

OPTIREG™ Linear TLE4266-2G

Low drop voltage regulator

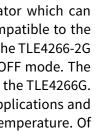
Features

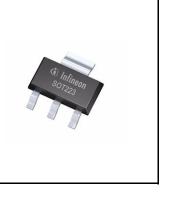
- Fixed output voltage 5.0 V or 3.3 V
- Output voltage tolerance $\leq \pm 2\%, \pm 3\%$
- 150 mA current capability
- Very low current consumption
- Low-drop voltage
- Overtemperature protection
- Reverse polarity proof
- Wide temperature range
- Suitable for use in automotive electronics
- Inhibit
- Green Product (RoHS compliant)

Potential applications

General automotive applications.

Product validation


Qualified for automotive applications. Product validation according to AEC-Q100/101.


Description

The OPTIREG[™] Linear TLE4266-2G is a monolithic integrated low-drop fixed voltage regulator which can supply loads up to 150 mA. It can be switched on and off by the INH pin. It is functional compatible to the TLE4266, but with a reduced quiescent current of << 1 µA in OFF mode and 40 µA in ON mode. The TLE4266-2G is especially designed for all applications that require very low quiescent current in ON and OFF mode. The device is available in the small surface mounted PG-SOT223-4 package. It is pin compatible to the TLE4266G. It is designed to supply microprocessor systems under the severe condition of automotive applications and therefore it is equipped with additional protection against over load, short circuit and overtemperature. Of course the TLE4266-2G can be used in other applications, where a stabilized voltage and the inhibit feature is required.

And input voltage V_1 up to 45 V is regulated to V_0 = 5 V (TLE4266-2G) or V_0 = 3.3 V (TLE4266-2GSV33) with an accuracy of ±3%. For the 5 V device an accuracy of ±2% is kept for a load current range up to 50 mA.

The device operates in the temperature range of T_i = -40 to 150°C. A High level at the INH pin switches the regulator on.

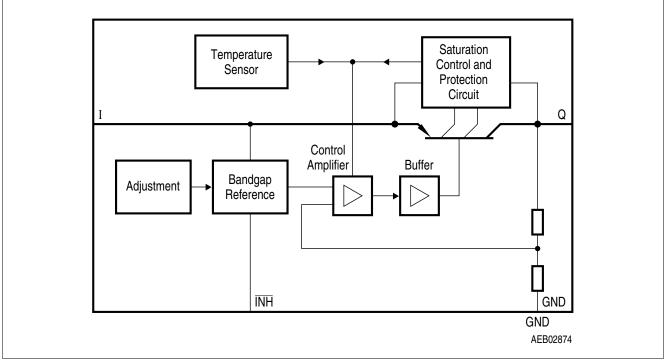
Туре	Package	Marking
TLE4266-2G	PG-SOT223-4	4266-2
TLE4266-2GSV33	PG-SOT223-4	33 4266-2

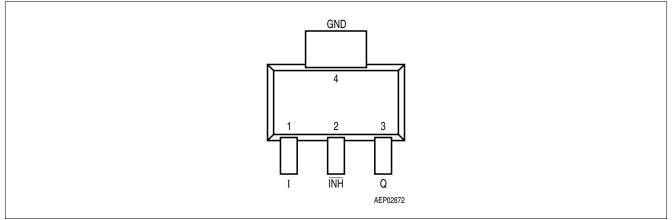
Table of contents

	Features	1
	Potential applications	1
	Product validation	1
	Description	1
	Table of contents	3
1	Block diagram	4
2	Pin configuration	5
2.1	Pin assignment	5
2.2	Pin definitions and functions	5
3	General product characteristics	6
3.1	Absolute maximum ratings	6
4	Functional description	7
4.1	Electrical characteristics	7
4.2	Circuit description	
4.3	Typical performance characteristics	10
5	Package information	12
6	Revision history	13

Block diagram

1 Block diagram




Figure 1 Block diagram

Pin configuration

2 Pin configuration

2.1 Pin assignment

Figure 2 Pin configuration (top view)

2.2 Pin definitions and functions

Table 1 Pin definitions and functions TLE4266-2G, TLE4266-2GSV33

Pin	Symbol	Function
1	Ι	Input voltage Block to ground directly at the IC with a ceramic capacitor.
2	INH	Inhibit input High level turns IC on, integrated pull-down resistor.
3	Q	Output voltage Block to ground with a capacitor $C_Q \ge 10 \ \mu$ F, ESR $\le 4 \ \Omega$.
4	GND	Ground

General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 2Absolute maximum ratings

 $-40^{\circ}C \le T_{i} \le 150^{\circ}C$

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Input I			I	I	I	
Voltage	VI	-42	-	45	V	-
Current	I _I	-	-	-	-	Internally limited
Inhibit INH						
Voltage	VINH	-42	-	45	V	-
Output Q			i			
Voltage	V _Q	-0.3	-	32	V	-
Current	I _Q	-	-	-	-	Internally limited
GND	L.		i			
Current	I _{GND}	50	-	-	mA	-
Temperature						
Junction temperature	Tj	-	-	150	°C	-
Storage temperature	Ts	-50	-	150	°C	-
Thermal resistance						
Junction ambient	R _{thj-a}	-	-	81	K/W	PG-SOT223-4 ¹⁾
Junction case	R _{thj-pin4}	-	-	18	K/W	PG-SOT223-4
Operating range						
Input voltage	VI	5.5	-	45	V	TLE4266-2G
		4.4	-	45	V	TLE4266-2GSV33
Junction temperature	T _i	-40	-	150	°C	-

1) Worst case, regarding peak temperature; zero airflow; mounted an a PCB 80 × 80 × 1.5 mm³, heat sink area 300 mm².

4 Functional description

In the TLE4266-2G the output voltage is divided and compared to an internal reference of 2.5 V typical. The regulation loop controls the output to achieve an output voltage of 5 V with an accuracy of $\pm 2\%$ at an input voltage up to 45 V. The minimum required input voltage is $V_Q + V_{Dr}$ with a drop voltage V_{Dr} of max. 0.5 V (see **Chapter 4.3**) in case of the TLE4266-2G. The TLE4266-2GSV33 requires a minimum input voltage of 4.4 V.

The TLE4266-2G can supply up to 150 mA. However for protection reasons at high input voltage above 25 V, the maximum output current is reduced (SOA protection).

Figure 3 shows a typical measuring circuit. For stability of the control loop the TLE4266-2G output requires an output capacitor C_Q of at least 10 μ F with a maximum permissible ESR of 4 Ω . Tantalum as well as multi layer ceramic capacitors are suitable.

At the input of the regulator an input capacitor is necessary for compensating line influences (100 nF ceramic capacitor recommended). A resistor of approx. 1 Ω in series with C_{μ} , can damp any oscillation occuring due the input inductivity and the input capacitor. In the measuring circuit shown in **Figure 3** an additional electrolytic input capacitor of 470 μ F is added in order to buffer supply line influences. This capacitor is recommended, if the device is sourced via long supply lines of several meters.

The TLE4266-2G includes the Inhibit function. For a voltage above 3.5 V at the INH pin the regulator is switched on.

4.1 Electrical characteristics

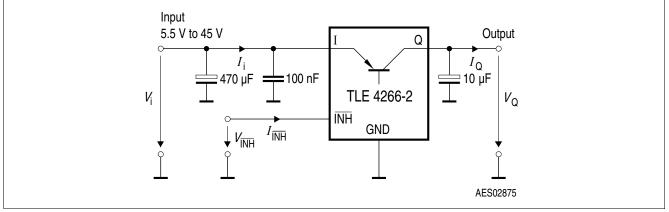
Table 3 Electrical characteristics

 $V_{i} = 13.5 \text{ V}; V_{\overline{\text{INH}}} = 5 \text{ V}; -40^{\circ}\text{C} \le T_{i} \le 125^{\circ}\text{C}$ (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Output voltage	V _Q	4.85	5.0	5.15	V	TLE4266-2G; 5 mA $\leq I_Q \leq 100$ mA; 6 V $\leq V_1 \leq 21$ V
		4.9	5.0	5.1	V	TLE4266-2G; 5 mA $\leq I_Q \leq$ 50 mA; 9 V $\leq V_1 \leq$ 16 V
Output voltage	V _Q	3.20	3.30	3,40	V	TLE4266-2GSV33; 5 mA $\leq I_Q \leq 100$ mA; 6 V $\leq V_1 \leq 21$ V
Output-current limitation	I _Q	150	200	500	mA	-
Current consumption $I_q = I_1 - I_Q$	I _q	-	0	1	μA	$V_{\rm INH} = 0 \text{ V};$ $T_{\rm j} \le 100^{\circ} \text{C}$
Current consumption $I_q = I_1 - I_Q$	/ _q	-	40	60	μA	$I_Q = 100 \ \mu\text{A};$ $T_j \le 85^{\circ}\text{C}$
		-	40	70	μA	/ _Q = 100 μA
Current consumption I _q = I ₁ - I _Q	/ _q	-	1.7	4	mA	I _Q = 50 mA
Drop voltage	V _{Dr}	-	0.25	0.5	V	TLE4266-2G; $I_Q = 100 \text{ mA}^{1)}$
Drop voltage	V _{Dr}	-	1.00	1.10	V	TLE4266-2GSV33; $I_Q = 100 \text{ mA}^{1)}$

Datasheet

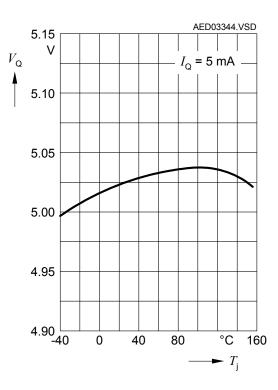
Table 3Electrical characteristics (cont'd)

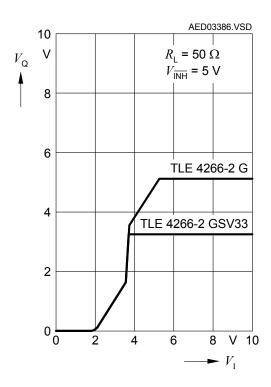

 $V_{\rm I}$ = 13.5 V; $V_{\rm INH}$ = 5 V; -40°C $\leq T_{\rm j} \leq$ 125°C (unless otherwise specified)


Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Load regulation	ΔV _Q	-	50	90	mV	TLE4266-2G; $I_Q = 1 \text{ to } 100 \text{ mA};$ $V_1 = 6 \text{ V}$
Load regulation	ΔV _Q	-	35	60	mV	TLE4266-2GSV33; $I_Q = 1 \text{ to } 100 \text{ mA};$ $V_1 = 6 \text{ V}$
Line regulation	ΔV _Q	-	5	30	mV	TLE4266-2G; $V_1 = 6 V \text{ to } 28 V;$ $I_Q = 1 \text{ mA}$
Line regulation	ΔV _Q	-	4	20	mV	TLE4266-2GSV33; $V_1 = 6 V \text{ to } 28 V;$ $I_Q = 1 \text{ mA}$
Power supply ripple rejection	PSRR	-	68	-	dB	<i>f</i> _r = 100 Hz; <i>V</i> _r = 0.5 Vpp
Output Capacitor	C _Q	10	-	-	μF	$\text{ESR} \le 4 \Omega \text{ at } 10 \text{ kHz}$
Inhibit						
Inhibit on voltage	$V_{\overline{\text{INH}}, \text{ on}}$	3.5	-	-	V	-
Inhibit off voltage	V _{INH, off}	-	-	0.8	V	-
Inhibit current	I _{INH}	-	4	8	μA	$V_{\overline{\text{INH}}} = 5 \text{ V}$
Pull-down resistor	R _{INH}	-	1.0	-	MΩ	see I _{INH}

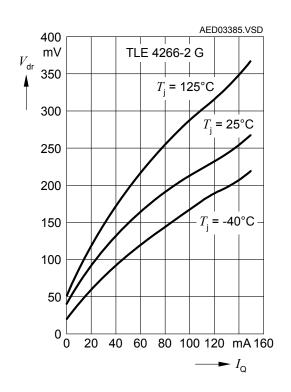
1) Drop voltage $V_{Dr} = V_1 - V_Q$ (measured when the output voltage V_Q has dropped 100 mV from the nominal value obtained at $V_1 = 13.5$ V).

4.2 Circuit description



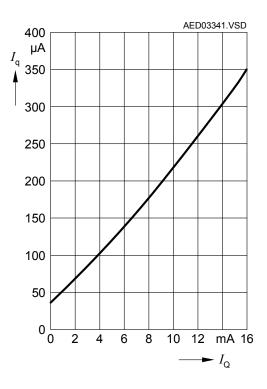


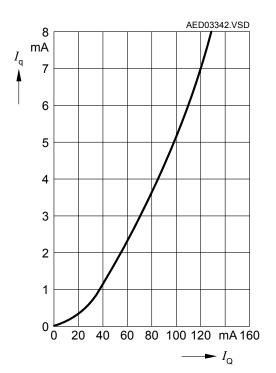
4.3 Typical performance characteristics


Output voltage V_Q versus junction temperature T_j

Output voltage V_{Q} versus input voltage V_{I}

Drop voltage V_{Dr} versus output current I_Q (TLE4266-2G)


Inhibit current $I_{\overline{\text{INH}}}$ versus inhibit voltage $V_{\overline{\text{INH}}}$


Datasheet

Current consumption I_q versus output current I_Q

Current consumption I_q versus output current I_Q

Package information

5 Package information

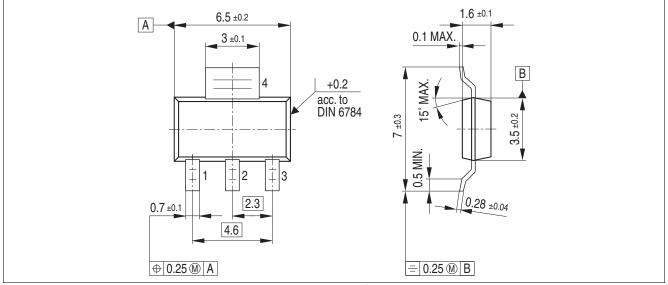


Figure 4 PG-SOT223-4 (plastic small outline transistor)¹⁾

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

¹⁾ Dimensions in mm

Revision history

6 Revision history

Revision	Date	Changes
1.51	2019-06-03	Editorial change, added marking
1.5	2019-02-15	Updated layout and structure. Editorial changes.
1.4	2008-03-10	Simplified package name to PG-SOT223-4. No modification of released product.
1.3	2007-03-20	Initial version of RoHS-compliant derivate of TLE4266-2G. Page 1: AEC certified statement added. Page 1: and Page 10: RoHS compliance statement and Green product feature added. Page 1: and Page 10: Package changed to RoHS compliant version. Legal Disclaimer updated.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2019-06-03 Published by Infineon Technologies AG 81726 Munich, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference Z8F55276375

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.