

RADIATION HARDENED POWER MOSFET THRU-HOLE (Low-Ohmic TO-254AA)

IRHMS57064 JANSR2N7470T1 60V, N-CHANNEL

REF: MIL-PRF-19500/698

75 TECHNOLOGY

Product Summary

	•			
Part Number	Radiation Level	RDS(on)	ΙD	QPL Part Number
IRHMS57064	100K Rads (Si)	0.0076Ω	45A*	JANSR2N7470T1
IRHMS53064	300K Rads (Si)	0.0076Ω	45A*	JANSF2N7470T1
IRHMS54064	500K Rads (Si)	0.0076Ω	45A*	JANSG2N7470T1
IRHMS58064	1000K Rads (Si)	Ω 0800.0	45A*	JANSH2N7470T1

International Rectifier's R5TM technology provides high performance power MOSFETs for space applications. These devices have been characterized for Single Event Effects (SEE) with useful performance up to an LET of 80 (MeV/(mg/cm²)). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Features:

- Low RDS(on)
- Fast Switching
- Single Event Effect (SEE) Hardened
- Low Total Gate Charge
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Ceramic Eyelets
- Electrically Isolated
- Light Weight
- ESD Rating: Class 3B per MIL-STD-750, Method 1020

Absolute Maximum Ratings

Pre-Irradiation

	Parameter		Units
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	45*	
ID @ VGS = 12V, TC = 100°C	Continuous Drain Current	45*	Α
IDM	Pulsed Drain Current ①	180	
P _D @ T _C = 25°C	Max. Power Dissipation	208	W
	Linear Derating Factor	1.67	W/°C
V _{GS}	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	824	mJ
IAR	Avalanche Current ①	45	Α
EAR	Repetitive Avalanche Energy ①	20	mJ
dv/dt	Peak Diode Recovery dv/dt ③	4.3	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in. /1.6 mm from case for 10s)	
	Weight	9.3 (Typical)	g

^{*} Current is limited by package

For footnotes refer to the last page www.irf.com

1

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	60	_	_	V	VGS = 0V, ID = 1.0mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	0.067	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source On-State	_	_	0.0076	Ω	VGS = 12V, ID = 45A ④
, ,	Resistance					
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 1.0 \text{mA}$
9fs	Forward Transconductance	42	_	_	S	V _{DS} = 15V, I _{DS} = 45A ④
IDSS	Zero Gate Voltage Drain Current	_	_	10	μΑ	VDS = 48V ,VGS = 0V
		_	_	25	μΑ	V _{DS} = 48V,
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	ΠA	VGS = -20V
Qg	Total Gate Charge	_	_	150		VGS =12V, ID = 45A
Qgs	Gate-to-Source Charge	_	_	75	nC	VDS = 30V
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	_	50		
^t d(on)	Turn-On Delay Time	_	_	35		V _{DD} = 30V, I _D = 45A
tr	Rise Time	_	_	125	ns	V_{GS} =12V, R_{G} = 2.35 Ω
^t d(off)	Turn-Off Delay Time	_	_	60	115	
tf	FallTime	_	_	50		
LS+LD	Total Inductance	_	6.8	_	nΗ	Measured from Drain lead (6mm /0.25in.
						from package) to Source lead (6mm /0.25in
						from package) with Source wires internally
						bonded from Source Pin to Drain Pad
C _{iss}	Input Capacitance		5640	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	2410	_	pF	f = 100KHz
Crss	Reverse Transfer Capacitance	_	105	_		
Rg	Internal Gate Resistance	_	1.04	_	Ω	f = 1.0MHz, open drain

Source-Drain Diode Ratings and Characteristics

	Parameter		Тур	Max	Units	Test Conditions	
Is	Continuous Source Current (Body Diode)		_	45*	Α		
ISM	Pulse Source Current (Body Diode) ①		_	180	^`		
VSD	Diode Forward Voltage		_	1.2	V	$T_j = 25$ °C, $I_S = 45A$, $V_{GS} = 0V$ ④	
t _{rr}	Reverse Recovery Time		_	170	ns	T_j = 25°C, I_F = 45A, di/dt ≤ 100A/μs	
QRR	Reverse Recovery Charge	_	_	760	nC	V _{DD} ≤ 50V ④	
ton	Forward Turn-On Time Intrinsic turn-on	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

^{*} Current is limited by package

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_		0.60		
RthCS	Case-to-Sink	_	0.21	_	°C/W	
R _{th} JA	Junction-to-Ambient	_	_	48	f	Typical socket mount

Note: Corresponding Spice and Saber models are available on International Rectifier Web site.

For footnotes refer to the last page

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation © ©

	Parameter	Up to 500K Rads(Si)1 1000I		1000K F	1000K Rads (Si)2		Test Conditions
		Min	Max	Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	60	_	60	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	1.5	4.0		$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$
IGSS	Gate-to-Source Leakage Forward	_	100	_	100	nA	V _{GS} = 20V
IGSS	Gate-to-Source Leakage Reverse	_	-100	_	-100		$V_{GS} = -20 \text{ V}$
IDSS	Zero Gate Voltage Drain Current	_	10	_	25	μΑ	$V_{DS} = 48V, V_{GS} = 0V$
R _{DS(on)}	Static Drain-to-Source 4	_	0.0061	_	0.0071	Ω	Vgs =12V, ID = 45A
	On-State Resistance (TO-3)						
R _{DS(on)}	Static Drain-to-Source On-State @	_	0.0076	_	0.0080	Ω	Vgs = 12V, I _D = 45A
	Resistance (Low-Ohmic TO-254)						
V _{SD}	Diode Forward Voltage 4	_	1.2	_	1.2	V	$V_{GS} = 0V, I_{S} = 45A$

^{1.} Part numbers IRHMS57064 (JANSR2N7470T1), IRHMS53064 (JANSF2N7470T1) and IRHMS54064 (JANSG2N7470T1)

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Typical Single Event Effect Safe Operating Area

LET	Energy	Range	VDS (V)						
(MeV/(mg/cm ²))	(MeV)	(µm)	@VGS = 0V	@VGS = -5V	@VGS = -10V	@VGS = -15V	@VGS = -20V		
38 ± 5%	300 ± 7.5%	38 ± 7.5%	60	60	60	60	30		
61 ± 5%	330 ± 7.5%	31 ± 10%	46	46	35	25	15		
84 ± 5%	350 ± 10%	28 ± 7.5%	35	30	25	20	14		

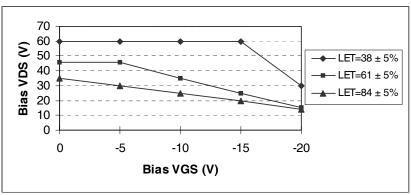


Fig a. Typical Single Event Effect, Safe Operating Area

For footnotes refer to the last page www.irf.com

^{2.} Part number IRHMS58064 (JANSH2N7470T1)

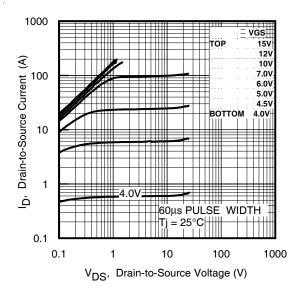


Fig 1. Typical Output Characteristics

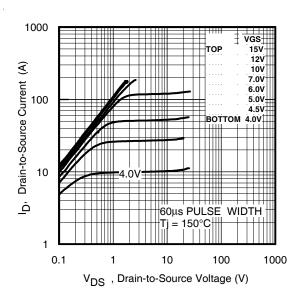


Fig 2. Typical Output Characteristics

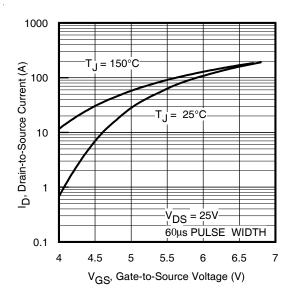
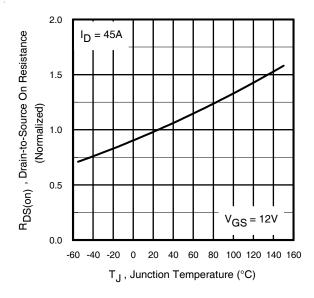
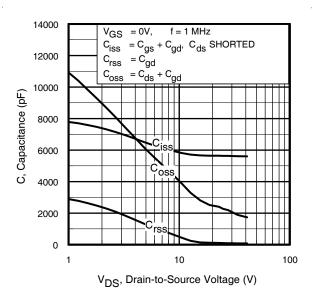
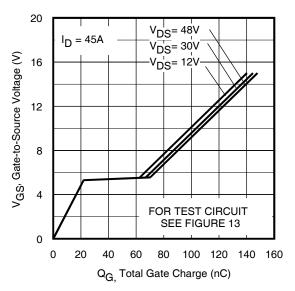



Fig 3. Typical Transfer Characteristics


Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com


4

Pre-Irradiation

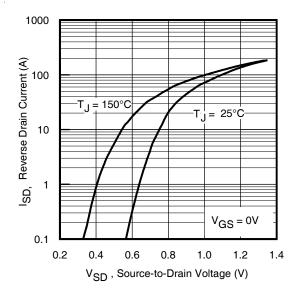

IRHMS57064, JANSR2N7470T1

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

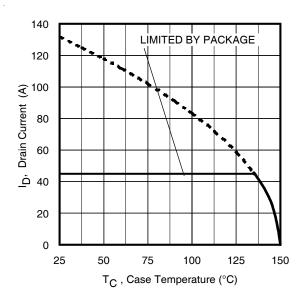



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

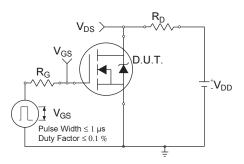


Fig 10a. Switching Time Test Circuit

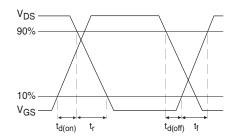


Fig 10b. Switching Time Waveforms

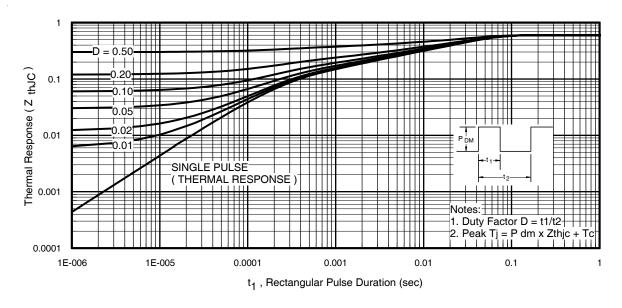


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

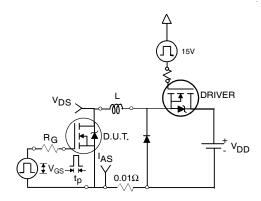


Fig 12a. Unclamped Inductive Test Circuit

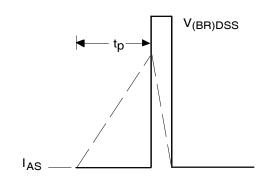


Fig 12b. Unclamped Inductive Waveforms

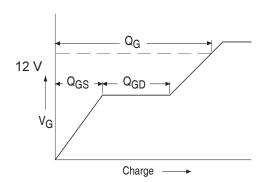
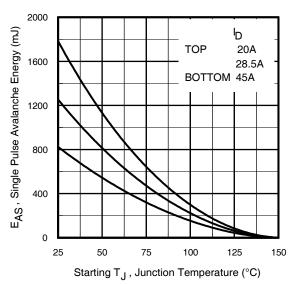



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

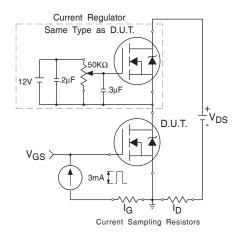
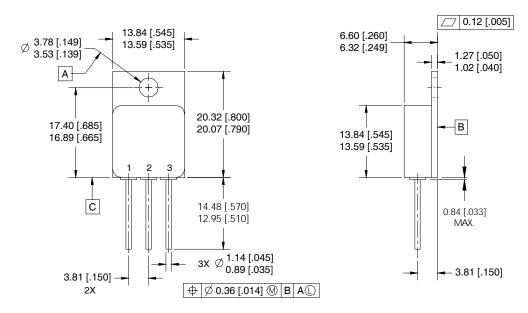


Fig 13b. Gate Charge Test Circuit

IRHMS57064, JANSR2N7470T1


Pre-Irradiation

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② $V_{DD} = 25V$, starting $T_{J} = 25$ °C, L= 0.81 mH Peak I_L = 45A, V_{GS} = 12V
- $\label{eq:local_special} \begin{tabular}{ll} \begin{tabular}{ll$

- 4 Pulse width \leq 300 μ s; Duty Cycle \leq 2%
- ⑤ Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- ® Total Dose Irradiation with V_{DS} Bias. 48 volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — Low-Ohmic TO-254AA

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. CONTROLLING DIMENSION: INCH.
- 4. CONFORMS TO JEDEC OUTLINE TO-254AA.

PIN ASSIGNMENTS

- 1 = DRAIN
- 2 = SOURCE
- 3 = GATE

CAUTION

BERYLLIA WARNING PER MIL-PRF-19500

Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

AN INFINEON TECHNOLOGIES COMPANY

IR WORLD HEADQUARTERS: 101 N Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 11/2015