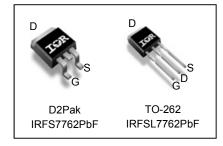


Strong/RFET™ IRFS7762PbF IRFSL7762PbF


Application

- Brushed motor drive applications
- BLDC motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC inverters

HEXFET[®] Power MOSFET V_{DSS} 75V R_{DS(on)} typ. 5.6mΩ max 6.7mΩ I_D 85A

- Improved gate, avalanche and dynamic dV/dt ruggedness
- Fully characterized capacitance and avalanche SOA
- Enhanced body diode dV/dt and dI/dt capability
- Lead-free, RoHS compliant

G	D	S
Gate	Drain	Source

		Standard Pack		
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRFSL7762PbF	TO-262	Tube	50	IRFSL7762PbF
	D ² -Pak	Tube	50	IRFS7762PbF
IRFS7762PbF	D -Pak	Tape and Reel Left	800	IRFS7762TRLPbF

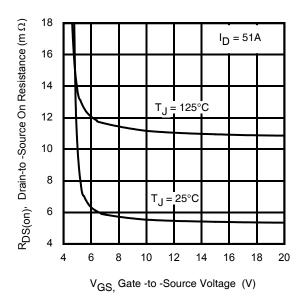


Fig 1. Typical On-Resistance vs. Gate Voltage

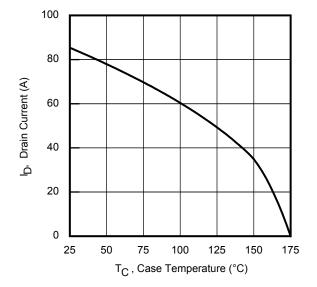


Fig 2. Maximum Drain Current vs. Case Temperature

1.05

40

°C/W

Absolute Maximum Rating

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	85	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	60	A
DM	Pulsed Drain Current ①	335	
P _D @T _C = 25°C	Maximum Power Dissipation	140	W
	Linear Derating Factor	0.95	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
Г _Ј Г _{STG}	Operating Junction and		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
Avalanche Chara	cteristics		
Symbol	Parameter	Max.	Units
	Single Pulse Avalanche Energy ③	160	

Symbol	Parameter	Tvp.	Max.	Units
Thermal Resistan	ce			
E _{AR}	Repetitive Avalanche Energy ①	See Fig 15, 16, 23a, 23b		mJ
I _{AR}	Avalanche Current ①	Soo Eig 15, 16, 230, 23b A		A
EAS (Thermally limited)	Single Pulse Avalanche Energy ®	243	mJ	
EAS (Thermally limited)	Single Pulse Avalanche Energy ③	160		ml

Static @ T₁ = 25°C (unless otherwise specified)

Junction-to-Case 🗇

Junction-to-Ambient (PCB Mount) (9)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	75			V	V _{GS} = 0V, I _D = 250μA
$\Delta V_{(BR)DSS} / \Delta T_{s}$	Breakdown Voltage Temp. Coefficient		58		mV/°C	Reference to 25° C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.6	6.7	m 0	V _{GS} = 10V, I _D = 51A
			6.6		mΩ	V _{GS} = 6.0V, I _D = 26A
V _{GS(th)}	Gate Threshold Voltage	2.1		3.7	V	V _{DS} = V _{GS} , I _D = 100µA
	Drain to Source Lookage Current			1.0		V _{DS} = 75V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			150	μA	V _{DS} = 75V,V _{GS} = 0V,T _J = 125°C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	ПА	V _{GS} = -20V
R _G	Gate Resistance		2.5		Ω	

Notes:

 $R_{\theta JC}$

R_{0.1A}

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\$ Limited by T_{Jmax}, starting T_J = 25°C, L = 120µH, R_G = 50 Ω , I_{AS} = 51A, V_{GS} =10V.
- $\label{eq:ISD} \textcircled{3} \quad I_{SD} \leq 51A, \ di/dt \leq 735A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^\circ C.$
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- \bigcirc C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \bigcirc R_{θ} is measured at T_J approximately 90°C.
- [®] Limited by T_{Jmax} , starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 22A, V_{GS} =10V.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994: <u>http://www.irf.com/technical-info/appnotes/an-994.pdf</u>

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	180		_	S	V _{DS} = 10V, I _D = 51A
Q _g	Total Gate Charge		85	130		I _D = 51A
Q _{gs}	Gate-to-Source Charge		21		nC	V _{DS} = 38V
Q_{gd}	Gate-to-Drain Charge		26			V _{GS} = 10V
Q _{sync}	Total Gate Charge Sync. (Qg – Qgd)		60			
t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 38V
t _r	Rise Time		49			I _D = 51A
t _{d(off)}	Turn-Off Delay Time		57	_	ns	R _G = 2.7Ω
t _f	Fall Time		40			V _{GS} = 10V ④
C _{iss}	Input Capacitance		4440			V _{GS} = 0V
C _{oss}	Output Capacitance		370			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		230		pF	f = 1.0MHz, See Fig.7
$C_{oss eff.(ER)}$	Effective Output Capacitance (Energy Related)		330			V_{GS} = 0V, V_{DS} = 0V to 60V®
$C_{oss eff.(TR)}$	Output Capacitance (Time Related)		430			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V$ (5)
	racteristics					
Symbol	Parameter	Min.	Тур.	Max.	Units	
Is	Continuous Source Current (Body Diode)			85		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			335		integral reverse <u>and set and </u>
V _{SD}	Diode Forward Voltage			1.2	V	T _J = 25°C,I _S = 51A,V _{GS} = 0V ④
dv/dt	Peak Diode Recovery dv/dt		13		V/ns	T _J = 175°C,I _S = 51A,V _{DS} = 75V③
			34			$T_{J} = 25^{\circ}C \qquad V_{DD} = 64V$
t _{rr}	Reverse Recovery Time		46		ns	<u>T_J = 125°C</u> I _F = 51A,
0	Boyeres Boseyery Charge		54		nC	<u>T_J = 25°C</u> di/dt = 100A/µs ④
Q _{rr}	Reverse Recovery Charge		69			<u>T」= 125°C</u>
I _{RRM}	Reverse Recovery Current		2.7		Α	T _J = 25°C

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

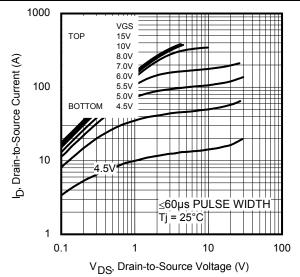


Fig 3. Typical Output Characteristics

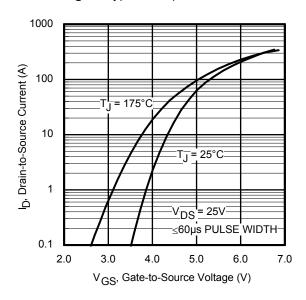


Fig 5. Typical Transfer Characteristics

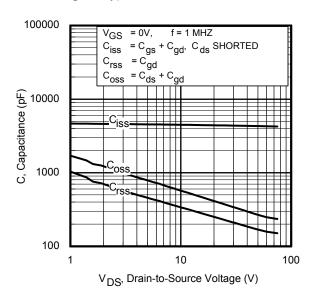
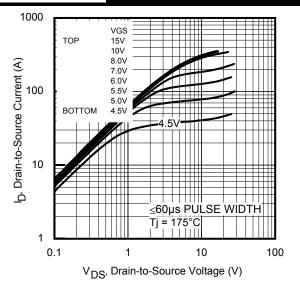
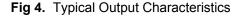
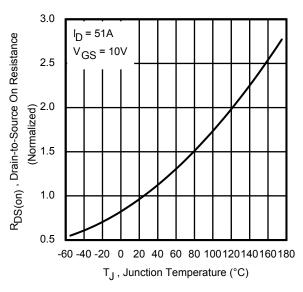
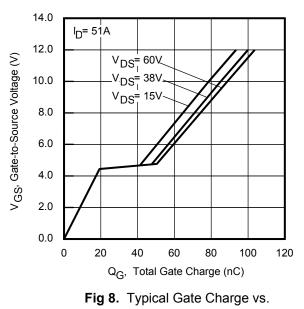
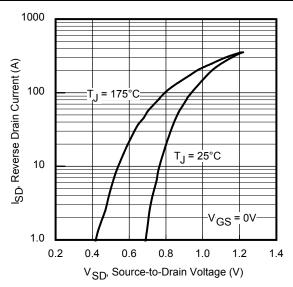
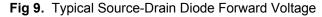




Fig 7. Typical Capacitance vs. Drain-to-Source Voltage


Fig 6. Normalized On-Resistance vs. Temperature



Gate-to-Source Voltage

4

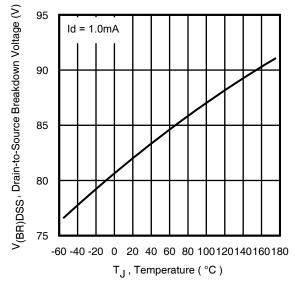
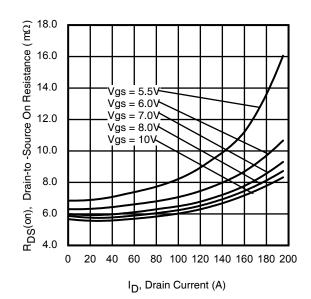
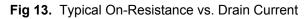




Fig 11. Drain-to-Source Breakdown Voltage



Fig 10. Maximum Safe Operating Area

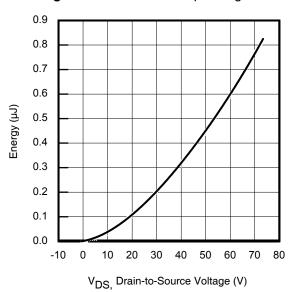


Fig 12. Typical Coss Stored Energy

www.irf.com © 2

5

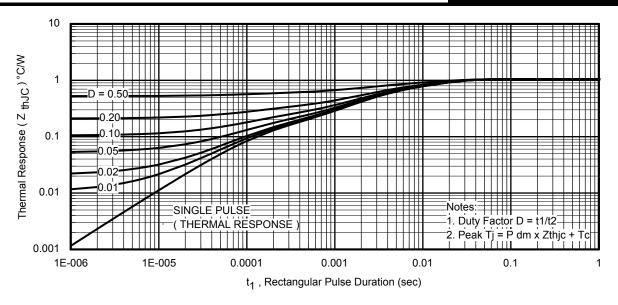
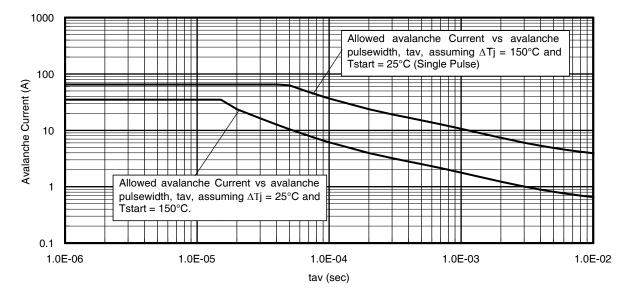
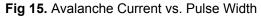




Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

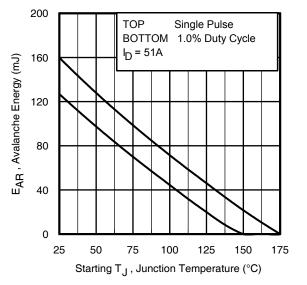


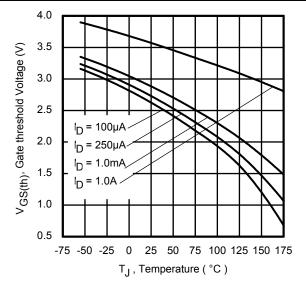
Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long $\mbox{asT}_{\mbox{jmax}}$ is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. $P_{D(ave)}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.

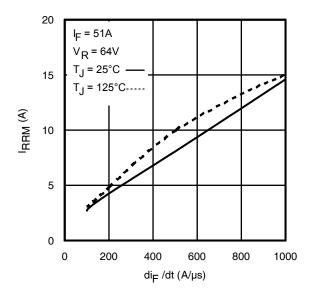
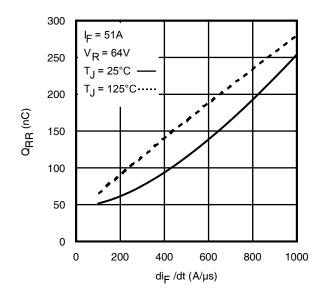
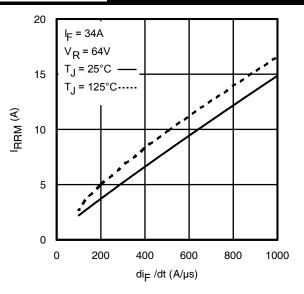
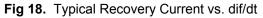
Submit Datasheet Feedback

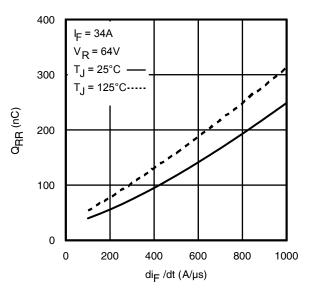

- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).
 - t_{av} = Average time in avalanche.
 - D = Duty cycle in avalanche = tav $\cdot f$

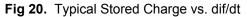
$$Z_{thJC}(D, t_{av})$$
 = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 (1.3 · BV·I_{av}) = $\Delta T/Z_{thJC}$

$$I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$$

 $E_{AS (AR)} = P_{D (ave)} t_{av}$


Fig 19. Typical Recovery Current vs. dif/dt



www.irf.com

7

I R

IRFS/SL7762PbF

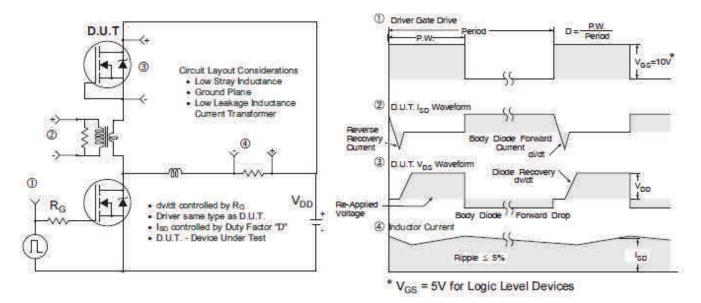


Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

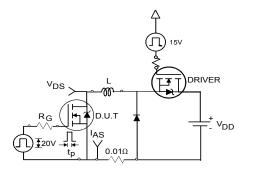


Fig 23a. Unclamped Inductive Test Circuit

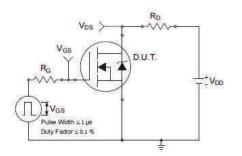


Fig 24a. Switching Time Test Circuit

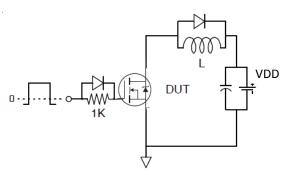


Fig 25a. Gate Charge Test Circuit

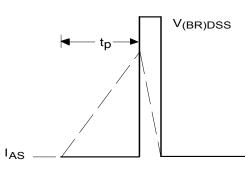


Fig 23b. Unclamped Inductive Waveforms

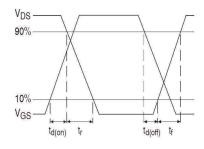


Fig 24b. Switching Time Waveforms

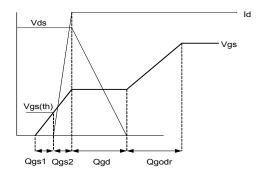
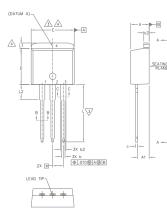



Fig 25b. Gate Charge Waveform

TO-262 Package Outline (Dimensions are shown in millimeters (inches)

S					
Y M	DIMENSIONS				
B	MILLIM	LLIMETERS INCHES			O T E S
L	MIN.	MAX.	MIN.	MAX.	E S
Α	4.06	4.83	.160	.190	
A1	2.03	3.02	.080	.119	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270	-	4
Ε	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
е	2.54	BSC	.100	BSC	
L	13.46	14.10	.530	.555	
L1	-	1.65	-	.065	4
L2	3.56	3.71	.140	.146	

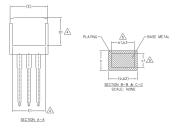
- NOTES:
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- ▲ DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

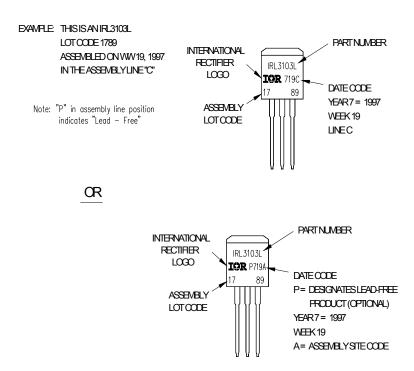
6. CONTROLLING DIMENSION: INCH.

7.- OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.


LEAD ASSIGNMENTS

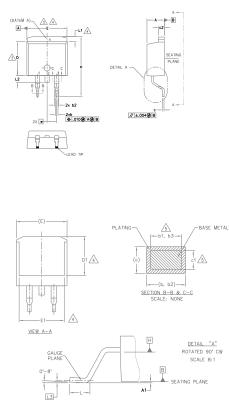
IGBTs, CoPACK

1.- GATE


2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

- HEXFET DIODES
- 1.- ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.- CATHODE 3.- ANODE 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4. DRAIN

TO-262 Part Marking Information


Downloaded from Arrow.com.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

S Y	DIMENSIONS				N
M B O	MILLIM	ETERS	INC	HES	O T E S
L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
с	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270	-	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245	-	4
е	2.54	BSC	.100	BSC	
н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	-	1.68	-	.066	4
L2	-	1.78	-	.070	
L3	0.25	BSC	.010 BSC		

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

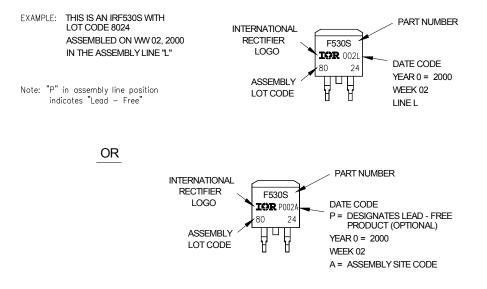
LEAD ASSIGNMENTS

DIODES

<u>HEXFET</u>

ANODE (TWO DIE) / OPEN (ONE DIE)
 4.- CATHODE
 - ANODE

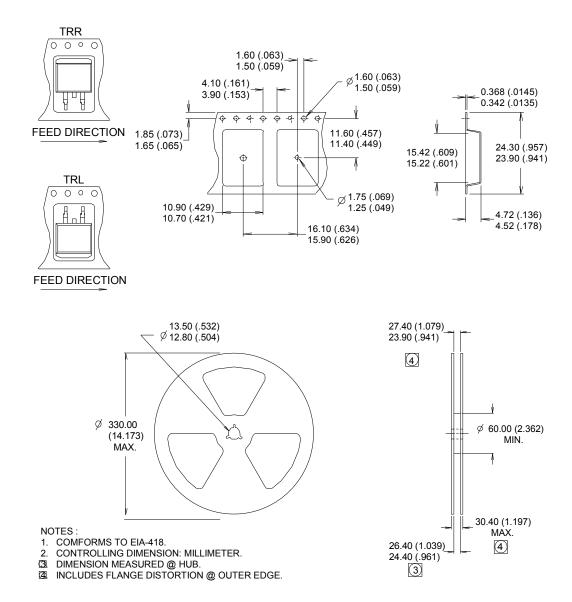
IGBTs, CoPACK


 1. GATE
 1. GATE

 4. DRAIN
 2, 4. COLLECTOR

 3. SOURCE
 3. EMITTER

D²Pak (TO-263AB) Part Marking Information


Downloaded from Arrow.com.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

11

Qualification Information[†]

Qualification Level	Industrial (per JEDEC JESD47F) ^{††}				
Moisture Sensitivity Level	D ² Pak				
	TO-262	- MSL1			
RoHS Compliant	Yes				

+ Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/product-info/reliability/</u>

†† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments		
• Updated E _{AS (L =1mH)} = 243mJ on page 2			
2/19/2013	• Updated note 8 "Limited by T_{Jmax} , starting T_J = 25°C, L = 1mH, R_G = 50 Ω , I_{AS} = 22A, V_{GS} =10V" on page 2		

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit <u>http://www.irf.com/whoto-call/</u>

12

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.