ}C$$

 ΔT = Full temperature range

(c) Operating current (I_R)

Maximum operating current must be derated as indicated in maximum ratings.

ISSUE 3 - DECEMBER 2003

(d) Slope resistance (R_S)

The slope resistance is defined as:

$$R_{S} = \frac{change \ in \ V_{R}}{specific \ current \ range}$$

 ΔI =5-0.5=4.5mA (typically)

(e) Line regulation

The ratio of change in output voltage to the change in input voltage producing it:

$$\frac{R_{s} \times 100}{V_{R} \times R_{SOURCE}} \% / V$$

SCHEMATIC DIAGRAM

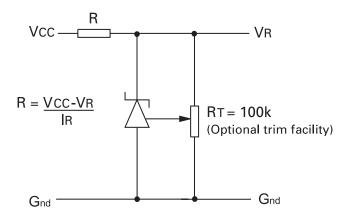


Figure 1: This circuit will allow the reference to be trimmed over a wide range. The device is specified over a $\pm 5\%$ trim range.

PACKAGE OUTLINE

Controlling dimensions are in millimeters. Approximate conversions are given in inches

PACKAGE DIMENSIONS

DIM	Millin	neters	Inc	hes	DIM	Millin	neters	Inc	hes
DIIVI	Min	Max	Min	Max	DIIVI	Min	Max	Min	Max
Α	-	1.80	-	0.071	е	2.30	BSC	0.090	5 BSC
A1	0.02	0.10	0.0008	0.004	e1	4.60	BSC	0.181	BSC
b	0.66	0.84	0.026	0.033	Е	6.70	7.30	0.264	0.287
b2	2.90	3.10	0.114	0.122	E1	3.30	3.70	0.130	0.146
С	0.23	0.33	0.009	0.013	L	0.90	-	0.0355	-
D	6.30	6.70	0.248	0.264		-	-	-	-

© Zetex plc 2003

Europe		Americas	Asia Pacific
Zetex plc	Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd
Fields New Road	Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1
Chadderton	D-81673 München	Hauppauge, NY 11788	Hing Fong Road
Oldham, OL9 8NP		•	Kwai Fong
United Kingdom	Germany	USA	Hong Kong
Telephone (44) 161 622 4444	Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611
Fax: (44) 161 622 4446	Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494
hq@zetex.com	europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to **www.zetex.com**

ISSUE 3 - DECEMBER 2003

