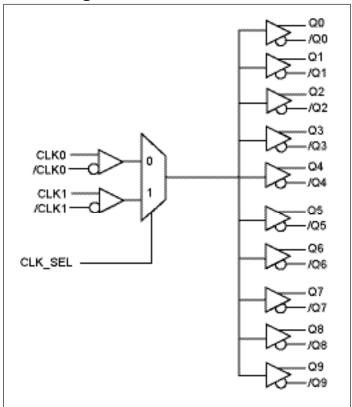
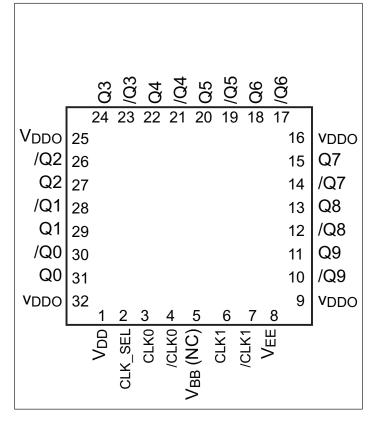


2.5V/3.3V 1.5GHz Low Skew 1-to-10 Differential to LVPECL Fanout Buffer with 2 to 1 Differential Clock Input Mux


Features

- \rightarrow $F_{MAX} < 1.5 GHz$
- → 10 pairs of differential LVPECL outputs
- → Low additive jitter, < 0.03ps (typ)
- → Selectable differential input pairs with single ended input option
- → Input CLK accepts: LVPECL, LVDS, CML, SSTL input level
- → Output skew: 40ps (typ)
- → Operating Temperature: -40°C to 85°C
- → Core Power supply: 2.5V ±5% & 3.3V ±10%, Output Power supply: 2.5V ±5% & 3.3V ±10%
- → Packaging (Pb-free & Green):
- → 32-pin QFN and TQFP available


Description

The PI6C4911510 is a high-performance low-skew 1-to-10 LVPECL fanout buffer. The PI6C4911510 features two selectable differential clock inputs and translates to ten LVPECL outputs. The CLK inputs accept LVPECL, LVDS, CML and SSTL signals. PI6C4911510 is ideal for clock distribution applications such as providing fanout for low noise SaRonix-eCera oscillators.

Block Diagram

Pin Configuration

15-0077 1 PI6C4911510 Rev H 6/25/2015

Pin Description⁽¹⁾

Pin#	Name	Type	Description
1	V_{DD}	Power	Core Power Supply
2	CLK_SEL	Input	Clock select input. When high, selects CLK1 input. When low, selects CLK0 input. LVCMOS/LVTTL level with $50k\Omega$ pull down.
3	CLK0	Input	Differential clock input with pull-down
4	/CLK0	Input	Inverting differential clock input. Defaults to V _{DD} /2 if left floating.
5	V _{BB} (NC)	Power	Internal Common Mode Voltage, can be left as not connected if unused.
6	CLK1	Input	Differential clock input with pull-down
7	/CLK1	Input	Inverting differential clock input. Defaults to V _{DD} /2 if left floating.
8	V _{EE}	Power	Connect to negative power supply
9, 16, 25, 32	V _{DDO}	Power	Output Power pin
11, 10	Q9, /Q9	Output	Differential output pair, LVPECL interface level.
13,12	Q8, /Q8	Output	Differential output pair, LVPECL interface level.
15,14	Q7, /Q7	Output	Differential output pair, LVPECL interface level.
18,17	Q6, /Q6	Output	Differential output pair, LVPECL interface level.
20,19	Q5, /Q5	Output	Differential output pair, LVPECL interface level.
22,21	Q4, /Q4	Output	Differential output pair, LVPECL interface level.
24, 23	Q3, /Q3	Output	Differential output pair, LVPECL interface level.
27,26	Q2, /Q2	Output	Differential output pair, LVPECL interface level.
29,28	Q1, /Q1	Output	Differential output pair, LVPECL interface level.
31,30	Q0, /Q0	Output	Differential output pair, LVPECL interface level.

Note:

Control Input Function Table

CLK_SEL	Outputs
0	CLK0
1	CLK1

^{1.} I = Input, O = Output, P = Power supply connection.

Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{DD}	Supply voltage	Referenced to GND			4.6	V
V _{IN}	Input voltage	Referenced to GND	-0.5		V _{DD} +0.5V	V
IOUT	Surge Current				100	mA
T _{STG}	Storage temperature		-55		150	°C
V_{BB}	Sink/source Current, I _{BB}		-0.5		+0.5	mA
Tj	Junction Temperature				125	°C

Note:

Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{DD}	Core Power Supply Voltage		2.375		3.6	V
V_{DDO}	Output Power Supply Voltage		2.375		3.6	V
T_{A}	Ambient Temperature		-40		85	°C
I_{DD}	Core Power Supply Current			70	95	
I_{DDO}	Output Power Supply Current	All LVPECL outputs unloaded		110	200	mA

LVCMOS/LVTTL DC Characteristics (TA = -40°C to +85°C, VDD = $3.3V \pm 10\%$, VDDO = $2.5V \pm 5\%$ to $3.3V \pm 10\%$)

Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{IH}	Input High Voltage	CLK_SEL		1.7		V _{DD} +0.3	V
V_{IL}	Input Low Voltage	CLK_SEL		-0.3			V
I_{IH}	Input High Current	CLK_SEL	$V_{\rm IN} = V_{\rm DD} = 3.6 V$			150	μΑ
I_{IL}	Input Low Current	CLK_SEL	$V_{IN} = 0V, V_{DD} = 3.6V$	-150			μΑ
R	Input Pullup/Pulldown Re	sistance			50		kΩ

^{1.} Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These ratings are stress specifications only and correct functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

LVPECL DC Characteristics ($T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{DD} = 3.3\text{V} \pm 10\%$, $V_{DDO} = 2.5\text{V} \pm 5\%$ to $3.3\text{V} \pm 10\%$)

Symbol	Parameter		Conditions	Min	Тур	Max	Units
T	Input High	CLK0, CLK1	$V_{\rm IN} = V_{\rm DD} = 3.6 \rm V$			150	μΑ
I _{IH}	Current	/CLK0, /CLK1	$V_{IN} = V_{DD} = 3.6V$			150	μΑ
T	Input Low Cur-	CLK0, CLK1	$V_{\rm DD} = 3.6 \text{V}, V_{\rm IN} = 0 \text{V}$	-150			μΑ
I _{IL}	rent	/CLK0, /CLK1	$V_{\rm DD} = 3.6 \text{V}, V_{\rm IN} = 0 \text{V}$	-150			μΑ
V _{CMR}	Common Mode I	nput Voltage ⁽¹⁾		V _{EE} +0.5		V_{DD}	V
V _{OH}	Output High Volt	rage ⁽²⁾	$V_{\rm DDO} = 2.5 \text{V or } 3.3 \text{V}$	V _{DDO} - 1.5	V _{DDO} -1.4	V _{DDO} -0.9	V
V _{OL}	Output Low Volta	age ⁽²⁾	$V_{\rm DDO} = 2.5 \rm V \ or \ 3.3 \rm V$	V _{DDO} - 2.2	V _{DDO} -2.0	V _{DDO} -1.7	V
R	Input Pullup/Pull	down Resistance			50		kΩ

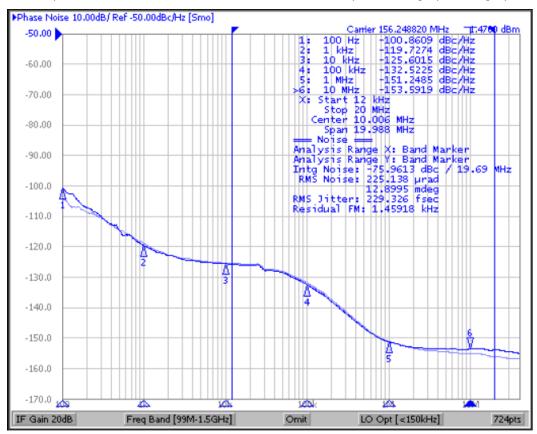
Notes:

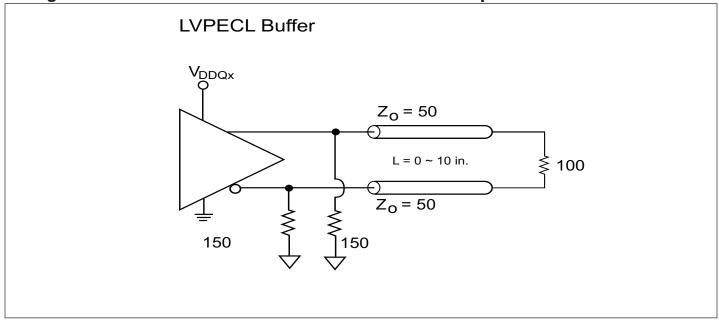
- 1. For single-ended applications, the maximum input voltage for CLK and /CLK is $\ensuremath{V_{\mathrm{DD}}}\xspace+0.3\ensuremath{V}$
- 2. Outputs terminated with 50Ω to $V_{DD}\mbox{-}2.0V$

AC Characteristics ($T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}$, $V_{DD} = 3.3\text{V} \pm 10\%$, $V_{DDO} = 2.5\text{V} \pm 5\%$ to $3.3\text{V} \pm 10\%$)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{max}	Output Frequency				1500	MHz
t _{pd}	Propagation Delay ⁽¹⁾			1200		ps
Tsk	Output-to-output Skew ⁽²⁾			40		ps
t _r /t _f	Output Rise/Fall time	20% - 80%		150		ps
t _{odc}	Output duty cycle	f ≤ 650 MHz	48		52	%
V _{PP}	Output Swing	LVPECL outputs	0.6	1.0		V
tj	Buffer additive jitter RMS	156.25MHz (12KHz- 20MHz integration range) Input condition per Phase Noise and Additive Jitter Plot below		0.03	0.05	ps

Notes:


- 1. Measured from the differential input to the differential output crossing point
- 2. Defined as skew between outputs at the same supply voltage and with equal loads. Measured at the output differential crossing point


Phase Noise and Additive Jitter

Output phase noise (Dark Blue) vs Input Phase noise (light blue)

Additive jitter is calculated at ~27fs RMS (12kHz to 20MHz). Additive jitter = $\sqrt{\text{Output jitter}^2 - \text{Input jitter}^2}$

Configuration Test Load Board Termination for LVPECL Outputs

Application Information

Wiring the differential input to accept single ended levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to postion the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and R1/R2 = 0.609.

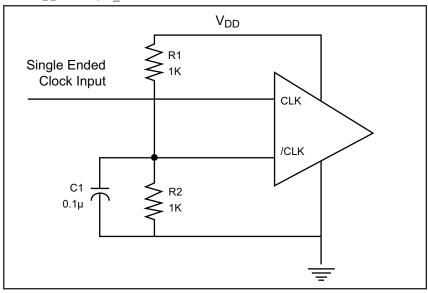
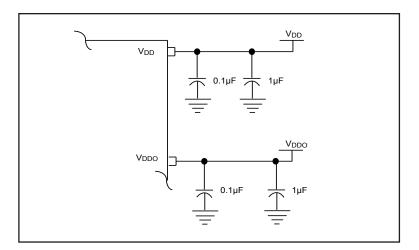
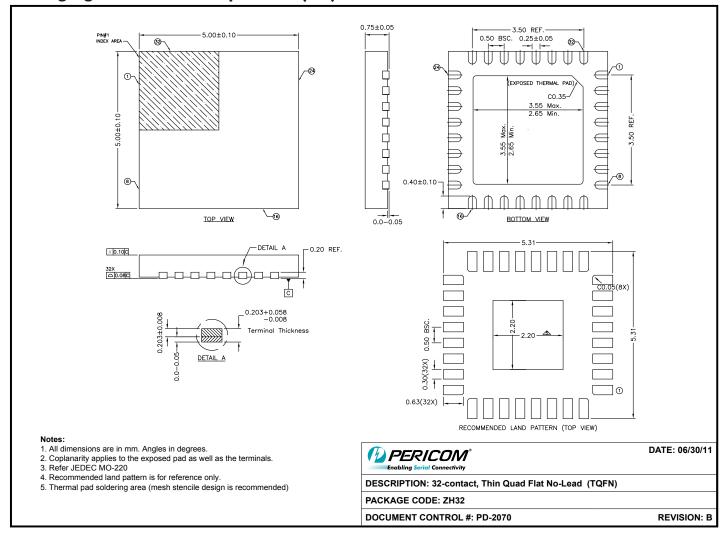
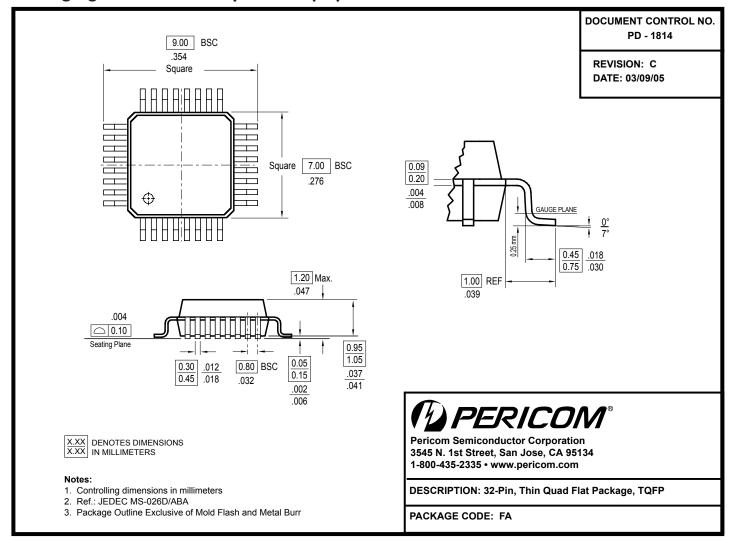



Figure 1. Single-ended input to Differential input device


Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. All power pins should be individually connected to the power supply plane through vias, and $0.1\mu F$ an $1\mu F$ bypass capacitors should be used for each pin.

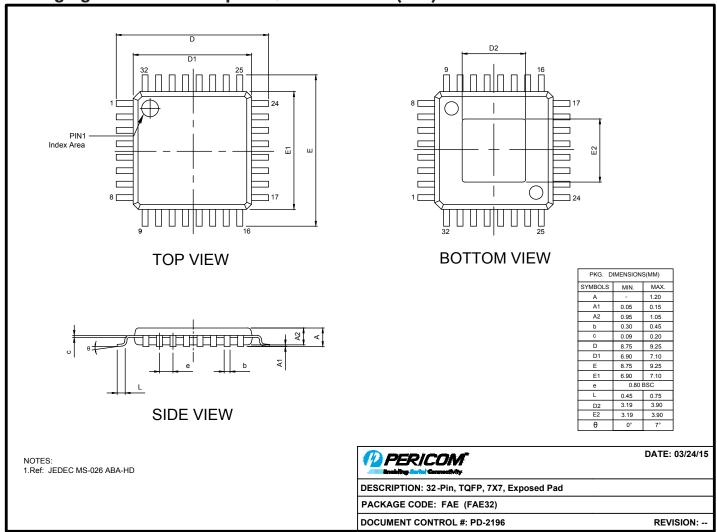
Packaging Mechanical: 32-pin QFN (ZH)


11-0147

Thermal Information

Symbol	Description	Condition	
$\Theta_{ m JA}$	Junction-to-ambient thermal resistance	Still air	44.70 °C/W
$\Theta_{ m JC}$	Junction-to-case thermal resistance		21.70 °C/W

Packaging Mechanical: 32-pin TQFP (FA)



Thermal Information

Symbol	Description	Condition	
$\Theta_{ m JA}$	Junction-to-ambient thermal resistance	Still air	86 °C/W
$\Theta_{ m JC}$	Junction-to-case thermal resistance		12.7 °C/W

Packaging Mechanical: 32-pin TQFP with E-Pad (FAE)

Thermal Information

Symbol	Description	Condition	
$\Theta_{ m JA}$	Junction-to-ambient thermal resistance	Still air	45 °C/W
$\Theta_{ m JC}$	Junction-to-case thermal resistance		15 °C/W

Ordering Information(1,2,3)

Ordering Code	Package Code	Package Description
PI6C4911510ZHIE	ZH	Pb-free & Green, 32-pin QFN
PI6C4911510ZHIEX	ZH	Pb-free & Green, 32-pin QFN, Tape & Reel
PI6C4911510FAIE	FA	Pb-free & Green, 32-pin TQFP
PI6C4911510FAIEX	FA	Pb-free & Green, 32-pin TQFP, Tape & Reel
PI6C4911510FAEIE	FAE	Pb-free & Green, 32-pin TQFP E-Pad
PI6C4911510FAEIEX	FAE	Pb-free & Green, 32-pin TQFP E-Pad, Tape & Reel

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free & Green
- 3. X suffix = Tape/Reel