General Features

\rightarrow Real time AEQ 8-channel Video/Audio decoder for $\mathrm{WD} 1(960 \mathrm{H})$ and D1 cameras
\rightarrow Built-in Adaptive Equalizer(AEQ) for the best picture image in the several hundred meter coax cable condition
\rightarrow Proprietary Pericom AEQ technology recover weak, noisy, or unstable analog input signals
\rightarrow Resilient SYNC TIP detection to lock video signal in a noisy environment
\rightarrow Programmable sharpness, CTI, hue, saturation, contrast and brightness
\rightarrow Support time multiplexed format of ITU-R BT. 656 output with $54 / 108 \mathrm{MHz}$ or $72 / 144 \mathrm{MHz}$
\rightarrow Provides a programmable mapping from four or eight (non-real-time) analog video inputs to four BT. 656 digital outputs
\rightarrow NTSC(M), NTSC 4.43, PAL (B, D, G, H, I, M, Nc, 60) standard support
\rightarrow High performance 5H comb filter for all NTSC/PAL standards
\rightarrow Built-in 10-bit audio Codec to allow 10 analog audio inputs and laudio output
\rightarrow Mixed audio analog output for multiple audio channels with multiple audio sample rates for $8,16,32,44.1$, 48 KHz audio frequency
\rightarrow Two serial audio formats (I2S and DSP) are supported for recording/mixing output and playback input
\rightarrow Selectable Master and Slave serial audio interface
\rightarrow Integrated video PLL for $108 \mathrm{MHz}, 144 \mathrm{MHz}$ clock output
\rightarrow Two-wire serial interface(I2C) for register access
\rightarrow Industrial grade temperature support $\left(-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}\right)$
\rightarrow Packages: 128-pin LQFP

Description

PI7VD9008ABH is AEQ 8-Channel Video Decoders and Audio Codec. Built-in Adaptive equalizer (AEQ) recover the noisy signals caused by long or small wire gauge Coax cables and display the best picture image view quality. The video decoder converts NTSC, PAL analog composite video broadcasting signal (CVBS) into digital components YCbCr for video controller or processor to perform pre-view, compression and storage etc. The converted digital video streams complying with ITU-R BT. 656 are transported in time multiplexed format, which contains one, two or four video channels.

Single 27MHz reference crystal clocksupportNTSC, PAL and 960H standard resolution. Each video channel contains 10 -bit ADC, proprietary clamp, automatic gain controller and 5H comb filter for separating luminance \& chrominance to reduce artificial noise.

Application

\rightarrow Video Security DVRs
\rightarrow Automotive Camera Driver Assistant Systems
\rightarrow Video Capture Cards

PI7VD9008ABH System Application Diagram

Typical Video Security System Application

PI7VD9008ABH Block Diagram

Video input sources:	CV_INA0, CV_INA1, CV_INA2, CV_INA3, CV_INA4, CV_INA5, CV_INA6, CV_INA7
BT.656 TDM ports:	PIXOUT_0, PIXOUT_1, PIXOUT_2 and PIXOUT_3
Audio input sources:	LINE_IN0, LINE_IN1, LINE_IN2, LINE_IN3, LINE_IN4,LINE_IN5,LINE_IN6,LINE_ IN7,LINE_IN8,LINE_IN9
I2S/DSP Audio Interface	(SCLK_R, LRCK_R, SDOUT_R and SDOUT_M), (SCLK_P, LRCK_P and SDIN_P), (SD_LIN- KI, SD_LINKO)

Pin Configuration(128-LQFP)

Pin Configuration (128-LQFP)

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	VSS	33	PIXOUT_2[4]	65	PIXOUT_0[5]	97	ADAC_VDD
2	VSS	34	VSS	66	PIXOUT_0[4]	98	ADAC_VDD
3	VSS	35	VDDC	67	VSS	99	LINE_OUT
4	VDDC	36	PIXOUT_2[3]	68	PIXOUT_0[3]	100	VSS
5	TM1	37	PIXOUT_2[2]	69	PIXOUT_0[2]	101	VSS
6	SA0	38	PIXOUT_2[1]	70	PIXOUT_0[1]	102	VCM0
7	SA1	39	PIXOUT_2[0]	71	PIXOUT_0[0]	103	LINE_IN0
8	VSS	40	VSS	72	VD33	104	LINE_IN1
9	VDDC	41	VD33	73	SCLK_R	105	LINE_IN2
10	RESET_L	42	PIXCLK_PO	74	LRCK_R	106	LINE_IN3
11	SCL	43	PIXCLK_NO	75	SDOUT_R	107	LINE_IN4
12	SDA	44	VSS	76	SDOUT_M	108	ADC_VDD
13	VSS	45	VDDC	77	VSS	109	ADC_VDD
14	SD_LINKI	46	XIN	78	SCLK_P	110	CV_INA0
15	VD33	47	XOUT	79	LRCK_P	111	CV_INA4
16	PIXOUT_3[7]	48	VSS	80	SDIN_P	112	VSS
17	PIXOUT 3[6]	49	VD33	81	SD_LINKO	113	CV_INA1
18	PIXOUT_3[5]	50	PIXOUT_1[7]	82	VD33	114	CV_INA5
19	PIXOUT_3[4]	51	PIXOUT_1[6]	83	GPIO_0	115	ADC_VDD
20	VSS	52	PIXOUT 1 [5]	84	GPIO_1	116	CV INA2
21	VDDC	53	PIXOUT_1[4]	85	GPIO_2	117	CV_INA6
22	PIXOUT 3[3]	54	VSS	86	GPIO 3	118	VSS
23	PIXOUT_3[2]	55	VDDC	87	VDDC	119	CV_INA3
24	PIXOUT_3[1]	56	PIXOUT_1[3]	88	INT	120	CV_INA7
25	PIXOUT_3[0]	57	PIXOUT 1[2]	89	VSS	121	ADC_VDD
26	VSS	58	PIXOUT_1[1]	90	VSS	122	ADC_VDD
27	VDDC	59	PIXOUT_1[0]	91	VCM1	123	VSS
28	VSS	60	VD33	92	LINE_IN5	124	ADC_VDD
29	VD33	61	VSS	93	LINE_IN6	125	VSS
30	PIXOUT_2[7]	62	VDDC	94	LINE_IN7	126	ADC_VDD
31	PIXOUT_2[6]	63	PIXOUT_0[7]	95	LINE_IN8	127	VDDPLL
32	PIXOUT_2[5]	64	PIXOUT_0[6]	96	LINE_IN9	128	VDDPLL

Pin-out Information
 Analog Video/Audio Interface

Pin Name	Pin Number	Type	Description
$\begin{aligned} & \text { CV_INA0, } \\ & \text { CV_INA4, } \\ & \text { CV_INA1, } \\ & \text { CV_INA5, } \\ & \text { CV_INA2, } \\ & \text { CV_INA6, } \\ & \text { CV_INA3, } \\ & \text { CV_INA7 } \end{aligned}$	$\begin{aligned} & 110, \\ & 111, \\ & 113, \\ & 114, \\ & 116, \\ & 117, \\ & 119, \\ & 120 \end{aligned}$	Analog	CVBS input of Video channel 0 CVBS input of Video channel 4 CVBS input of Video channel 1 CVBS input of Video channel 5 CVBS input of Video channel 2 CVBS input of Video channel 6 CVBS input of Video channel 3 CVBS input of Video channel 7
$\begin{aligned} & \text { VCM0, } \\ & \text { VCM1 } \end{aligned}$	$\begin{aligned} & 102, \\ & 91 \end{aligned}$	Analog	Connect to an external capacitor
$\begin{aligned} & \text { LINE_IN0, } \\ & \text { LINE_IN1, } \\ & \text { LINE_IN2, } \\ & \text { LINE_IN3, } \\ & \text { LINE_IN4 } \\ & \text { LINE_IN5, } \\ & \text { LINE_IN6, } \\ & \text { LINE_IN7, } \\ & \text { LINE_IN8, } \\ & \text { LINE_IN9 } \end{aligned}$	103, 104, 105, 106, 107 92 93 94 95 96	Analog	Line input of Audio channel 0 Line input of Audio channel 1 Line input of Audio channel 2 Line input of Audio channel 3 Line input of Audio channel 4 Line input of Audio channel 5 Line input of Audio channel 6 Line input of Audio channel 7 Line input of Audio channel 8 Line input of Audio channel 9
LINE_OUT	99	Analog	Mixed Analog Audio Output

Digital Video/Audio Interface

Pin Name	Pin Number	Type	Description
PIXOUT_0[7:0]	63, 64, 65, 66,68,69, 70,71	Output	Bt. 656 Time Multiplex Division output of port 0
PIXOUT_1[7:0]	50, 51, 52, 53, 56,57,58,59	Output	Bt. 656 Time Multiplex Division output of port 1
PIXOUT_2[7:0]	30, 31, 32, 33, 36, 37, 38, 39	Output	Bt. 656 Time Multiplex Division output of port 2
PIXOUT_3[7:0]	16, 17, 18, 19, 22, 23, 24, 25	Output	Bt. 656 Time Multiplex Division output of port 3
GPIO_0	83	Output	According to register setting, it outputs GPO, HSYC, VSYNC, FDFLAG, ACTIVE and VDLOSS of channel 0,4
GPIO_1	84	Output	According to register setting, it outputs GPO, HSYC, VSYNC, FDFLAG, ACTIVE and VDLOSS of channel 1,5
GPIO_2	85	Output	According to register setting, it outputs GPO, HSYC, VSYNC, FDFLAG, ACTIVE and VDLOSS of channel 2,6
GPIO_3	86	Output	According to register setting, it outputs GPO, HSYC, VSYNC, FDFLAG, ACTIVE and VDLOSS of channel 3, 7

SCLK_R	73	Input/ Output	Record audio serial clock. It is an input pin under slave mode, while output pin under master mode.
LRCK_R	74	Input/ Output	Record audio serial sync pulse. It is an input pin under slave mode, while output pin under master mode.
SDOUT_R	75	Output	Record audio serial data output.
SDOUT_M	76	Output	Mixing audio serial data output.
SCLK_P	78	Input/ Output	Playback audio serial clock. It is an input pin under slave mode, while output pin under master mode
LRCK_P	79	Input/ Output	Playback audio serial sync pulse. It is an input pin under slave mode, while output pin under master mode.
SDIN_P	80	Input	Playback audio serial data input.
SD_LINKI	14	Input	Chip-to-Chip audio serial data input.
SD_LINKO	81	Output	Chip-to-Chip audio serial data output.

System Control Interface

Pin Name	Pin Number	Type	
RESET_L	10	Input	Chip Reset. Active Low.
XIN	46	Input	27 MHz or 54 MHz crystal input or $27 \mathrm{MHz} / 54 \mathrm{MHz} / 108 \mathrm{MHz}$ oscillator input
XOUT	47	Output	27 MHz or 54 MHz crystal output
PIXCLK_P0	42	Output	Positive Output clock signal running at $27 / 54 / 108 \mathrm{MHz}(720 \mathrm{H}$ mode) or $36 / 72 / 144 \mathrm{MHz}(960 \mathrm{H}$ mode) for bus PIXOUT_0.
PIXCLK_N0	43	Negative Output clock signal running at 27/54/108MHz (720H mode) or $36 / 72 / 144 \mathrm{MHz}(960 \mathrm{H}$ mode) for bus PIXOUT_0	
TM1	5	Input	Test pin. Tied to VSS.
SA1	7	Input	Device Address 1 of I2C slave interface
SA0	6	Input	Device Address 0 of I2C slave interface
SCL	11	Input/ Output	Data signal of I2C slave interface
SDA	88	Interrupt signal to system. Active High.	
INT	Input clock signal of I2C slave interface		

Power and Ground

Pin Name	Pin Number	Type	Description
VDDC	$\begin{aligned} & 4,9,21,27,35 \\ & 45,55,62,87 \end{aligned}$	Power	1.0V Power for core logic
VD33	$\begin{aligned} & 15,29,41,49,60, \\ & 72,82 \end{aligned}$	Power	3.3 V Power for IO pads
VSS	$\begin{aligned} & 1,2,3,8,13,20, \\ & 26,28,34,40, \\ & 44,48,54,61, \\ & 67,77,89,90, \\ & 100,101,112, \\ & 118,123,125 \end{aligned}$	Ground	Ground for video ADC, audio ADC, audio DAC, PLL, core logic and IO pads
ADC_VDD	$\begin{aligned} & 108,109,115, \\ & 121,122,124, \\ & 126 \end{aligned}$	Power	3.3V Power for video ADC and audio ADC.
ADAC_VDD	97, 98	Power	3.3V Power for audio DAC
VDDPLL	127, 128	Power	3.3V Power for AV PLL

Functional Description

Video/Audio Analog Input

PI7VD9004ABH offers4 channels NTSC, PAL (720 H or 960 H) format composite (CVBS) inputs(CV_INAx x=0,1,2,3,4,5,6,7). When the input signal is weak and the color burst is not able to be recognized, the video is automatically switched to Black and White mode to enhance the picture image quality.

Format	Lines	Field	Fsc	Country
NTSC-M	525	60	3.579545 MHz	U.S., many others
NTSC-Japan	525	60	3.579545 MHz	Japan *
NTSC (4.43)	525	60	4.433619 MHz	Transcoding
PAL-B, G, N	625	50	4.433619 MHz	Many
PAL-I /H /D	625	50	4.433619 MHz	Belgium ,China Great Britain, oth ers
PAL-M	525	60	3.575612 MHz	Brazil
PAL-CN	625	50	3.582056 MHz	Argentina
PAL-60	525	60	4.433619 MHz	China

* PNTSC-Japan has 0 IRE setup

Clamping and Automatic Gain Control

Each analog input channel has built-in clamping circuits to restore signal DC level. Automatic Gain Control (AGC) circuits in the internal video processor can compensate average input video signal level for each analog input channel. The AGC and clamping circuits prevent signal level saturation and allow the video decoder to deliver the best signal-to-noise performance. On the other hand, the AGC cooperates with the digital multiplier of video decoder to boost the weak signals. The circuits perform Automatic Gain Control through internal feedback look. Manual gain control is also available through configuring the Video Decoder Control and Status Registers.

Video Decoder

EThe video decoder in the chip converts NTSC and PAL video signals to 8-bit ITU-R BT. 656 format. The chip includes four high speed and low power 10-bit analog-to-digital converters (ADC) with 2 x sampling rate to support 4 -channel video decoding. When the incoming video is in the 720 H format, the sampling rate is 27 MHz or 54 MHz by 2 x factor. For 960 H format, the sampling rate is 36 MHz or 72 MHz by 2 x factor. The chip implements proprietary circuit design that is optimized for locking in weak, noisy, or unstable signals. The minimal signal voltage that can be locked in is at $160 / 80 \mathrm{mV}$.

Adaptive Equalization

EThe CVBS is suffered from channel loss by an extended transmission distance (greater than 500 m) and a small diameter (less than 0.5 mm) of CCTV cable. The distortion on CVBS after the energy reduction effect of cable length is illustrated as below. For example, a Multi-Burst test signal is respectively measured at 0.5 m and 500 m of cable.It appears that color burst and sync tip have sever degration after 500 m transmission distance. Adaptive equalization on the distorted CVBS recovers the signal back to close to the original level. Since the different cable conditions present various effects on CVBS picture image, the adaptive equalization provides to compensate the signal loss on some frequency components pertinent to the Coax cable.

Comb filter and Y/C Separation

Thevideo decoder is capable of separating luma (Y) and chroma (C) of NTSC or PAL video signals using 5-line adaptive comb filter or notch/band-pass filter. The comb filter searches for correlation between 5 lines of input video stored in the internal buffer. The lines are averaged based on the degree of correlation to produce the output video line. If no correlation is found between the 5 lines of video, notch/band-pass filter is used. This process is very effective at reducing cross-luma and cross-chroma noise. The noise appears as artifacts that degrade the image quality. Reduction of the noise improves the image quality significantly.

Video Signal Processing

The chip is capable of processing digital video signal to fulfill better detection in a noisy environment and achieve good image quality for viewing as well. For video signal detection, a resilient SYNC TIP detection mechanism is implemented to locate VSYNC and HSYNC correctly in order to lock the video frame or video line.

In general, the poor power adaptor or camera would introduce high frequency ripples coupling with sync tip to cause the misjudgment on the beginning of a video frame or line. The built-in video processing circuit is able to decouple the noise from sync tip to prevent from video loss.

A sharpness filter is implemented to offer programmable 16 level gains to increase the high frequency and edge information of luma for better viewing on the contour of each object. Through the I2C serial interface, hue, contrast, brightness and saturation can be programmed in the configuration registers. Hue can be controlled in 256 steps from -180 degrees to +180 degrees. Saturation can be programmed in 256 grades. Brightness can be adjusted in 256 levels.

Video Output Port

The four CVBS analog video channels are converted into four individual digital video data streams. There are four video output ports (PIXOUT_0, PIXOUT_1, PIXOUT_2 and PIXOUT_3) in the chip and each video output port can carry several converted digital video data stream following ITU-R BT. 656 compatible data format. The video data of each port is synchronous with the corresponding clock signals of PIXCLK_PO or PIXCLK_NO. The frequency of PIXCLK_*O can be operated at $1 \mathrm{x}, 2 \mathrm{x}$ or 4 x of 27 MHz (720 H mode) or $36 \mathrm{MHz}(960 \mathrm{H}$ mode) . When the clock frequency is 2 x or 4 x rate, the video port outputs 2 -channel or 4 -channel video data stream in time-multiplexed format. The clock phase of PIXCLK_POorPIXCLK_NOcanbe programmed by delay cells through writing delay value into the registers of PIXCLK_P_DEL or PIXCLK_N_DEL. Also, the clock polarity can be controlled through inverter by setting or resetting the register of PIXCLK_P_POL or PIXCLK_N_POL. The flexibility on changing clock phase or polarity facilitates the timing design for video data stream on PCB.

ANALOG AUDIO INPUT

The audioADC offers 5 channels of analog inputs (LINE_INx, $x=0,1,2,3,4,5,6,7,8,9$) with a peak-to-peak voltage range from 0.5 V to 2 V . Each input channel contains 4 -bit programmable gain amplifier and an ADC with maximum over-sampling speed of 3.6 M Sample/s. A pseudo differential input is used to minimize board level noise problems. The converted audio data stream is fed into a low pass filter to decimate audio sample at an appropriate audio sampling rate such as $8 \mathrm{KHz}, 16 \mathrm{KHz}, 32 \mathrm{KHz}, 44.1 \mathrm{KHz}$ and 48 KHz etc.

AUDIO PROCESSING

The audio processor accepts 5 digital audio streams from audio ADC. It also receives 2 additional digital serial audio data from pins. One digital serial audio data is SDIN_P coming from AV compression processor, while the other one is SD_LINKI coming from companion device.

SDIN_P represents the decompressed audio data for playback purpose. SD_LINKI is used to cascade with digital audio outputs from one other PI7VD9008ABH chips for forming one timing multiplexed I2S digital serial audio data containing 8 or 10 digital audio channels. This device processes these 10 digital audio streams and 2 digital serial audio data, then generates one mixing analog audio signal and three digital serial audio data to fulfill the functions of mixing, recording and cascading etc.

For audio mixing, this device has both analog and digital format. The built-in mixer selects among all audio input data to generate the mixing digital audio data (SDOUT_M), which connects to audio DAC for converting to mixing analog audio signal output (LINE_OUT).

For audio recording, the audio processor performs multiplexing over 16 digital audio streams in timing division way to generate record digital audio output data (SDOUT_R). For the digital serial audio data SDOUT_R and SDOUT_M, they are both synchronized with SCLK_R and LRCK_R. As to SDIN_P, it is synchronized with SCLK_P and LRCK_P. These digital serial audio data support two formats of I2S and DSP that can be selected by control bits RM_SYNC in the register at offset 0xD2 and PB_SYNC in the register at offset 0xDB. Meanwhile, the record and playback digital serial audio interfaces of PI7VD9008ABH can be acted as Master or Slave mode based upon the setting of ACLKRMASTER and PB_MASTER bits in the register at offset 0xDB

This device supports audio system clock with 256 ff or 320 fs mode, which is controlled by AIN5MD register. The record output pin contains several channel inputs that can be defined by the registers at offset of $0 \times \mathrm{D} 2 \sim 0 \mathrm{xDA}$ describing the number and sequence of recorded audio streams. It supports 8 bit and 16 bit record data width for trading off between higher audio qualities and saving disk storage space. By controlling bit2 of register at offset $0 x \mathrm{DB}$, the chip allows to select the output record data width to be either 8 -bit or 16 -bit mode.

Audio Record Signal Output Format

Playback Input Format

PI7VD9008ABH Cascade Mode

For audio cascading, the chip redirects SDOUT_R as SD_LINKO to connect with SD_LINKI of another PI7VD9008AB product, which cascades its original SDOUT_R and SD_LINKI to create a new SDOUT_R. PI7VD9008ABcan support 16 channel data output on first level chip recordoutput pin for saving pin layout on PCB board. The cascade chips have to use same crystal clock source and same reset signal.

Adaptive EQ 8-channel 960H Video Decoder

I2C Host Interface

The processor can access the internal register by executing read or write command to the indexed locations to implement the function of detecting audio and video signal and reveals the detection status through the configuration registers. If any audio or video channel is present or absent, interrupt pin (INT) can notify the status to the processor to manage CPU resource effectively by polling the status. The chip supports flexibilities to select various detection modes and enable individual audio/video channel for generating interrupt.

These control bits to interrupt pin are defined in the registers of AVDET_MODE, AVDET1_ENA, AVDET2_ENA, A51DET_ENA and A52DET_ENA.

Power Sequence

The power supply should be turned on first. After the power is turned on, the clock signal should be supplied. Finally, after both power and clock signals are turned on, the RESET_L signal is turned to HIGH to complete the power sequence.

CONFIGURATION, CONTROL AND STATUS REGISTER MAP

PAGE_0 REGISTER MAP (address $40 \mathrm{~h}=00 \mathrm{~h}$)

Address	Function
00h/10h/20h/30h (00h)	Video Status
01h/11h/21h/31h (00h)	Brightness Control
02h/12h/22h/32h (64h)	Contrast Control
03h/13h/23h/33h (00h)	Sharpness Control
04h/14h/24h/34h (80h)	Chroma (U) Gain
05h/15h/25h/35h (80h)	Chroma (V) Gain
06h/16h/26h/36h (00h)	Hue Control
07h/17h/27h/37h	Reserved
08h/18h/28h/38h	Reserved
09h/19h/29h/39h	Reserved
$0 \mathrm{Ah} / 1 \mathrm{Ah} / 2 \mathrm{Ah} / 3 \mathrm{Ah}$	Hdelay
$0 \mathrm{Bh} / 1 \mathrm{Bh} / 2 \mathrm{Bh} / 3 \mathrm{Bh}$	Reserved
$0 \mathrm{Ch} / 1 \mathrm{Ch} / 2 \mathrm{Ch} / 3 \mathrm{Ch}$	Reserved
$0 \mathrm{Dh} / 1 \mathrm{Dh} / 2 \mathrm{Dh} / 3 \mathrm{Dh}$	Reserved
0Eh/1Eh/2Eh/3Eh (77h)	Standard Selection
$0 \mathrm{Fh} / 1 \mathrm{Fh} / 2 \mathrm{Fh} / 3 \mathrm{Fh}$	Reserved
40h-50h	Reserved
51 h (00h)	F-Bit of SAV/EAV Inverted
52h-55h	Reserved
56h	Blanking Length of Horizontal Line
57h/58h/59h/5Ah (90h)	Blanking Length of Horizontal Line
5Bh-5Ch	Reserved
$5 \mathrm{Dh}(\mathrm{C} 0 \mathrm{~h})$	Vin2 Color Kill Enable
5Eh(C0h)	Vin3 Color Kill Enable
5Fh(C0h)	Vin4 Color Kill Enable
60h	Reserved
61h (03h)	Crystal Clock Select
62 h (00h)	GPIO Output Enable
63h (10h)	ID for Video Channel 0\&1
64h (32h)	ID for Video Channel 2\&3
65h (54h)	ID for Video Channel 4\&5
66h (76h)	ID for Video Channel 6\&7
67h(80h)	HZOOM Enable
68h(00h)	HI-Bits of 1234 HZOOM
69h(00h)	LOW-Bits of 1 HZOOM
6Ah(00h)	LOW-Bits of 2 HZOOM
$6 \mathrm{Bh}(00 \mathrm{~h})$	LOW-Bits of 3 HZOOM
$6 \mathrm{Ch}(00 \mathrm{~h})$	LOW-Bits of 4 HZOOM
6Dh-6Dh	Reserved
6Fh(00h)	Video Output Enable
70h (08h)	Audio Clock Control
71h (00h)	I2S Audio Input Control
72 h	Reserved
73h(00h)	LINE_IN4_Control
74h(00h)	LINE_IN4 Detect Enable
75h-7Ah	Reserved
7 Bh (00h)	SDOUT_M Select (R)
7Ch (00h)	SDOUT_M Select (L)
7Dh (E4h)	Extended Line Select
7Eh	SDOUT_M I2S
7Fh (00h)	Mix Ratio LINE_IN4

Address	Function
80h (00h)	Software Reset
81h-88h	Reserved
89h (00h)	Audio FS Mode
8Ah-95h	Reserved
96h(C0h)	Vin1 Color Kill Enable
97h-9Eh	Reserved
9 Fh (00h)	PIXCLK 0Delay
A0h-B1h	Reserved
B2h (00h)	Vin1~Vin8 Video Loss Status
B3h-C7h	Reserved
C8h (00h)	GPIO_0_1 Mode
C9h (00h)	GPIO_2 3 3 Mode
CAh (55h)	Reserved
CBh (00h)	GPIO Polarity
CCh (00h)	Reserved
CDh (00h)	WD1,D1 Select
CEh	Reserved
CFh (00h)	Serial Mode Control
D0h-D1h	Reserved
D2h (03h)	SDOUT RM Output
D3h (10h)	SDOUT_R_SEQ_1_0
D4h(32h)	SDOUT_R_SEQ_3_2
D5h (54h)	SDOUT_R_SEQ_5_4
D6h (76h)	SDOUT_R_SEQ_7_6
D7h (98h)	SDOUT_R_SEQ_9_8
D8h (BAh)	SDOUT_R_SEQ_B_A
D9h (DCh)	SDOUT_R_SEQ_D_C
DAh (FEh)	SDOUT_R_SEQ_F_E
DBh (C2h)	I2S Master Control
DCh(10h)	MIX MUTE Control
DDh (00h)	Mix Ratio 0 \& 1
DEh (00h)	Mix Ratio 2 \& 3
DFh (08h)	PB Ratio
E0h (14h)	Mixing Output Control
E1h (00h)	Audio Detect Threshold 0123 MSB
E2h (aah)	Audio Detect Threshold 01 LSB
E3h (aah)	Audio Detect Threshold 23 LSB
E4h-E6h	Reserved
E7h(55h)	VD0~VD4 Output Mode
E8h (10h)	PIXOUT_0 Output CH12 Select
E9h (32h)	PIXOUT 0 Output CH34 Select
EAh (32h)	PIXOUT_1 Output CH12 Select
EBh (54h)	PIXOUT 1 Output CH34 Select
ECh (54h)	PIXOUT_2 Output CH12 Select
EDh (76h)	PIXOUT_2 Output CH34 Select
EEh (76h)	PIXOUT_3 Output CH12 Select
EFh (10h)	PIXOUT_3 Output CH34 Select
F0h-F8 h	Reserved
F9h (00h)	PIXCLK Output Mode
FAh (00h)	CCIR656 Control
FBh (0Fh)	Clock Polarity
FCh (FFh)	AV Detection Enable
FDh (00h)	AV Detection Status
FEh (00h)	Device ID_H
FFh (F0h)	Device ID_L

PAGE_0 REGISTER MAP (address 40h =01h)	
Address	Function
00h/10h/20h/30h (00h)	Video Status
01h/11h/21h/31h (00h)	Brightness Control
02h/12h/22h/32h (64h)	Contrast Control
03h/13h/23h/33h (00h)	Sharpness Control
04h/14h/24h/34h (80h)	Chroma (U) Gain
$05 \mathrm{~h} / 15 \mathrm{~h} / 25 \mathrm{~h} / 35 \mathrm{~h}$ (80h)	Chroma (V) Gain
06h/16h/26h/36h (00h)	Hue Control
$0 \mathrm{Ah} / 1 \mathrm{Ah} / 2 \mathrm{Ah} / 3 \mathrm{Ah}$	Hdelay
0Eh/1Eh/2Eh/3Eh (77h)	Standard Selection
56h	Blanking Length of Horizontal Line
57h/58h/59h/5Ah (90h)	Blanking Length of Horizontal Line
5Dh(C0h)	Vin6 Color Kill Enable
5Eh(C0h)	Vin7 Color Kill Enable
$5 \mathrm{Fh}(\mathrm{COh})$	Vin8 Color Kill Enable
68h(00h)	HI-Bits of 5678 HZOOM
$69 \mathrm{~h}(00 \mathrm{~h})$	LOW-Bits of 5 HZOOM
6Ah(00h)	LOW-Bits of 6 HZOOM
$6 \mathrm{Bh}(00 \mathrm{~h})$	LOW-Bits of 7 HZOOM
$6 \mathrm{Ch}(00 \mathrm{~h})$	LOW-Bits of 8 HZOOM
$73 \mathrm{~h}(00 \mathrm{~h})$	LINE_IN9 Control
74 h (00h)	LINE_IN9 Detect Enable
7Eh	LINE_IN9 Detect Threshold
7Fh (00h)	Mix Ratio LINE_IN9
96h(C0h)	Vin5 Color Kill Enable
C8h (00h)	GPIO_4_5 Mode
C9h (00h)	GPIO_6_7 Mode
DDh (00h)	Mix Ratio 4 \& 5
DEh (00h)	Mix Ratio 6 \& 7
E1h (00h)	Audio Detect Threshold 5678 MSB
E2h (ah)	Audio Detect Threshold 56 LSB
E3h (aah)	Audio Detect Threshold 78 LSB
FCh (FFh)	AV Detection Enable
FDh (00h)	AV Detection Status

Control Register

PAGE 0 REGISTERS

Register Type	Descriptions
R	Read Only
RW	Read/Write

VIDEO STATUS REGISTER - OFFSET 00H/10H/20H/30H (Default: 00H)

BIT	FUNCTION	TYPE	DESCRIPTION
0	DET50	R	$0: 60 \mathrm{~Hz}$ source detected $1: 50 \mathrm{~Hz}$ source detected
1	MONO	R	$0:$ Color burst signal detected $1:$ No color burst signal detected
2	Reserved	R	Reset to 0b
3	VLOCK	R	$0:$ Vertical logic is not locked $1:$ Vertical logic is locked to incoming video
4	Reserved	R	Reset to 0b
5	SLOCK	R	0: Sub-carrier sync is not detected $1:$ Sub-carrier sync is detected
6	HLOCK	R	$0:$ Horizontal sync is not detected $1:$ Horizontal sync is detected
7	VDLOSS	R	0: Video is detected $1:$ Video not present

BRIGHTNESS CONTROL REGISTER - OFFSET 01H/11H/21H/31H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	Brightness	RW	These Signed bits control the brightness.Value range from -128 to 127 $8 ' h 7 F:$ brightest; 8'h80: darkest ;8'h00 : no effect

CONTRASTCONTROL REGISTER - OFFSET 02H/12H/22H/32H(Default=64H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	Contrast	RW	These unsigned bits control the luminance gain. 8'h7F: maximum contrast 8'h00: minimum contrast

SHARPNESSCONTROL REGISTER - OFFSET 03H/13H/23H/33H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	Sharpness	RW	These bits control the amount of sharpness enhancement on the luminance signals "0" has no effect on the output image "1" through "15" provides sharpness enhancement with "15" being the strongest
$[7: 4]$	Reserved	R	Reset to 0h

CHROMA(U) GAIN REGISTER - OFFSET $\mathbf{0 4 H} / \mathbf{1 4 H} / \mathbf{2 4 H} / \mathbf{3 4 H}$ (Default=80H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	Chroma (U) Gain	RW	Chroma gain value of controlling the color saturation

CHROMA(V) GAIN REGISTER - OFFSET $\mathbf{0 5 H} / \mathbf{1 5 H} / \mathbf{2 5 H} / \mathbf{3 5 H}$ (Default $=\mathbf{8 0 H}$)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	Chroma (V) Gain	RW	Chroma gain value of controlling the color saturation

HUECONTROL REGISTER - OFFSET 06H/16H/26H/36H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	Hue	RW	These signed bits control color hue. $+90 \mathrm{C}(7 \mathrm{Fh})$ to $-90 \mathrm{C}(80 \mathrm{~h})$

RESERVED REGISTER- OFFSET07H/17H/27H/37H

RESERVED REGISTER - OFFSET 08H/18H/28H/38H

RESERVED REGISTER - OFFSET09H/19H/29H/39H

H-Delay REGISTER - OFFSET 0AH/1AH/2AH/3AH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 5]$	Reserved	R	Reset to 0b
$[4: 0]$	HorizontalShift Pixels Poinis	R/W	Left shift the start points of video outputs

RESERVED REGISTER - OFFSET 0BH/1BH/2BH/3BH

RESERVED REGISTER - OFFSET 0CH/1CH/2CH/3CH

RESERVED REGISTER - OFFSET 0DH/1DH/2DH/3DH

STANDARD SELECTION REGISTER - OFFSET 0EH/1EH/2EH/3EH(Default=77H)

BIT	FUNCTION	TYPE	DESCRIPTION
[2:0]	Standard Selection	RW	0: NTSC(M) 1: PAL(B,D,G,H,I) 2:Not valid 3: NTSC4.43 4: PAL(M) 5: PAL(CN) 6: PAL60 7: Auto detection
[3]	Reserved	R	Reset to 0b
[6:4]	Current Standard Detected	R	$\begin{aligned} & \text { 0: } \mathrm{NTSC}(\mathrm{M}) \\ & \text { 1: } \operatorname{PAL}(\mathrm{B}, \mathrm{D}, \mathrm{G}, \mathrm{H}, \mathrm{I}) \\ & \text { 2: Not valid } \\ & \text { 3: NTSC4.43 } \\ & \text { 4: } \operatorname{PAL}(\mathrm{M}) \\ & \text { 5: PAL(CN) } \\ & \text { 6: PAL60 } \\ & \text { 7:Not valid } \end{aligned}$
[7]	Reserved	R	Reset to 0b

RESERVEDREGISTER - OFFSET 0FH/1FH/2FH/3FH

RESERVED REGISTER - OFFSET 40H-50H

FBITINV REGISTER - OFFSET 51H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	FBITINV0	R/W	0: F-bit in the 4th byte of 656 EAV/SAV for channel 1 is not inverted. 1: F-bit in the 4th byte for channel 0 is inverted.
$[1]$	FBITINV1	R/W	0: F-bit in the 4th byte of 656 EAV/SAV for channel 2 is not inverted. 1: F-bit in the 4th byte for channel 1is inverted.
$[2]$	FBITINV2	R/W	0: F-bit in the 4th byte of 656 EAV/SAV for channel 3 is not inverted. 1: F-bit in the 4th byte for channel 2is inverted.
$[3]$	FBITINV3	R/W	0: F-bit in the 4th byte of 656 EAV/SAV for channel 4 is not inverted. 1: F-bit in the 4th byte for channel 3is inverted.
$[7: 4]$	Reserved	R	Reset to 0b

High HBLEN REGISTER - OFFSET $\mathbf{5 6 H} \mathbf{(D e f a u l t = 0 0 H)}$

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	HBLEN1[8]	R	Display the blanking length starting from EAV to SAV code.
$[1]$	HBLEN2[8]	R	Display the blanking length starting from EAV to SAV code.
$[2]$	HBLEN3[8]	R	Display the blanking length starting from EAV to SAV code.
$[3]$	HBLEN4[8]	R	Display the blanking length starting from EAV to SAV code.
$[7: 4]$	Reserved	R	Reset to 0b

LOW HBLEN REGISTER - OFFSET $57 \mathrm{H} / 58 \mathrm{H} / 59 \mathrm{H} / 5 \mathrm{AH}$ (Default=90H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HBLENn[7:0]	R	Display the blanking length starting from EAV to SAV code. $\mathrm{n}=1,2,3,4$
		12 In 27MHz D1 Mode: 90 H for PAL while 8AH for NTSC $\left(\begin{array}{ll}\text { In 36MHz WD1 Mode: } \mathrm{C} 0 \mathrm{H} \text { for PAL while B8H for NTSC } \\ \hline\end{array}\right.$	

RESERVED REGISTER - OFFSET 5BH-5CH

VIN2 COLOR KILL ENABLE-REGISTER - OFFSET 5DH(Default=C0H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[5: 0]$	Reserved	RW	Reset to 0h
$[6]$	PAL CKILL EN	RW	$1:$:enable color kill mode in PAL $0: d i s a b l e ~ c o l o r ~ k i l l ~ m o d e ~ i n ~ P A L ~$
$[7]$	NTSC CKILL EN	RW	$1:$ enable color kill mode in NTSC $0: d i s a b l e ~ c o l o r ~ k i l l ~ m o d e ~ i n ~ N T S C ~$

VIN3 COLOR KILL ENABLE-REGISTER - OFFSET 5EH(Default=C0H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[5: 0]$	Reserved	RW	Reset to 0h
$[6]$	PAL CKILL EN	RW	$1:$ enable color kill mode in PAL $0:$ disable color kill mode in PAL
$[7]$	NTSC CKILL EN	RW	$1:$ enable color kill mode in NTSC $0:$ disable color kill mode in NTSC

VIN4 COLOR KILL ENABLE-REGISTER - OFFSET 5FH(Default=C0H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[5: 0]$	Reserved	RW	Reset to 0h
$[6]$	PAL CKILL EN	RW	1:enable color kill mode in PAL $0:$ disable color kill mode in PAL

$[7]$	NTSC CKILL EN	RW	$1:$ enable color kill mode in NTSC $0: d i s a b l e ~ c o l o r ~ k i l l ~ m o d e ~ i n ~ N T S C ~$

RESERVED REGISTER - OFFSET 60H

CRYSTAL CLOCK SELECT REGISTER - OFFSET 61H(Default=03H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[1: 0]$	XINMD	RW	XIN input frequency
			$0: 27 \mathrm{Mhz}$
			$1: 54 \mathrm{Mhz}$
			$2: 108 \mathrm{Mhz}$
		$3: 27 \mathrm{Mhz}$	
$[7: 2]$	Reserved	RW	Reset to 00h

GPIO_OE REGISTER - OFFSET 62H (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	GPIO_0OE	RW	0: GPIO_0 pin is input. 1: GPIO_0 pin is output.
$[1]$	GPIO_1OE	RW	0: GPIO_1 pin is input. $1:$ GPIO_1 pin is output.
$[2]$	GPIO_2OE	RW	0: GPIO_2 pin is input. $1:$ GPIO_2 pin is output.
$[3]$	GPIO_3OE	RW	0: GPIO_3 pin is input. $1:$ GPIO_3 pin is output.
$[7: 4]$	Reserved	RW	Reset to 00h

CHANNEL ID01 REGISTER - OFFSET 63H(Default=10H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	CH0NUM	RW	Assign channel ID number in CV_IN0A video data output
$[7: 4]$	CH1NUM	RW	Assign channel ID number in CV_IN1A video data output

CHANNEL ID23 REGISTER - OFFSET 64H(Default=32H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	CH2NUM	RW	Assign channel ID number in CV_IN2A video data output
$[7: 4]$	CH3NUM	RW	Assign channel ID number in CV_IN3A video data output

CHANNEL ID45 REGISTER - OFFSET 65H(Default=54H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	CH4NUM	RW	Assign channel ID number in CV_IN4A video data output
$[7: 4]$	CH5NUM	RW	Assign channel ID number in CV_IN5A video data output

CHANNEL ID67 REGISTER - OFFSET 66H(Default=76H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	CH6NUM	RW	Assign channel ID number in CV_IN6A video data output
$[7: 4]$	CH7NUM	RW	Assign channel ID number in CV_IN7A video data output

HZOOM ENABLE REGISTER - OFFSET 67H(Default=80H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[6: 0]$	Reserved	R	Reset to 00h
$[7]$	HZOOM ENABLE	RW	1: Enable HZOOM function $0:$ Disable HZOOM function

HI -Bits HZOOM REGISTER - OFFSET 68H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[1: 0]$	HZOOM1[9:8]	RW	MSB of reg69
$[3: 2]$	HZOOM2[9:8]	RW	MSB of reg6A
$[5: 4]$	HZOOM3[9:8]	RW	MSB of reg6B
$[7: 6]$	HZOOM4[9:8]	RW	MSB of reg6C

LOW-Bits HZOOM VIN1 REGISTER - OFFSET 69H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HZOOM1[7:0]	R/W	HZOOM UP register the number is from $3 D E ~ t o ~ 3 F F ~ i f ~ H Z O O M 1[9: 0]=00 h ~ N o ~ H Z O O M ~ F u n c t i o n ~$

LOW-Bits HZOOM VIN2 REGISTER - OFFSET 6AH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HZOOM2[7:0]	R/W	HZOOM UP register the number is from $3 D E$ to 3FF if HZOOM2[9:0]=00h No HZOOM Function

LOW-Bits HZOOM VIN3 REGISTER - OFFSET 6BH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HZOOM3[7:0]	R/W	HZOOM UP register the number is from $3 D E$ 3

LOW-Bits HZOOM VIN4 REGISTER - OFFSET 6CH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HZOOM4[7:0]	R/W	HZOOM UP register the number is from $3 D E$ to 3FF if HZOOM4[9:0]=00h No HZOOM Function

RESERVED REGISTER - OFFSET 6DH-6EH

PIXOUT OUTPUT ENABLE REGISTER - OFFSET 6FH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	PIXOUT0_OEB	R	0: enable output $1:$ disable output
$[1]$	PIXOUT1_OEB	R	0: enable output $1:$ disable output
$[2]$	PIXOUT2_OEB	R	0: enable output $1:$ disable output
$[3]$	PIXOUT3_OEB	R	0: enable output $1:$ disable output
$[7: 4]$	Reserved	R	Reset to 0b

AUDIO CLOCK CONTROL REGISTER - OFFSET 70H(Default=08H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[2: 0]$	AFMD	RW	$0: 8 \mathrm{KHz}$
			$1: 16 \mathrm{KHz}$
		$2: 32 \mathrm{KHz}$	
		$3: 44.1 \mathrm{KHz}$	
		$4: 48 \mathrm{KHz}$	
$[3]$	Reserved	R	Reset to lb
$[5: 4]$	Reserved	R	Reset to 0b
$[6]$	S2I_8BIT	RW	$0: S C L K _P / L R C K _P / S D O U T _P ~ p i n ~ i n p u t ~ 16-b i t ~ c o n t r o l ~$ $1: S C L K _P / L R C K _P / S D O U T _P ~ p i n ~ i n p u t ~ 8-b i t ~ c o n t r o l ~$
$[7]$	Reserved	R	Reset to 0b

I2S AUDIO INPUT CONTROL REGISTER - OFFSET 71H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[1:0]	Reserved	R	Reset to 00b
[2]	SDINPDLY	RW	SDIN_P input data delay by one SCLK_P clock 0:No delay; 1T delay for I2S interface 1:Add 1 SCLK_P clock delay in SDIN_P input.; 0T delay for left-justified interface.
[7:3]	Reserved	R	Reset to 00h
14-0207			25 www.pericom.com 12/12/14

RESERVED REGISTER - OFFSET72H

LINE_IN4 CONTROL REGISTER - OFFSET 73H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[0]	LINE_IN4 DET_EN	RW	0 : Disable LINE_IN4 status register update and interrupt 1: Enable LINE_IN4 status register update and interrupt
[1]	Reserved	R	Reset to 00b
[2]	LINE_IN4 Location In data sequence	RW	```LINE_IN4OUTOFF is set to 0 0: I2S Mode : L: d0 d1 d2 d3 d4 d5 d6 d7 d51 d52 R :d8 d9 dA dB dC dD dE dF d53 d54 DSP mode d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 dA dB dC dD dE dF d51 d52 d53 d54 1: I2S Mode : L: d0 d1 d2 d3 d51 d4 d5 d6 d7 d52 R :d8 d9 dA dB d53 dC dD dE dF d54 DSP mode d0 d1 d2 d3 d51 d4 d5 d6 d7 d52 d8 d9 dA dB d53 dC dD dE dF d54```
[7:3]	Reserved	R	Reset to 00h

LINE_IN4 DETECT ENABLE REGISTER - OFFSET 74H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	LINE_IN4 DETECT_ STATE	RW	Audio LINE_IN4 detect $0:$ Disable $1:$ Enable
$[7: 1]$	Reserved	R	Reset to 00h

RESERVED REGISTER - OFFSET75H-7AH

BIT	FUNCTION	TYPE	DESCRIPTION
[4:0]	I2SO_RSEL	RW	Select R channel output on SDOUT_M pin when SDOUTM_I2SOEN=1 0:Select record audio channel LINE_IN0 1:Select record audio channel LINE_IN1 2:Select record audio channel LINE_IN2 3:Select record audio channel LINE_IN3 4:Select record audio channel LINE_IN5 5:Select record audio channel LINE_IN6 6:Select record audio channelLINE_IN7 7:Select record audio channel LINE_IN8 8:Select record audio channel LINE_IN10 9:Select record audio channel LINE_IN11 A:Select record audio channel LINE_IN12 B:Select record audio channel LINE_IN13 C:Select record audio channel LINE_IN15 D:Select record audio channel LINE_IN16 E:Select record audio channel LINE_IN17 F:Select record audio channel LINE_IN18 10h:Select playback audio of the master chip 11h:Reserved 12h:Select playback audio of the slave chip 13h:Reserved 14h:Playback data output and playback data can adjust volume by $\mathrm{DF}[3: 0]$ $15 \mathrm{~h}:$ Select record audio of channel LINE_IN4 16h:Select record audio of channel LINE_IN9 17h:Select record audio of channel LINE_IN14 18h:Select record audio of channel LINE_IN19 Others:No audio output
[7:5]	Reserved	R	Reset to 0h

BIT	FUNCTION	TYPE	DESCRIPTION
[4:0]	I2SO_RSEL	RW	Select L channel output on SDOUT_M pin when SDOUTM_I2SOEN=1: 0 :Select record audio channel LINE_IN0 1:Select record audio channel LINE_IN1 2:Select record audio channel LINE_IN2 3:Select record audio channel LINE_IN3 4:Select record audio channel LINE_IN5 5:Select record audio channel LINE_IN6 6:Select record audio channelLINE_IN7 7:Select record audio channel LINE_IN8 8:Select record audio channel LINE_IN10 9:Select record audio channel LINE_IN11 A:Select record audio channel LINE_IN12 B:Select record audio channel LINE_IN13 C:Select record audio channel LINE_IN15 D:Select record audio channel LINE_IN16 E:Select record audio channel LINE_IN17 F:Select record audio channel LINE_IN18 10h:Select playback audio of the master chip 11h:Reserved 12h:Select playback audio of the slave chip 13h:Reserved 14h:Playback data output and playback data can adjust volume by $\mathrm{DF}[3: 0]$ 15h:Select record audio of channel LINE_IN4 16h:Select record audio of channel LINE_IN9 17h:Select record audio of channel LINE_IN14 18h:Select record audio of channel LINE_IN19 Others:No audio output Others:No audio output
[7:5]	Reserved	R	Reset to 000b

EXTENDED LINE SELECT REGISTER - OFFSET 7DH(Default=E4H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[1: 0]$	Select Output Data In Data51 Position	RW	0: LINE_IN4
			1: LINE_IN9 2: LINE_IN14
			3: LINE_IN19

[3:2]	Select Output Data In Data52 Position	RW	$\begin{aligned} & \hline \text { 0: LINE_IN4 } \\ & \text { 1: LINE_IN9 } \\ & \text { 2: LINE_IN14 } \\ & \text { 3: LINE_IN19 } \\ & \hline \end{aligned}$
[5:4]	Select Output Data In Data53 Position	RW	$\begin{aligned} & \text { 0: LINE_IN4 } \\ & \text { 1: LINE_IN9 } \\ & \text { 2: LINE_IN14 } \\ & \text { 3: LINE_IN19 } \end{aligned}$
[7:6]	Select Output Data In Data54 Position	RW	0: LINE_IN41: LINE_IN9 2: LINE_IN14 3: LINE_IN19

SDOUT_M REGISTER- OFFSET 7EH(Default=00H)
\(\left.$$
\begin{array}{|c|c|c|l|}\hline \text { BIT } & \text { FUNCTION } & \text { TYPE } & \text { DESCRIPTION } \\
\hline[5: 0] & \text { Reserved } & \text { R } & \text { Reset to 00b } \\
\hline[6] & \text { SDOUT_M } & \text { R/W } & \begin{array}{l}\text { Define SDOUT_M pin output 2 word data } \\
\text { to make standard I2S output } \\
\text { I2S OEN }\end{array}
$$

\& \& A5OUTOFF Mixing Data or Playback input data are only output on SDOUT_M

1:L/R data on SDOUT_M pin is selected by 0x7B and 0x7C\end{array}\right]\)| [7] |
| :--- |

MIX RATIO VALUE FOR LINE_IN4 REGISTER - OFFSET 7FH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	Mix_Ratio4	RW	LINE_IN4 ratio value for audio mixing function $\begin{aligned} & 0: 1 / 2^{\wedge 8} \\ & 1: 1 / 2^{\wedge 7} \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} 5 \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} \\ & 6: 1 / 2^{\wedge} \\ & 7: 1 / 2^{\wedge} \end{aligned}$ other : 100\%
[7:4]	Reserved	R	Reset to 00b

PI7VD9008ABH
Adaptive EQ 8-channel 960H Video Decoder

SOFTWARE RESET REGISTER- OFFSET 80H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	VDEC0RST	W	Writing one reset the video decoder 0 to its default state but all registercontent remain unchanged. This bit is self-resetting
$[1]$	VDEC1RST	W	Writing one reset the video decoder 1 to its default state but all register content remain unchanged. This bit is self-resetting
$[2]$	VDEC2RST	W	Writing one reset the video decoder 2 to its default state but all register content remain unchanged. This bit is self-resetting
$[3]$	VDEC3RST	W	Writing one reset the video decoder 3 to its default state but all register content remain unchanged. This bit is self-resetting
$[4]$	Reserved	R	Reset to 00b
$[5]$	AUDIORST	W	Writing one reset the audio portion to its default state but all register content remain unchanged. This bit is self-resetting
$[7: 6]$	Reserved	R	Reset to 00b

RESERVED REGISTER - OFFSET 81H-88H

AUDIO FS MODE REGISTER- OFFSET 89H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[1: 0]$	Reserved	R	Reset to 00b
$[2]$	Audio FS Mode Select	RW	$0: 256 \mathrm{fs}$
			$1: 320 \mathrm{fs}$
$[7: 3]$	Reserved	R	Reset to 00h

RESERVED REGISTER - OFFSET 8AH-95H

VIN1 COLOR KILL ENABLE-REGISTER - OFFSET 96H(Default=C0H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[5: 0]$	Reserved	RW	Reset to 0h
$[6]$	PAL CKILL EN	RW	$1:$ enable color kill mode in PAL $0:$ disable color kill mode in PAL
$[7]$	NTSC CKILL EN	RW	$1:$ enable color kill mode in NTSC $0:$ disable color kill mode in NTSC

RESERVED REGISTER - OFFSET 97H-9EH

PIXCLK 0 DELAY REGISTER- OFFSET 9FH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	Control Clock Delay Of PIXCLK_P0 Pin	RW	Oh: No clock delay 1h: About 1ns more delay, $2 \mathrm{~h}:$ About 2ns more delay,
$[7: 4]$	Control Clock Delay Of PIXCLK_N0 Pin	RW	Rh: No clock delay 1h: About 1ns more delay, $2 h: A b o u t ~ 2 n s ~ m o r e ~ d e l a y, ~$

RESERVED REGISTER - OFFSET A0H-B1H

VIDEO LOSS STATUS REGISTER - OFFSET B2H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[0]	VDLOSS1EN	R/W	0: disable 1: MPP1 output VIN1 video loss status
[1]	VDLOSS2EN	R/W	0 : disable 1: MPP2 output VIN2 video loss status
[2]	VDLOSS3EN	R/W	0: disable 1: MPP3 output VIN3 video loss status
[3]	VDLOSS4EN	R/W	0 : disable 1: MPP4 output VIN4 video loss status
[4]	VDLOSS5EN	R/W	0: disable 1: MPP5 output VIN5 video loss status
[5]	VDLOSS6EN	R/W	0: disable 1: MPP6 output VIN6 video loss status
[6]	VDLOSS7EN	R/W	0: disable 1: MPP7 output VIN7 video loss status
[7]	VDLOSS8EN	R/W	0 : disable 1: MPP8 output VIN8 video loss status

RESERVED REGISTER - OFFSET B3H-C7H

GPIO_0_1 MODE REGISTER- OFFSET C8H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[2:0]	Output Mode For GPIO_0Pin	RW	```Select output mode for GPIO_0 pin 0: Output HSYNC 1: Output VSYNC 2:Field 3:H-active 4:VH-active 5:27MHz clock output 6:VH-sync 7:GPP_VA1```
[3]	General Purpose Value In GPIO_0 Pin	RW	Set general purpose value in GPIO_0 pin
[6:4]	Output Mode For GPIO_1 Pin	RW	Select output mode for GPIO_1 pin 0: Output HSYNC 1: Output VSYNC 2:Field 3:H-active 4:VH-active 5:27MHz clock output 6: VH-sync 7:GPP_VA2
[7]	General Purpose Value In GPIO 1 Pin	RW	Set general purpose value in GPIO_1 pin

GPIO_2_3 MODE REGISTER- OFFSET C9H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[2: 0]$	Output Mode For	RW	Select output mode for GPIO_2 pin
	GPIO_2 Pin		0: Output HSYNC
			1: Output VSYNC
			2:Field
			3:H-active
			4:VH-active
			5:27MHz clock output
			6:VH-sync
		7:GPP_VA1	
		Geral Purpose Value In GPIO_2 Pin	RW
		Set general purpose value in GPIO_2 pin	
$[3]$			

[6:4]	Output Mode For GPIO_3 Pin	RW	$\|$Select output mode for GPIO_3 pin 0:Output HSYNC 1: Output VSYNC 2:Field 3:H-active 4:VH-active 5:27MHz clock output 6:VH-sync 7:GPP VA2
[7]	General Purpose Value In GPIO_3 Pin	RW	Set general purpose value in GPIO_3 pin

RESERVED REGISTER - OFFSET CAH

GPIO POLARITY REGISTER - OFFSET CBH (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[0]	Select GPIO_0 Pin Output Polarity.	RW	0: Normal 1: Inverse polarity
[1]	Select GPIO_1 Pin Output Polarity.	RW	0: Normal 1: Inverse polarity
[2]	Select GPIO_2 Pin Output Polarity.	RW	0: Normal 1: Inverse polarity
[3]	Select GPIO_3 Pin Output Polarity.	RW	0: Normal 1: Inverse polarity
[4]	Select GPIO_4 Pin Output Polarity.	RW	0: Normal 1: Inverse polarity
[5]	Select GPIO_5 Pin Output Polarity.	RW	0: Normal 1: Inverse polarity
[6]	Select GPIO_6 Pin Output Polarity.	RW	0 : Normal 1: Inverse polarity
[7]	Select GPIO_7 Pin Output Polarity.	RW	0 : Normal 1: Inverse polarity

RESERVED REGISTER - OFFSET CCH

WD1 D1 SELECT REGISTER - OFFSET CDH (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	O36M1	RW	0: Channel 1 generates 27MHz video data 1: Channel 1 generates 36MHz video data
$[1]$	O36M2	RW	0: Channel 2 generates 27MHz video data 1: Channel 2 generates 36MHz video data

PI7VD9008ABH
Adaptive EQ 8-channel 960H Video Decoder

$[2]$	O36M3	RW	0: Channel 3 generates 27 MHz video data 1: Channel 3 generates 36 MHz video data
$[3]$	O36M4	RW	0: Channel 4 generates 27 MHz video data 1: Channel 4 generates 36 MHz video data
$[4]$	O36M5	RW	0: Channel 5 generates 27 MHz video data 1: Channel 5 generates 36 MHz video data
$[5]$	O36M6	RW	0: Channel 6 generates 27 MHz video data 1: Channel 6 generates 36 MHz video data
$[6]$	O36M7	RW	0: Channel 7 generates 27 MHz video data 1: Channel 7 generates 36 MHz video data
$[7]$	O36M8	RW	0: Channel 8 generates 27 MHz video data 1: Channel 8 generates 36 MHz video data

RESERVED REGISTER- OFFSET CEH

SERIAL MODE CONTROL REGISTER- OFFSET CFH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[6: 0]$	Reserved	R	Reset to 00h
$[7]$	SMD	RW	Cascade Audio Serial mode. $0: S D _L I N K O ~ i s ~ t r i ~ s t a t e d ~$
$1: S D _L I N K O ~ i s ~ e n a b l e d ~$			

RESERVED REGISTER- OFFSET D0H-D1H

SDOUT_RM OUTPUT REGISTER- OFFSET D2H(Default=03H)

\(\left.$$
\begin{array}{|c|c|c|l|}\hline \text { BIT } & \text { FUNCTION } & \text { TYPE } & \text { DESCRIPTION } \\
\hline[1: 0] & \begin{array}{c}\text { 16 Audios Recorded On } \\
\text { The SDOUT_R Pin }\end{array} & \text { R } & \text { Reset to 11b } \\
\hline[3: 2] & \text { R_SDOUTM } & \text { RW } & \begin{array}{l}\text { Select the output mode for SDOUT_M pin } \\
0: T h e ~ o u t p u t ~ i s ~ c o n t r o l l e d ~ b y ~ S D O U T M _I 2 S O E ~\end{array}
$$

1: Record audio in SDOUT_R format

2: Record audio in SDOUT_M format\end{array}\right]\)| $[5: 4]$ | Reserved | R |
| :---: | :---: | :--- |
| $[6]$ | RM_SYNC | RW |

[7]	Data Position	RW	I2S MODE 0: Mix data on position 0, Playback data on position 8 1: Mix data on position 8, Playback data on position 0 DSP MODE 0: Mix data on position 0, Playback data on position 1 1: Mix data on position 1, Playback data on position 0

SDOUT_R_SEQ_1_0 REGISTER- OFFSET D3H(Default=10H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	R_SEQ0	RW	The sequence on the SDOUT_R
			0: LINE_IN0
			1: LINE_IN1
			2: LINE_IN2
			3: LINE_IN3
			4: LINE_IN5
			5: LINE_IN6
			6: LINE_IN7
			7: LINE_IN8
			8: LINE_IN10
			9: LINE_IN11
			A: LINE_IN12
			B: LINE_IN13
			C: LINE_IN15
			D: LINE_IN16
			E: LINE_IN17
			F: LINE_IN18

[7:4]	R_SEQ1	RW	```The sequence on the SDOUT_R 0: LINE_IN0 1: LINE_IN1 2: LINE_IN2 3: LINE_IN3 4: LINE_IN5 5: LINE_IN6 6: LINE_IN7 7: LINE_IN8 8: LINE_IN10 9: LINE_IN11 A: LINE_IN12 B: LINE_IN13 C: LINE_IN15 D: LINE_IN16 E: LINE_IN17 F: LINE_IN18```

SDOUT_R_SEQ_3_2 REGISTER- OFFSET D4H(Default=32H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	R_SEQ2	RW	The sequence on the SDOUT_R
			0: LINE_IN0
			1: LINE_IN1
			2: LINE_IN2
			3: LINE_IN3
			4: LINE_IN5
			5: LINE_IN6
			6: LINE_IN7
			7: LINE_IN8
			8: LINE_IN10
			9: LINE_IN11
			A: LINE_IN12
			B: LINE_IN13
			C: LINE_IN15
			D: LINE_IN16
			E: LINE_IN17
			F: LINE_IN18

[7:4]	R_SEQ3	RW	```The sequence on the SDOUT_R 0: LINE_IN0 1: LINE_IN1 2: LINE_IN2 3: LINE_IN3 4: LINE_IN5 5: LINE_IN6 6: LINE_IN7 7: LINE_IN8 8: LINE_IN10 9: LINE_IN11 A: LINE_IN12 B: LINE_IN13 C: LINE_IN15 D: LINE_IN16 E: LINE_IN17 F: LINE_IN18```

SDOUT_R_SEQ_5_4 REGISTER- OFFSET D5H(Default=54H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	R_SEQ4	RW	The sequence on the SDOUT_R
			0: LINE_IN0
			1: LINE_IN1
			2: LINE_IN2
			3: LINE_IN3
			4: LINE_IN5
			5: LINE_IN6
			6: LINE_IN7
			7: LINE_IN8
			8: LINE_IN10
			9: LINE_IN11
			A: LINE_IN12
			B: LINE_IN13
			C: LINE_IN15
			D: LINE_IN16
			E: LINE_IN17
			F: LINE_IN18

[7:4]	R_SEQ5	RW	```The sequence on the SDOUT_R 0: LINE_IN0 1: LINE_IN1 2: LINE_IN2 3: LINE_IN3 4: LINE_IN5 5: LINE_IN6 6: LINE_IN7 7: LINE_IN8 8: LINE_IN10 9: LINE_IN11 A: LINE_IN12 B: LINE_IN13 C: LINE_IN15 D: LINE_IN16 E: LINE_IN17 F: LINE_IN18```

SDOUT_R_SEQ_7_6REGISTER- OFFSET D6H(Default=76H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	R_SEQ6	RW	The sequence on the SDOUT_R
			0: LINE_IN0
			1: LINE_IN1
			2: LINE_IN2
			3: LINE_IN3
			4: LINE_IN5
			5: LINE_IN6
			6: LINE_IN7
			7: LINE_IN8
			8: LINE_IN10
			9: LINE_IN11
			A: LINE_IN12
			B: LINE_IN13
			C: LINE_IN15
			D: LINE_IN16
			E: LINE_IN17
			F: LINE_IN18

[7:4]	R_SEQ7	RW	```The sequence on the SDOUT_R 0: LINE_IN0 1: LINE_IN1 2: LINE_IN2 3: LINE_IN3 4: LINE_IN5 5: LINE_IN6 6: LINE_IN7 7: LINE_IN8 8: LINE_IN10 9: LINE_IN11 A: LINE_IN12 B: LINE_IN13 C: LINE_IN15 D: LINE_IN16 E: LINE_IN17 F: LINE_IN18```

SDOUT_R_SEQ_9_8 REGISTER- OFFSET D7H(Default=98H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	R_SEQ8	RW	The sequence on the SDOUT_R
			0: LINE_IN0
			1: LINE_IN1
			2: LINE_IN2
			3: LINE_IN3
			4: LINE_IN5
			5: LINE_IN6
			6: LINE_IN7
			7: LINE_IN8
			8: LINE_IN10
			9: LINE_IN11
			A: LINE_IN12
			B: LINE_IN13
			C: LINE_IN15
			D: LINE_IN16
			E: LINE_IN17
			F: LINE_IN18

[7:4]	R_SEQ9	RW	```The sequence on the SDOUT_R 0: LINE_IN0 1: LINE_IN1 2: LINE_IN2 3: LINE_IN3 4: LINE_IN5 5: LINE_IN6 6: LINE_IN7 7: LINE_IN8 8: LINE_IN10 9: LINE_IN11 A: LINE_IN12 B: LINE_IN13 C: LINE_IN15 D: LINE_IN16 E: LINE_IN17 F: LINE_IN18```

SDOUT_R_SEQ_B_A REGISTER- OFFSET D8H(Default= BAH)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	R_SEQA	RW	The sequence on the SDOUT_R
			0: LINE_IN0
			1: LINE_IN1
			2: LINE_IN2
			3: LINE_IN3
			4: LINE_IN5
			5: LINE_IN6
			6: LINE_IN7
			7: LINE_IN8
			8: LINE_IN10
			9: LINE_IN11
			A: LINE_IN12
			B: LINE_IN13
			C: LINE_IN15
			D: LINE_IN16
			E: LINE_IN17
			F: LINE_IN18

[7:4]	R_SEQB	RW	The sequence on the SDOUT_R 0: LINE_IN0 1: LINE_IN1 2: LINE_IN2 3: LINE_IN3 4: LINE_IN5 5: LINE_IN6 6: LINE_IN7 7: LINE_IN8 8: LINE_IN10 9: LINE_IN11 A: LINE_IN12 B: LINE_IN13 C: LINE_IN15 D: LINE_IN16 E: LINE_IN17 F: LINE IN18

SDOUT_R_SEQ_D_C REGISTER- OFFSET D9H(Default= DCH)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	R_SEQC	RW	The sequence on the SDOUT_R
			0: LINE_IN0
			1: LINE_IN1
			2: LINE_IN2
			3: LINE_IN3
			4: LINE_IN5
			5: LINE_IN6
			6: LINE_IN7
			7: LINE_IN8
			8: LINE_IN10
			9: LINE_IN11
			A: LINE_IN12
			B: LINE_IN13
			C: LINE_IN15
			D: LINE_IN16
			E: LINE_IN17
			F: LINE_IN18

[7:4]	R_SEQD	RW	```The sequence on the SDOUT_R 0: LINE_IN0 1: LINE_IN1 2: LINE_IN2 3: LINE_IN3 4: LINE_IN5 5: LINE_IN6 6: LINE_IN7 7: LINE_IN8 8: LINE_IN10 9: LINE_IN11 A: LINE_IN12 B: LINE_IN13 C: LINE_IN15 D: LINE_IN16 E: LINE_IN17 F: LINE_IN18```

SDOUT_R_SEQ_F_E REGISTER- OFFSET DAH(Default= FEH)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	R_SEQE	RW	The sequence on the SDOUT_R
			0: LINE_IN0
			1: LINE_IN1
			2: LINE_IN2
			3: LINE_IN3
			4: LINE_IN5
			5: LINE_IN6
			6: LINE_IN7
			7: LINE_IN8
			8: LINE_IN10
			9: LINE_IN11
			A: LINE_IN12
			B: LINE_IN13
			C: LINE_IN15
			D: LINE_IN16
			E: LINE_IN17
			F: LINE_IN18

[7:4]	R_SEQF	RW	The sequence on the SDOUT_R 0: LINE_IN0 1: LINE_IN1 2: LINE_IN2 3: LINE_IN3 4: LINE_IN5 5: LINE_IN6 6: LINE_IN7 7: LINE_IN8 8: LINE_IN10 9: LINE_IN11 A: LINE_IN12 B: LINE_IN13 C: LINE_IN15 D: LINE_IN16 E: LINE_IN17 F: LINE_IN18

I2S MASTER CONTROL REGISTER- OFFSET DBH(Default= C2H)

BIT	FUNCTION	TYPE	DESCRIPTION
[0]	ACLKRMASTER	RW	0: SCLK_R pin is slave mode 1: SCLK_R pin is master mode
[1]	Reserved	R	Reset to 1b
[2]	SDOUT_RPin Data Format	RW	$\begin{aligned} & \text { Per word unit on SDOUT_R Pin } \\ & \text { 0: 16bit } \\ & 1: 8 \mathrm{bit} \\ & \hline \end{aligned}$
[3]	PB_SYNC	RW	The audio data format for audio playback mode 0: I2S mode for playback 1: DSP mode for playback
[4]	PB_LRSEL	RW	Select the audio data position in playback input I2S mode: 0: 1st Left channel audio data 1: 1st Right channel audio data DSP mode: $0: 1$ st channel audio data 1: 2nd channel audio data
[5]	PB_MASTER	RW	The operation mode for playback mode. 0: SCLK_P pin is slave mode 1: SCLK P pin is master mode

$[7: 6]$	Reserved	R	Reset to 11b

MIX_MUTE REGISTER- OFFSET DCH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[4:0]	MIX_MUTE	R	Mute function Enable 0 : disable 1: mute $\operatorname{Bit}[0]$: LINE_0; $\operatorname{Bit}[1]$: LINE_1; $\operatorname{Bit}[2]$: LINE_2; $\operatorname{Bit}[3]$: LINE_3; $\operatorname{Bit}[4]$: Playback audio input;
[7:5]	Reserved	R	Reset to 00b

MIX RATIO VALUE FOR LINE_IN0 \& LINE_IN1 REGISTER - OFFSET DDH (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	Mix_Ratio0	RW	LINE_IN0 ratio value for audio mixing function $\begin{aligned} & 0: 1 / 2^{\wedge} 8 \\ & 1: 1 / 2^{\wedge} 7 \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} 5 \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} 3 \\ & 6: 1 / 2^{\wedge} 2 \\ & 7: 1 / 2^{\wedge} 1 \end{aligned}$ other : 100\%
[7:4]	Mix_Ratiol	R/W	LINE_IN1 ratio value for audio mixing function $\begin{aligned} & 0: 1 / 2^{\wedge} 8 \\ & 1: 1 / 2^{\wedge} 7 \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} 5 \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} 3 \\ & 6: 1 / 2^{\wedge} 2 \\ & 7: 1 / 2^{\wedge} 1 \end{aligned}$ other: 100\%

MIX RATIO VALUE FOR LINE_IN2 \& LINE_IN3 REGISTER - OFFSET DEH (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	Mix_Ratio2	RW	LINE_IN2 ratio value for audio mixing function $\begin{aligned} & 0: 1 / 2^{\wedge} 8 \\ & 1: 1 / 2^{\wedge 7} \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} 5 \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} 3 \\ & 6: 1 / 2^{\wedge} 2 \\ & 7: 1 / 2^{\wedge} 1 \\ & \text { other }: 100 \% \\ & \hline \end{aligned}$
[7:4]	Mix_Ratio3	R/W	LINE_IN3 ratio value for audio mixing function $\begin{aligned} & 0: 1 / 2^{\wedge} 8 \\ & 1: 1^{\wedge} 2^{\prime} \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} \\ & 6: 1 / 2^{\wedge} \\ & 7: 1 / 2^{\wedge} \end{aligned}$ other : 100\%

PB RATIO REGISTER - OFFSET DFH (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	Ratio Value For Audio Mixing	RW	Playback input ratio value for audio mixing function $\begin{aligned} & 0: 1 / 2^{\wedge} 8 \\ & 1: 1 / 2^{\wedge} 7 \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} 5 \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} 3 \\ & 6: 1 / 2^{\wedge} 2 \\ & 7: 1 / 2^{\wedge} 1 \\ & \text { other }: 100 \% \end{aligned}$
[7:4]	Reserved	R	Reset to 0h

PI7VD9008ABH
Adaptive EQ 8-channel 960H Video Decoder

MIXING OUTPUT CONTROL REGISTER- OFFSET E0H(Default=14H)

BIT	FUNCTION	TYPE	DESCRIPTION
[4:0]	MIX_OUTSEL	RW	Define the final audio output for analog and digital mixing out: 0:Select record audio channel LINE_IN0 1:Select record audio channel LINE_IN1 2:Select record audio channel LINE_IN2 3:Select record audio channel LINE_IN3 4:Select record audio channel LINE_IN5 5:Select record audio channel LINE_IN6 6:Select record audio channelLINE_IN7 7:Select record audio channel LINE_IN8 8:Select record audio channel LINE_IN10 9:Select record audio channel LINE_IN11 A:Select record audio channel LINE_IN12 B:Select record audio channel LINE_IN13 C:Select record audio channel LINE_IN15 D:Select record audio channel LINE_IN16 E:Select record audio channel LINE_IN17 F:Select record audio channel LINE_IN18 10h:Select playback audio of the master chip 11h:Reserved 12h:Select playback audio of the slave chip 13h:Reserved 14h:Playback data output and playback data can adjust volume by DF [3:0] 15h:Select record audio of channel LINE_IN4 16h:Select record audio of channel LINE_IN9 17h:Select record audio of channel LINE_IN14 18h:Select record audio of channel LINE_IN19 Others :no audio input
[7:5]	Reserved	R	Reset to 000b

AUDIO DETECT TH 0123 MSB REGISTER- OFFSET E1H (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	ADET_TH0[4]	RW	Bit4 of audio detection threshold value for LINE_IN0
$[1]$	ADET_TH1[4]	RW	Bit4 of audio detection threshold value for LINE_IN1
$[2]$	ADET_TH2[3]	RW	Bit4 of audio detection threshold value for LINE_IN2
$[3]$	ADET_TH3[4]	RW	Bit4 of audio detection threshold value for LINE_IN3
$[7: 4]$	Reserved	R	Reset to 0h

AUDIO DETECT TH 01 LSB REGISTER- OFFSET E2H (Default=AAH)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	ADET_TH0[3:0]	RW	Bit3 ~ 0 of audio detection threshold value for LINE_IN0
$[7: 4]$	ADET_TH1[3:0]	RW	Bit3 ~ 0 of audio detection threshold value for LINE_IN1

AUDIO DETECT TH 23 LSB REGISTER- OFFSET E3H (Default=AAH)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	ADET_TH2[3:0]	RW	Bit3 ~ 0 of audio detection threshold value for LINE_IN2
$[7: 4]$	ADET_TH3[3:0]	RW	Bit3 ~ 0 of audio detection threshold value for LINE_IN3

RESERVED REGISTER- OFFSET E4H-E6H

VD OUTPUT MODE REGISTER- OFFSET E7H (Default=55H)

BIT	FUNCTION	TYPE	DESCRIPTION
[1:0]	PIXOUT_0[7:0] Pin Output Mode	RW	0: Single output (Test Purpose Only) 1: 2 xD 1 dual channel video output 2: 4 xD 1 quad channel video output 3: Reserved
[3:2]	$\begin{gathered} \hline \text { PIXOUT_1[7:0] Pin } \\ \text { Output Mode } \end{gathered}$	RW	0: Single output (Test Purpose Only) 1: $2 \mathrm{xD1}$ dual channel video output 2: 4xD1 quad channel video output 3: Reserved
[5:4]	PIXOUT_2 Pin Output Mode	RW	0 : Single output with 1: 2 xD 1 dual channel video output 2: 4 xD 1 quad channel video output 3: Reserved
[7:6]	PIXOUT_3 Pin Output Mode	RW	0: Single output (Test Purpose Only) 1: 2 xD 1 dual channel video output 2: 4 xD 1 quad channel video output 3: Reserved

PIXOUT0 OUTPUT CH12 SELECT REGISTER- OFFSET E8H(Default=10H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	CH1 Data Selection In PIXOUT_0	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 0h
[7:4]	CH2 Data Selection In PIXOUT_0	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 1 h

PIXOUT0 OUTPUT CH34 SELECT REGISTER- OFFSET E9H(Default=32H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	CH3 Data Selection In	RW	0: CV_INA0 Video Decoder data
	PIXOUT_0		1: CV_INA1 Video Decoder data
			2: CV_INA2 Video Decoder data
			3: CV_INA3 Video Decoder data
			4: CV_INA4 Video Decoder data
			5: CV_INA5 Video Decoder data
			6: CV_INA6 Video Decoder data
			7: CV_INA7 Video Decoder data

[7:4]	CH4 Data Selection In PIXOUT_0	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 3h

PIXOUT1 OUTPUT CH12 SELECT REGISTER- OFFSET EAH(Default=32H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	CH1 Data Selection In PIXOUT_1	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 2h
[7:4]	CH2 Data Selection In PIXOUT_1	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 3h

PIXOUT1 OUTPUT CH34 SELECT REGISTER- OFFSET EBH(Default=54H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	CH3 Data Selection In PIXOUT_1	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 4h
[7:4]	CH4 Data Selection In PIXOUT_1	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 5 h

PIXOUT2 OUTPUT CH12 SELECT REGISTER- OFFSET ECH(Default=54H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	CH1 Data Selection In PIXOUT_2	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 4h

[7:4]	CH2 Data Selection In PIXOUT_2	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 5h

PIXOUT2 OUTPUT CH34 SELECT REGISTER- OFFSET EDH(Default=76H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	CH3 Data Selection In PIXOUT_2	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 6h
[7:4]	CH4 Data Selection In PIXOUT_2	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 7h

PIXOUT3 OUTPUT CH12 SELECT REGISTER- OFFSET EEH(Default=76H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	CH1 Data Selection In PIXOUT_3	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 6h
[7:4]	CH2 Data Selection In PIXOUT_3	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 7h

PIXOUT3 OUTPUT CH34 SELECT REGISTER- OFFSET EFH(Default=10H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	CH3 Data Selection In	RW	0: CV_IN0 Video Decoder data
	PIXOUT_3		1: CV_IN1 Video Decoder data
			2: CV_IN2 Video Decoder data
			3: CV_IN3 Video Decoder data
			4: CV_IN4 Video Decoder data
			5: CV_IN5 Video Decoder data
			6: CV_IN6 Video Decoder data
			7: CV_IN7 Video Decoder data
			Reset to 0h

[7:4]	CH4 Data Selection In PIXOUT_3	RW	0: CV_INA0 Video Decoder data 1: CV_INA1 Video Decoder data 2: CV_INA2 Video Decoder data 3: CV_INA3 Video Decoder data 4: CV_INA4 Video Decoder data 5: CV_INA5 Video Decoder data 6: CV_INA6 Video Decoder data 7: CV_INA7 Video Decoder data Reset to 1 h

PIXCLK OUTPUT MODE REGISTER- OFFSET F9H (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	PIXCLK_PF	RW	Output frequency mode of PIXCLK_PO pin. $0:$ Output one of $27 \mathrm{MHz}, 54 \mathrm{MHz}$ or 180 MHz frequency. $1:$ Output one of $36 \mathrm{MHz}, 72 \mathrm{MHz}$ or 144 MHz frequency.
$[1]$	PIXCLK_NF	RW	Output frequency mode of PIXCLK_NO pin. $0:$ Output one of $27 \mathrm{MHz}, 54 \mathrm{MHz}$ or 180 MHz frequency. $1:$ Output one of $36 \mathrm{MHz}, 72 \mathrm{MHz}$ or 144 MHz frequency.
$[7: 2]$	Reserved	R	Reset to 0 h

CCIR656 CONTROL REGISTER- OFFSET FAH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[1:0]	PIXOUT format Control	W	Control the data frequency of PIXOUT pins 0: $27 \mathrm{M} / 36 \mathrm{MHz}$ data output 1: $54 \mathrm{M} / 72 \mathrm{MHz}$ data output 2: $108 \mathrm{M} / 144 \mathrm{MHz}$ data output Reset to 00b
[3:2]	Reserved	W	Reset to 00b
[4]	Reserved	R	Reset to 0b
[5]	Reserved	R	Reset to 0b
[6]	CCIR656 Output Enable	RW	0: All outputs are tri-stated 1:All outputs(PIXOUT_n/PIXCLK_PO/PIXCLK_NO) are enabled
[7]	Reserved	R	Reset to 0b

CLOCK POLARITY REGISTER- OFFSET FBH(Default=0FH)
BIT FUNCTION TYPE DESCRIPTION
$[1: 0]$
VDET_MODE
$[3: 2]$
ADET_MODE

VIDEO/AUDIO DETECTION ENABLE REGISTER-OFFSET FCH (Default=FFH)

BIT	FUNCTION	TYPE	DESCRIPTION

Adaptive EQ 8-channel 960H Video Decoder

[7:0]	AVDET_EN	RW	Enable the status register updated and interrupt request if the following video or audio source is detected. The mapping of video/audio input to each bit of the register is defined as below. Bit0: Video input CV_IN0. Bit1: Video input CV_IN1. Bit2: Video input CV_IN2. Bit3: Video input CV_IN3. Bit4: Audio input LINE_IN0. Bit5: Audio input LINE_IN1. Bit6: Audio input LINE_IN2. Bit7: Audio input LINE_IN3. 0: Disable status register updated and interrupt request 1: Enable status register updated and interrupt request

VIDEO/AUDIO DETECTION STATUS REGISTER-OFFSET FDH (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[7:0]	AVDET_EN	RW	Enable the status register updated and interrupt request if the following video or audio source is detected. The mapping of video/audio input to each bit of the register is defined as below. Bit0: Video input CV_IN0. Bit1: Video input CV_IN1. Bit2: Video input CV_IN2. Bit3: Video input CV_IN3. Bit4: Audio input LINE_IN0. Bit5: Audio input LINE_IN1. Bit6: Audio input LINE_IN2. Bit7: Audio input LINE_IN3. 0: Disable status register updated and interrupt request 1: Enable status register updated and interrupt request

DEVICE ID_H REGISTER- OFFSET FEH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[5: 0]$	Reserved	R	Reset to 00h
$[7: 6]$	Dev_ID[6:5]	R	Reset to 00b

BIT	FUNCTION	TYPE	DESCRIPTION
$[2: 0]$	REV_ID	R	Reset to 000b
$[7: 3]$	Dev_ID[4:0]	R	Reset to leh

PAGE 1 REGISTERS

Register Type	Descriptions
R	Read Only
RW	Read/Write

VIDEO STATUS REGISTER - OFFSET 00H/10H/20H/30H (Default: 00H)

BIT	FUNCTION	TYPE	DESCRIPTION
0	DET50	R	$0: 60 \mathrm{~Hz}$ source detected $1: 50 \mathrm{~Hz}$ source detected
1	MONO	R	$0:$ Color burst signal detected $1:$ No color burst signal detected
2	Reserved	R	Reset to 0b
3	VLOCK	R	$0:$ Vertical logic is not locked $1:$ Vertical logic is locked to incoming video
4	Reserved	R	Reset to 0b
5	SLOCK	R	0: Sub-carrier sync is not detected $1:$ Sub-carrier sync is detected
6	HLOCK	R	0:Horizontal sync is not detected $1:$ Horizontal sync is detected
7	VDLOSS	R	0: Video is detected $1:$ Video not present

BRIGHTNESS CONTROL REGISTER - OFFSET 01H/11H/21H/31H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	Brightness	RW	These Signed bits control the brightness.Value range from -128 to 127 $8^{\prime} \mathrm{h} 7 \mathrm{~F}:$ brightest; 8'h80: darkest ;8'h00 : no effect

BIT	FUNCTION	TYPE	DESCRIPTION
[7:0]	Contrast	RW	These unsigned bits control the luminance gain. 8'h7F: maximum contrast 8'h00: minimum contrast

SHARPNESSCONTROL REGISTER - OFFSET 03H/13H/23H/33H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	Sharpness	RW	These bits control the amount of sharpness enhancement on the luminance signals " 0 " has no effect on the output image "1" through "15" provides sharpness enhancement with "15" being the strongest
[7:4]	Reserved	R	Reset to 0h

CHROMA(U) GAIN REGISTER - OFFSET $04 \mathrm{H} / \mathbf{1 4 H} / 24 \mathrm{H} / \mathbf{3 4 H}$ (Default=80H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	Chroma (U) Gain	RW	Chroma gain value of controlling the color saturation

CHROMA(V) GAIN REGISTER $\mathbf{-}$ OFFSET $\mathbf{0 5 H} / \mathbf{1 5 H} / \mathbf{2 5 H} / \mathbf{3 5 H}$ (Default= $\mathbf{8 0 H}$)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	Chroma (V) Gain	RW	Chroma gain value of controlling the color saturation

UECONTROL REGISTER - OFFSET 06H/16H/26H/36H(Default=00H)			
BIT	FUNCTION	TYPE	DESCRIPTION
[7:0]	Hue	RW	These signed bits control color hue. $+90 \mathrm{C}(7 \mathrm{Fh})$ to $-90 \mathrm{C}(80 \mathrm{~h})$

H-Delay REGISTER - OFFSET 0AH/1AH/2AH/3AH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 5]$	Reserved	R	Reset to 0b
$[4: 0]$	HorizontalShift Pixels Point	R/W	Left shift the start points of video outputs

STANDARD SELECTION REGISTER - OFFSET 0EH/1EH/2EH/3EH(Default=77H)

BIT	FUNCTION	TYPE	DESCRIPTION		
[2:0]	Standard Selection	RW	$\begin{aligned} & \text { 0: } \mathrm{NTSC}(\mathrm{M}) \\ & \text { 1: } \mathrm{PAL}(\mathrm{~B}, \mathrm{D}, \mathrm{G}, \mathrm{H}, \mathrm{I}) \\ & \text { 2: Not valid } \\ & \text { 3: } \mathrm{NTSC} 4.43 \\ & \text { 4: } \operatorname{PAL}(\mathrm{M}) \\ & \text { 5: } \mathrm{PAL}(\mathrm{CN}) \\ & \text { 6: } \text { PAL60 } \\ & \text { 7: Auto detection } \end{aligned}$		
[3]	Reserved	R	Reset to 0b		
14-0207		57		www.pericom.com	12/12/14

[6:4]	Current Standard Detected	R	$\begin{aligned} & \text { 0: } \operatorname{NTSC}(\mathrm{M}) \\ & \text { 1: } \operatorname{PAL(B,D,G,H,I)~} \\ & \text { 2:Not valid } \\ & \text { 3: NTSC4.43 } \\ & \text { 4: PAL(M) } \\ & \text { 5: PAL(CN) } \\ & \text { 6: PAL60 } \\ & \text { 7:Not valid } \\ & \hline \end{aligned}$
[7]	Reserved	R	Reset to 0b

High HBLEN REGISTER - OFFSET 56H (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	HBLEN4[8]	R	Display the blanking length starting from EAV to SAV code.
$[1]$	HBLEN5[8]	R	Display the blanking length starting from EAV to SAV code.
$[2]$	HBLEN6[8]	R	Display the blanking length starting from EAV to SAV code.
$[3]$	HBLEN7[8]	R	Display the blanking length starting from EAV to SAV code.
$[7: 4]$	Reserved	R	Reset to 0b

LOW HBLEN REGISTER - OFFSET 57H/58H/59H/5AH(Default=90H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HBLENn[7:0]	R	Display the blanking length starting from EAV to SAV code.
	$\mathrm{n}=4,5,6,7$		(1) In 27 MHz D1 Mode: 90 H for PAL while 8 AH for NTSC

VIN6 COLOR KILL ENABLE-REGISTER - OFFSET 5DH(Default=C0H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[5: 0]$	Reserved	RW	Reset to 0h
$[6]$	PAL CKILL EN	RW	$1:$ enable color kill mode in PAL $0:$ disable color kill mode in PAL
$[7]$	NTSC CKILL EN	RW	$1:$ enable color kill mode in NTSC $0:$ disable color kill mode in NTSC

VIN7 COLOR KILL ENABLE-REGISTER - OFFSET 5EH(Default=C0H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[5: 0]$	Reserved	RW	Reset to 0h
$[6]$	PAL CKILL EN	RW	$1:$ enable color kill mode in PAL $0:$ disable color kill mode in PAL

Adaptive EQ 8-channel 960H Video Decoder

$[7]$	NTSC CKILL EN	RW	$1:$ enable color kill mode in NTSC $0: d i s a b l e ~ c o l o r ~ k i l l ~ m o d e ~ i n ~ N T S C ~$

VIN8 COLOR KILL ENABLE-REGISTER - OFFSET 5FH(Default=C0H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[5: 0]$	Reserved	RW	Reset to 0h
$[6]$	PAL CKILL EN	RW	$1:$:enable color kill mode in PAL $0:$ disable color kill mode in PAL
$[7]$	NTSC CKILL EN	RW	$1:$ enable color kill mode in NTSC $0: d i s a b l e ~ c o l o r ~ k i l l ~ m o d e ~ i n ~ N T S C ~$

HI -Bits HZOOM REGISTER - OFFSET 68H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[1: 0]$	HZOOM5[9:8]	RW	MSB of reg69
$[3: 2]$	HZOOM6[9:8]	RW	MSB of reg6A
$[5: 4]$	HZOOM7[9:8]	RW	MSB of reg6B
$[7: 6]$	HZOOM8[9:8]	RW	MSB of reg6C

LOW-Bits HZOOM VIN5 REGISTER - OFFSET 69H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HZOOM5[7:0]	R/W	HZOOM UP register the number is from $3 D E ~ t o ~ 3 F F ~ i f ~ H Z O O M 5[9: 0]=00 h ~ N o ~ H Z O O M ~ F u n c t i o n ~$

LOW-Bits HZOOM VIN6 REGISTER - OFFSET 6AH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HZOOM6[7:0]	R/W	HZOOM UP register the number is from $3 D E ~ t o ~ 3 F F ~ i f ~ H Z O O M 6[9: 0]=00 h ~ N o ~ H Z O O M ~ F u n c t i o n ~$

LOW-Bits HZOOM VIN7 REGISTER - OFFSET 6BH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HZOOM7[7:0]	R/W	HZOOM UP register the number is from $3 D E ~ t o ~ 3 F F ~ i f ~ H Z O O M 7[9: 0]=00 h ~ N o ~ H Z O O M ~ F u n c t i o n ~$

LOW-Bits HZOOM VIN8 REGISTER - OFFSET 6CH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[7: 0]$	HZOOM8[7:0]	R/W	HZOOM UP register the number is from $3 D E ~ t o ~ 3 F F ~ i f ~ H Z O O M 8[9: 0]=00 h ~ N o ~ H Z O O M ~ F u n c t i o n ~$

LINE_IN9 CONTROL REGISTER - OFFSET 73H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	LINE_IN9 DET_EN	RW	$0:$ Disable LINE_IN9 status register update and interrupt $1:$ Enable LINE_IN9 status register update and interrupt
$[7: 1]$	Reserved	R	Reset to 00h

LINE_IN9 DETECT ENABLE REGISTER - OFFSET 74H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	LINE_IN9 DETECT_ STATE	RW	Audio LINE_IN9 detect $0:$ Disable $1:$ Enable
$[7: 1]$	Reserved	R	Reset to 00h

MIX RATIO VALUE FOR LINE_IN9 REGISTER - OFFSET 7FH(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	Mix_Ratio9	RW	LINE_IN9 ratio value for audio mixing function
			$0: 1 / 2^{\wedge} 8$
			$1: 1 / 2^{\wedge} 7$
			$2: 1 / 2^{\wedge} 6$
		$3: 1 / 2^{\wedge} 5$	
		$4: 1 / 2^{\wedge} 4$	
			$5: 1 / 2^{\wedge} 3$
			$6: 1 / 2^{\wedge} 2$
			$7: 1 / 2^{\wedge} 1$
			other : 100\%
$[7: 4]$	Reserved	Reset to 00 b	

VIN5 COLOR KILL ENABLE-REGISTER - OFFSET 96H(Default=C0H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[5: 0]$	Reserved	RW	Reset to 0h
$[6]$	PAL CKILL EN	RW	$1:$ enable color kill mode in PAL $0:$ disable color kill mode in PAL
$[7]$	NTSC CKILL EN	RW	$1:$ enable color kill mode in NTSC $0: d i s a b l e ~ c o l o r ~ k i l l ~ m o d e ~ i n ~ N T S C ~$

GPIO_4_5 MODE REGISTER- OFFSET C8H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[2:0]	Output Mode For GPIO_4	RW	```Select output mode for GPIO_4 0: Output HSYNC 1: Output VSYNC 2:Field 3:H-active 4:VH-active 5:27MHz clock output 6:VH-sync 7:GPP_VA1```
[3]	General Purpose Value In GPIO_4	RW	Set general purpose value in GPIO_4
[6:4]	Output Mode For GPIO_5 Pin	RW	Select output mode for GPIO_5 0: Output HSYNC 1: Output VSYNC 2:Field 3:H-active 4:VH-active 5:27MHz clock output 6: VH-sync 7:GPP_VA2
[7]	General Purpose Value In GPIO_5	RW	Set general purpose value in GPIO_5

GPIO_6_7 MODE REGISTER- OFFSET C9H(Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[2:0]	Output Mode For GPIO_6 Pin	RW	Select output mode for GPIO_6 0: Output HSYNC 1: Output VSYNC 2:Field 3:H-active 4:VH-active 5:27MHz clock output 6:VH-sync 7:GPP_VA1
[3]	General Purpose Value In GPIO 6	RW	Set general purpose value in GPIO_6

[6:4]	Output Mode For GPIO_7	RW	```Select output mode for GPIO_7 0:Output HSYNC 1: Output VSYNC 2:Field 3:H-active 4:VH-active 5:27MHz clock output 6:VH-sync 7:GPP_VA2```
[7]	General Purpose Value In GPIO_7	RW	Set general purpose value in GPIO_7

MIX RATIO VALUE FOR LINE_IN5 \& LINE_IN6 REGISTER - OFFSET DDH (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	Mix_Ratio5	RW	LINE_IN5 ratio value for audio mixing function $\begin{aligned} & 0: 1 / 2^{\wedge} 8 \\ & 1: 1 / 2^{\wedge} 7 \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} 5 \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} 3 \\ & 6: 1 / 2^{\wedge} 2 \\ & 7: 1 / 2^{\wedge} 1 \end{aligned}$ other : 100\%
[7:4]	Mix_Ratio6	R/W	LINE_IN6 ratio value for audio mixing function $\begin{aligned} & 0: 1 / 2^{\wedge} 8 \\ & 1: 1 / 2^{\wedge} 7 \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} 5 \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} 3 \\ & 6: 1 / 2^{\wedge} 2 \\ & 7: 1 / 2^{\wedge} 1 \end{aligned}$ other : 100\%

MIX RATIO VALUE FOR LINE_IN7 \& LINE_IN8 REGISTER - OFFSET DEH (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[3:0]	Mix_Ratio7	RW	LINE_IN7 ratio value for audio mixing function $\begin{aligned} & 0: 1 / 2^{\wedge} 8 \\ & 1: 1^{\wedge} 2^{\wedge} \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} 5 \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} 3 \\ & 6: 1 / 2^{\wedge} 2 \\ & 7: 1 / 2^{\wedge} 1 \end{aligned}$ other : 100\%
[7:4]	Mix_Ratio8	R/W	LINE_IN8 ratio value for audio mixing function $\begin{aligned} & 0: 1^{\prime} 2^{\wedge} 8 \\ & 1: 1^{\wedge} 2^{\wedge} \\ & 2: 1 / 2^{\wedge} 6 \\ & 3: 1 / 2^{\wedge} 5 \\ & 4: 1 / 2^{\wedge} 4 \\ & 5: 1 / 2^{\wedge} 3 \\ & 6: 1 / 2^{\wedge} 2 \\ & 7: 1 / 2^{\wedge} 1 \end{aligned}$ other : 100\%

AUDIO DETECT TH 5678 MSB REGISTER- OFFSET E1H (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
$[0]$	ADET_TH5[4]	RW	Bit4 of audio detection threshold value for LINE_IN5
$[1]$	ADET_TH6[4]	RW	Bit4 of audio detection threshold value for LINE_IN6
$[2]$	ADET_TH7[3]	RW	Bit4 of audio detection threshold value for LINE_IN7
$[3]$	ADET_TH8[4]	RW	Bit4 of audio detection threshold value for LINE_IN8
$[7: 4]$	Reserved	R	Reset to 0h

AUDIO DETECT TH 56 LSB REGISTER- OFFSET E2H (Default=AAH)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	ADET_TH5[3:0]	RW	Bit3 ~ 0 of audio detection threshold value for LINE_IN5
$[7: 4]$	ADET_TH6[3:0]	RW	Bit3 ~ 0 of audio detection threshold value for LINE_IN6

AUDIO DETECT TH 78 LSB REGISTER- OFFSET E3H (Default=AAH)

BIT	FUNCTION	TYPE	DESCRIPTION
$[3: 0]$	ADET_TH7[3:0]	RW	Bit3 ~ 0 of audio detection threshold value for LINE_IN7

$[7: 4]$	ADET_TH8[3:0]	RW	Bit3 ~ 0 of audio detection threshold value for LINE_IN8

VIDEO/AUDIO DETECTION ENABLE REGISTER-OFFSET FCH (Default=FFH)

BIT	FUNCTION	TYPE	DESCRIPTION
[7:0]	AVDET_EN	RW	Enable the status register updated and interrupt request if the following video or audio source is detected. The mapping of video/audio input to each bit of the register is defined as below.
			Bit0: Video input CV_IN4. Bit1: Video input CV_IN5. Bit2: Video input CV_IN6. Bit3: Video input CV_IN7. Bit4: Audio input LINE_IN5. Bit5: Audio input LINE_IN6. Bit6: Audio input LINE_IN7. Bit7: Audio input LINE_IN8.
			0: Disable status register updated and interrupt request
1: Enable status register updated and interrupt request			

VIDEO/AUDIO DETECTION STATUS REGISTER-OFFSET FDH (Default=00H)

BIT	FUNCTION	TYPE	DESCRIPTION
[7:0]	AVDET_STATUS	R	Display the detection status of each video or audio source according to AVDET_EN, VDET_MODE and ADET_MODE. The mapping of video/audio input to each bit of the register is defined as below. The bits will be cleared once the register is read by software except VDET_MODE $=3$ or ADET_MODE $=3$. Bit0: Video input CV_IN0. Bit1: Video input CV_IN1. Bit2: Video input CV_IN2. Bit3: Video input CV_IN3. Bit4: Audio input LINE_IN5. Bit5: Audio input LINE_IN6. Bit6: Audio input LINE_IN7. Bit7: Audio input LINE_IN8. 0 : Inactive. No event detected after the last access to this bit.

Electrical Characteristics

Absolute Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Parameters		Value	Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional Supply Voltage Range
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.			
$\mathrm{T}_{\text {stg }}$ Storage Temperature	-0.3 V to 4.5 V	-0.3 V to 1.8 V	$-65{ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Normal Operating Conditions

Symbol	Parameters	Min.	Typ.	Max.	Unit
VDD	Power supply voltage 3.3V (Pin name: VD33, ADC_VDD,ADAC_VDD, VD- DPLL)	3.0	3.3	3.6	V
VDDC	Core Power supply voltage(Pin name: VDDC)	0.9	1.0	1.1	V
$\mathrm{V}_{\mathrm{I}(P-\mathrm{P})}$	Analog input voltage (ac-coupling necessary)	0		1.6	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operation temperature ${ }^{* 1}$	0		70	${ }^{\circ} \mathrm{C}$

Note: ${ }^{*}$ 1. Please refer to the Ordering Information for Industrial grade application.

DC Electrical Characteristics

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Digital input high voltage		2.0		3.6	V
$\mathrm{V}_{\text {IL }}$	Digital input low voltage		-0.3		0.8	V
VOH	Digital Output high voltage		2.4			V
V OL	Digital Output low voltage				0.4	V
I_{L}	Input Leakage Current	No internal pull-up or pulldown pins			+/-1	uA
IOZ	Tri-state output leakage current				+/-1	uA
IOH	High level output current	$\mathrm{VOH}=2.4 \mathrm{~V}$	11	17	24	mA
IOL	Low level output current	$\mathrm{VOL}=0.4 \mathrm{~V}$	8	13	16	mA
R_{pu}	Input pull-up resistance	Vin=0	61	75	105	$\mathrm{K} \Omega$
R_{pd}	Input pull-down resistance	Vin=DVDD33	101	199	330	$\mathrm{K} \Omega$

Power Dissipation

Symbol	Parameters	Test Condition	Min.	Typ.	Max.
Unit					
$3.3 V_{\text {TOTAL }}$	Total 3.3V Power Voltage			330	
$1.0 \mathrm{~V}_{\text {TOTAL }}$	Core Supply Voltage (VDDC)	Enable 8-ch 960H Video/Audio Inputs		375	
		mA			
	Total Power Consumption			1464	mW

Power-On Sequence of 3.3 V and 1.0V Power

Symbol	Parameters	Min.	Typ.	Max.	Unit
T1	Interval Delay between IO Power and Core Power Supply	0	10	500	ms

3.3V IO Power Supply
1.0V Core Power Supply

Oscillator input

Parameters	Min.	Typ.	Max.	Unit
Frequency		27		MHz
Frequency tolerance			± 50	ppm

AC Electrical Characteristics

Video Electrical

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
Zi	Input impedance	Analog video inputs by design		40		$\mathrm{k} \Omega$
Ci	Input Capacitance	Analog video inputs by design		10		pF
DNL	Differential Non Linearity				± 2	LSB
INL	Integral Non Linearity				± 3	LSB
Vi	Full scale input range	The expected full input range is only 0.5 Vpp to 1.0 Vpp.	0.25		1.6	Vpp
SNR	Signal to Noise Ratio	This is measured with a - 1 dB full scale input signal and adjusted for full scale amplitude	45			dB
THD	Total Harmonic Distortion			-45		dB
	Analog input bandwidth	This bandwidth does not include limitations due to the source impedance of 37.5 and loading on the board, $30 \mathrm{pF}(140 \mathrm{MHz})$		300		MHz

Audio Electrical

Symbol	Parameters	Test Condition	Min.	Typ.	Max.	Unit
Zi	Input impedance	Analog video inputs by design		40		$\mathrm{k} \Omega$
Ci	Input Capacitance	Analog video inputs by design		10	pF	
Vi	Maximum Input Range		0.25		1.6	V
SNR	Signal to Noise Ratio			85	dB	
DNR	Dynamic Range		80	dB		
THD	Total Harmonic Distortion		-75	dB		

Pixel Clock and Video Data Timing

Symbol	Parameters	Min.	Typ.	Max.	Unit
TS1	Setup from PIXCLK_PO to PIXOUT (144MHz)	2.6	-	4.3	ns
TH1	Hold from PIXCLK_PO to PIXOUT (144MHz)	2.7	-	4.4	ns
TS2	Setup from PIXCLK_PO to PIXOUT (108MHz)	3.8	-	5.4	ns
TH2	Hold from PIXCLK_PO to PIXOUT (108MHz)	3.9	-	5.5	ns
TS3	Setup from PIXCLK_PO to PIXOUT (72 MHz)	5.6	-	7.6	ns
TH3	Hold from PIXCLK_PO to PIXOUT (72 MHz)	6.3	-	8.3	ns
TS4	Setup from PIXCLK_PO to PIXOUT (54 MHz)	8.2	-	10.3	ns
TH4	Hold from PIXCLK_PO to PIXOUT (54MHz)	8.3	-	10.4	ns
TS5	Setup from PIXCLK_PO to PIXOUT (36MHz)	14.1	-	16.1	ns
TH5	Hold from PIXCLK_PO to PIXOUT (36MHz)	11.7	-	13.7	ns
TS6	Setup from PIXCLK_PO to PIXOUT (27 MHz)	19	-	20.9	ns
TH6	Hold from PIXCLK_PO to PIXOUT (27MHz)	16.1		18	ns

Note: The timing value is measured by the following conditions: (1) the clock delay control on PIXCLK_PO pin is set to zero; (2) the clock polarity control on PIXCLK_PO pin is not inverted.

PIXCLK_PO (144MHz)

PIXOUT (144MHz)

OTDM is operated at 144 MHz

PIXCLK_PO (108MHz)

 ${ }_{\text {TS2 } 2}{ }^{1} \mathrm{TH} 2$

PIXOUT
(108MHz)

OTDM is operated at 108 MHz

PIXOUT (72MHz)

OTBM is operated at $72 / 36 \mathrm{MHz}$

OTBM is operated at $54 / 27 \mathrm{MHz}$
Audio Electrical Characteristics

Symbol	Parameters	Test Condition	Min.	Typ.	Max.	Unit
TS_LRCK_R	Setup Time for LRCK_R	Slave Mode	0.2			ns
TH_LRCK_R	Hold Time for LRCK_R		0.4			ns
$\mathrm{T}_{\text {S_PB }}$	Setup Time for LRCK_P and SDIN_P		0.1			ns
$\mathrm{T}_{\mathrm{H} \text { _PB }}$	Hold Time for LRCK_P and SDIN_P	Master Mode	0.55			ns
TRM_PD	Propagation Delay for SDOUT_R/M, LRCK_R		2.6		5.9	ns
T ${ }_{\text {PB_PD }}$	Propagation Delay for LRCK_P		2.2		4.8	ns

Digital Serial Audio Interface Slave Mode Timing Diagram

Digital Serial Audio Interface Master Mode Timing Diagram

I2C Host Port Timing

Symbol	Parameters	Test Condition	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {BUF }}$	Bus free time between STOP and START		1.3			$\mu \mathrm{s}$
tSU;STA	Setup time, (repeated) START condition		0.6			$\mu \mathrm{s}$
${ }^{\text {t HD }}$; STA	Hold time, (repeated) START condition		0.6			$\mu \mathrm{s}$
tsu;STO	Setup time, STOP condition		0.6			ns
tsu;DAT	Data setup time		100			ns
$\mathrm{t}_{\mathrm{HD} ; \mathrm{DAT}}$	Data hold time		0		0.9	$\mu \mathrm{s}$
tr	Rise time, $\mathrm{VC1}(\mathrm{SDA})$ and $\mathrm{VC0}(\mathrm{SCL})$ signal	Specified by design			250	ns
tf	Fall time, VC1(SDA) and VC0(SCL) signal	Specified by design			250	ns
C_{b}	Capacitive load for each bus line	Specified by design			400	pF
$\mathrm{f}_{\mathrm{i} 2 \mathrm{c}}$	I2C clock frequency				400	kHz

Digital Serial Audio Interface Master Mode Timing Diagram

Packaging Mechanical (LQFP)

NOTE : FIGURE 1 SECTION A-A

1. ALL DIMENSION $I N ~ M M$
2. REFER JEDEC MS-026

PACKAGE OUTLINE DIMENSIONS DO NOT INCLUDE MOLD FLASH AND METAL BURR
. THE OPTIONAL EXPOSED PAD IS COINCIDENT WITH THE BOTTOM SIDE OF THE PACKAGE AND NOT ALLOWED TO PROTRUDE BEYOND THAT SURFACE

	DATE: 04/22/08	
	DESCRIPTION: 128-pin Low Profile Quad Flat Package (LQFP)	
	PACKAGE CODE: FD128	
DOCUMENT CONTROL \#: PD-2072	REVISION: A	

07-0353

Note: For latest package info, please check: http://www.pericom.com/support/packaging

Ordering Information

Ordering Code	Package Code	Package Description
PI7VD9008ABHFDE	FD128	128-pin Low Profile Quad Flat Package (LQFP)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- Adding "E" = Pb-free, "I"=Industrial, "FP"=Package code, "X" suffix = Tape/Reel

Related Product Information

Part Number	Product Description
PI7VD9004ABH	AEQ 960H 4-channel Video Decoder with 10-bit Audio ADC(128 pins)
PI7VD9401	BT656 to PCI Express Video/Audio Media Bridge

Reference Document Information

Document	Description
Application Note	Reference schematic and board layout application notes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PERICOM PRODUCT. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN PERICOM'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Pericom may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Pericom reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specification. Current characterized errata are available on request.

Contact your local Pericom Sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright 2013 Pericom Corporation. All rights reserved. Pericom and the Pericom logo are trademarks of Pericom Corporation in the U.S. and other countries.

