

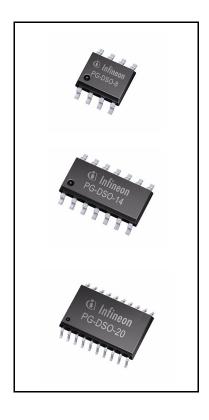
5 V low drop fixed voltage regulator

Features

- Output voltage tolerance ≤ ±2%
- 200 mA output current capability
- · Low-drop voltage
- · Very low standby current consumption
- Overtemperature protection
- Reverse polarity protection
- · Short-circuit proof
- Adjustable reset threshold
- Watchdog
- Wide temperature range
- Suitable for use in automotive electronics
- Green Product (RoHS compliant)

Potential applications

General automotive applications.


Product validation

Qualified for automotive applications. Product validation according to AEC-Q100/101.

Description

The OPTIREG™ Linear TLE4263 is a 5 V low drop voltage regulator in a SMD package PG-DSO-14, PG-DSO-20, or PG-DSO-8. The maximum input voltage is 45 V. The maximum output current is 200 mA. The IC is short-circuit proof and incorporates temperature protection which turns off the IC at overtemperature.

1

5 V low drop fixed voltage regulator

The IC regulates an input voltage V_1 in the range between 6 V and 45 V to an output voltage to $V_{\rm Q,nom}$ = 5.0 V. A reset signal is generated for an output voltage of $V_{\rm Q,rt}$ < 4.5 V. This voltage threshold can be decreased to 3.5 V by external connection of a voltage divider. The reset delay can be set externally by a capacitor. The integrated watchdog logic supervises the connected microcontroller. The IC can be switched off via the inhibit input, which causes the current consumption to drop from 900 μ A to typical 0 μ A.

Туре	Package	Marking
TLE4263GS	PG-DSO-8	TLE4263
TLE4263GM	PG-DSO-14	TLE4263
TLE4263G	PG-DSO-20	TLE4263

5 V low drop fixed voltage regulator

Table of contents

	Features
	Potential applications
	Product validation
	Description
	Table of contents
1	Block diagram
2	Pin configuration
3 3.1	General product characteristics
4 4.1 4.2 4.3	Functional description8Choosing external components8Electrical characteristics8Typical performance characteristics10
5 5.1 5.2 5.3	Application information13Reset timing14Reset switching threshold15Watchdog timing15
6	Package information
7	Revision history

Block diagram

1 Block diagram

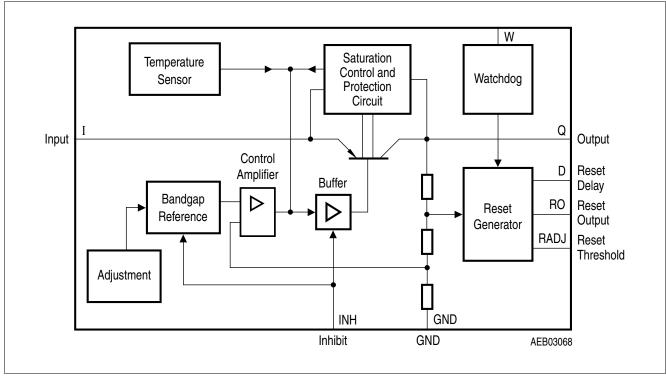
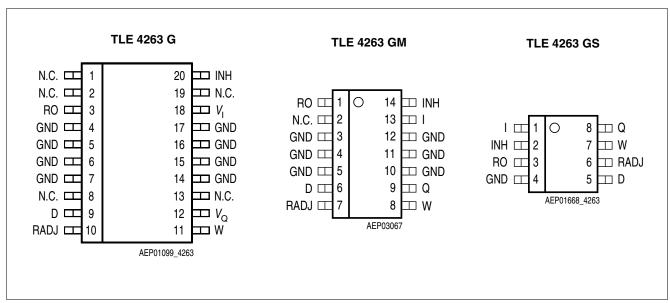



Figure 1 Block diagram

Pin configuration

2 Pin configuration

Figure 2 Pin configuration (top view)

Table 1 Pin definitions and functions

Pin PG-DSO-14	Pin PG-DSO-20	Pin PG-DSO-8	Symbol	Function		
1	3	3	RO	Reset output; open-collector output connected to the output via a resistor of $30 \text{ k}\Omega$.		
2	1, 2, 19, 13	_	N.C.	Not connected.		
3 - 5, 10 - 12	4-7, 14-17	4	GND	Ground.		
6	9	5	D	Reset delay; connected to ground with a capacitor.		
7	10	6	RADJ	Reset threshold; to adjust the switching threshold connect a voltage divider (output to GND) to the pin. If this input is connected to GND, reset is triggered at an output voltage of 4.5 V.		
8	11	7	W	Watchdog; rising edge triggered input for monitoring a microcontroller.		
9	12	8	Q	5 V output voltage; block to ground with capacitor, $C \ge 22 \mu F$, ESR $\le 3 \Omega$ at 10 kHz.		
13	18	1	1	Input voltage; block to ground directly at the IC with a ceramic capacitor.		
14	20	2	INH	Inhibit; TTL-compatible, low-active input.		

5 V low drop fixed voltage regulator

General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

 Table 2
 Absolute maximum ratings

Parameter	Symbol		Value	s	Unit	Note or Test Condition
		Min.	Тур.	Max.		
Input I	,	<u>'</u>	•	<u>'</u>	1	
Input voltage	V_{I}	-42	_	45	V	_
Input current	I_1	_	_	_	_	Internally limited
Reset output RO						
Voltage	V_{R}	-0.3	_	42	V	-
Current	I_{R}	_	_	_	_	Internally limited
Reset threshold RADJ						
Voltage	V_{RADJ}	-0.3	_	6	V	-
Reset delay D	·			·	·	
Voltage	V_{D}	-0.3	_	42	V	_
Current	I_{D}	_	_	_	_	Internally limited
Output Q						
Voltage	V_{Q}	-0.3	_	7	V	_
Current	I_{Q}	_	_	_	_	Internally limited
Inhibit INH						
Voltage	V_{INH}	-42	_	45	V	_
Watchdog W						
Voltage	V_{W}	-0.3	_	6	V	_
Ground GND			ll .	"	11.	
Current	I_{GND}	-0.5	_	_	Α	_
Temperature		1		,	II.	
Junction temperature	$T_{\rm j}$	_	_	150	°C	-
Storage temperature	$T_{\rm stg}$	-50	_	150	°C	-
Operating range						
Input voltage	V _I	_	_	45	V	_
Junction temperature	T _i	-40	_	150	°C	_

5 V low drop fixed voltage regulator

General product characteristics

 Table 2
 Absolute maximum ratings (cont'd)

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Thermal resistance						
Junction-ambient	R_{thj-a}	_	_	112	K/W	PG-DSO-14 ¹⁾ ;
						Footprint only
		_	_	92	K/W	PG-DSO-14 ¹⁾ ;
						300 mm ² Heat sink
		_	_	185	K/W	PG-DSO-8 ¹⁾ ;
						Footprint only
		_	_	164	K/W	PG-DSO-8 ¹⁾ ;
						300 mm ² Heat sink
		_	_	84	K/W	PG-DSO-20 ¹⁾ ;
						Footprint only
		_	_	66	K/W	PG-DSO-20 ¹⁾ ;
						300 mm ² Heat sink
Junction-pin	R_{thj-p}	_	_	32	K/W	PG-DSO-14 ²⁾

¹⁾ Worst case; package mounted on PCB 80 × 80 × 1.5 mm³; 35 μm Cu; 5 μm Sn; zero airflow.

²⁾ Measured to pin 4.

5 V low drop fixed voltage regulator

infineon

Functional description

4 Functional description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the externally scaled down output voltage at the reset threshold input drops below 1.35 V, the external reset delay capacitor is discharged by the reset generator. When the voltage of the capacitor reaches the lower threshold $V_{\rm DRL}$, a reset signal occurs at the reset output and is held until the upper threshold $V_{\rm DU}$ is exceeded. If the reset threshold input is connected to GND, reset is triggered at an output voltage of typ. 4.65 V. A connected microcontroller will be monitored through the watchdog logic. In case of missing pulses at pin W, the reset output is set to "low". The pulse sequence time can be set in a wide range with the reset delay capacitor. The IC can be switched at the TTL-compatible, low-active inhibit input. The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

4.1 Choosing external components

The input capacitor C_1 is necessary for compensation of line influences. Using a resistor of approx. 1 Ω in series with C_1 , the oscillating circuit consisting of input inductivity and input capacitance can be damped. The output capacitor is necessary for the stability of the regulating circuit. Stability is ensured at values $C_Q \ge 22 \ \mu F$ and an ESR of $\le 3 \ \Omega$ within the operating temperature range. For small tolerances of the reset delay the spread of the capacitance of the delay capacitor and its temperature coefficient should be noted.

4.2 Electrical characteristics

Table 3 Electrical characteristics

 $V_{\rm I}$ = 13.5 V; -40°C < $T_{\rm I}$ < 125°C; $V_{\rm INH}$ > 3.5 V; (unless specified otherwise)

Parameter	Symbol		Values			Note or Test Condition
		Min.	Тур.	Max.		
Normal Operation	•	•	·			
Output voltage	$V_{\rm Q}$	4.90	5.00	5.10	V	5 mA $\leq I_Q \leq$ 150 mA; 6 V $\leq V_I \leq$ 28 V
Output voltage	V_{Q}	4.90	5.00	5.10	V	6 V $\leq V_{l} \leq$ 32 V; $I_{Q} = 100 \text{ mA};$ $T_{j} = 100^{\circ}\text{C}$
Output current limitation	$I_{Q,max}$	201	250	400	mA	V _Q = 4.8V
Current consumption; $I_q = I_1 - I_0$	Iq	-	0	50	μΑ	V _{INH} = 0
4 . 4	I_{q}	_	900	1300	μΑ	$I_{o} = 0 \text{ mA}$
	I_{q}	_	10	18	mA	$I_{Q} = 150 \text{ mA}$
	I_{q}	_	15	23	mA	$I_{Q} = 150 \text{ mA}; V_{I} = 4.5 \text{ V}$
Drop voltage	$V_{\rm dr}$	_	0.35	0.50	V	$I_{\rm Q} = 150 {\rm mA}^{1)}$
Load regulation	$\Delta V_{\rm Q,lo}$	_	-	25	mV	$I_{\rm Q}$ = 5 mA to 150 mA
Line regulation	$\Delta V_{\mathrm{Q.li}}$	-	3	25	mV	$V_1 = 6 \text{ V to } 28 \text{ V};$ $I_Q = 150 \text{ mA}$

5 V low drop fixed voltage regulator

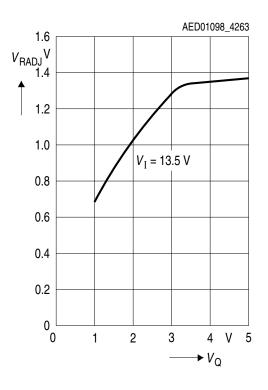
Functional description

Table 3 Electrical characteristics (cont'd)

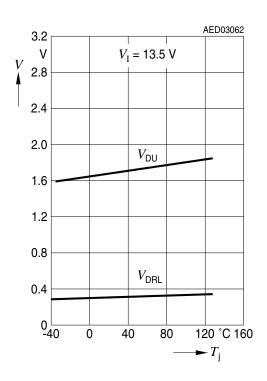
 $V_{\rm I}$ = 13.5 V; -40°C < $T_{\rm j}$ < 125°C; $V_{\rm INH}$ > 3.5 V; (unless specified otherwise)

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Power supply ripple	PSRR	_	54	_	dB	f _r = 100 Hz;
rejection						$V_r = 0.5 \text{ Vpp}$
Reset Generator						
Switching threshold	$V_{\mathrm{Q,rt}}$	4.5	4.65	4.8	٧	$V_{RADJ} = 0 V$
Reset adjust threshold	$V_{RADJ,th}$	1.26	1.35	1.44	٧	V _Q > 3.5 V
Reset low voltage	$V_{\rm RO,l}$	_	0.10	0.40	٧	I _{RO} = 1 mA
Saturation voltage	$V_{\rm D,sat}$	_	50	100	mV	$V_{\rm Q} < V_{\rm R,th}$
Upper timing threshold	V_{DU}	1.45	1.70	2.05	٧	_
Lower reset timing	V_{DRL}	0.20	0.35	0.55	V	-
threshold						
Charge current	$I_{\rm D,ch}$	40	60	85	μΑ	_
Reset delay time	$t_{\sf rd}$	1.3	2.8	4.1	ms	$C_{\rm D} = 100 \rm nF$
Reset reaction time	$t_{\rm rr}$	0.5	1.2	4	μs	$C_{\rm D} = 100 \rm nF$
Watchdog						
Discharge current	I _{D,wd}	4.40	6.25	9.10	μΑ	V _D = 1.0 V
Upper timing threshold	V_{DU}	1.45	1.70	2.05	٧	-
Lower timing threshold	V_{DWL}	0.20	0.35	0.55	٧	-
Watchdog trigger time	$T_{\mathrm{WI,tr}}$	16	22.5	27	ms	C _D = 100 nF
Inhibit	·			•		
Switching voltage	$V_{\rm INH,ON}$	3.6	-	-	V	IC turned on
Turn-OFF voltage	V _{INH,OFF}	_	-	0.8	٧	IC turned off
Input current	I _{INH}	5	10	25	μΑ	V _{INH} = 5 V

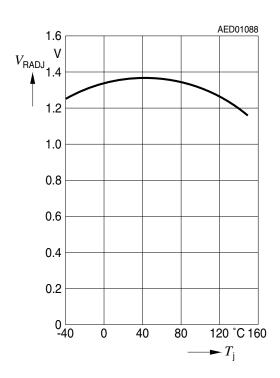
¹⁾ Drop voltage = $V_i - V_Q$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 6 V input).

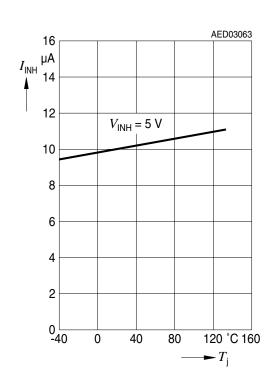

Note: The reset output is "low" within the range $V_Q = 1 V \text{ to } V_{Q,rt}$

infineon

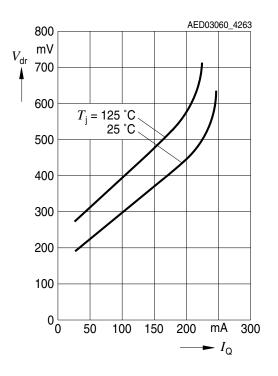

Functional description

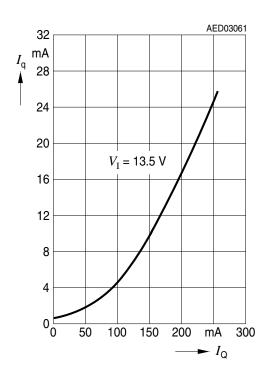
4.3 Typical performance characteristics


Reset switching threshold versus output voltage

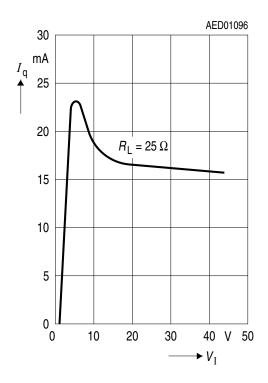

Timing threshold voltage $V_{\rm DU}$ and $V_{\rm DRL}$ versus junction temperature

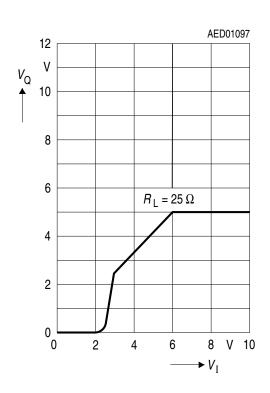
Reset switching threshold versus junction temperature


Current consumption of inhibit versus junction temperature


5 V low drop fixed voltage regulator

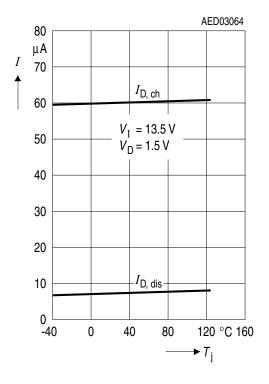
Functional description


Drop voltage versus output current

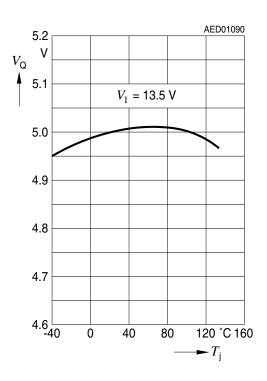

Current consumption versus output current

Current consumption versus input voltage

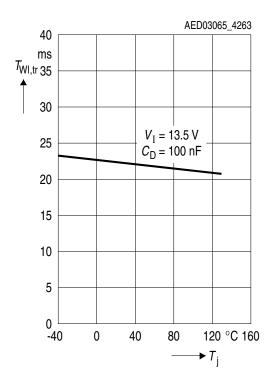
Output voltage versus input voltage

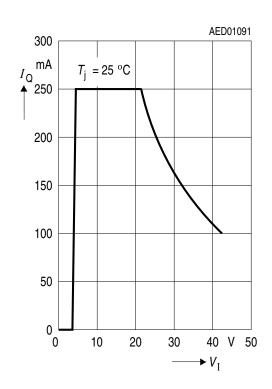


5 V low drop fixed voltage regulator


infineon

Functional description


Charge current and discharge current versus junction temperature


Output voltage versus junction temperature

Pulse time versus junction temperature

Output current versus input voltage

Application information

5 Application information

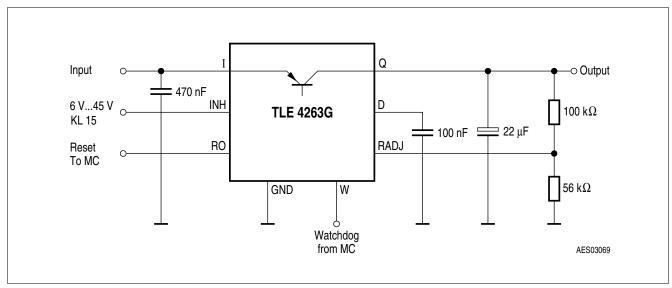


Figure 3 Application circuit

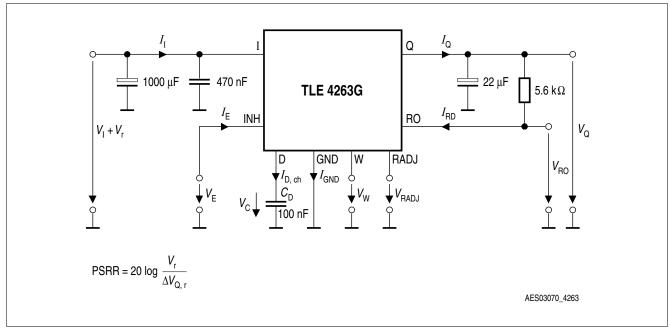


Figure 4 Test circuit

5 V low drop fixed voltage regulator

Application information

5.1 Reset timing

The power-on reset delay time is defined by the charging time of an external capacitor C_D which can be calculated as follows:

$$C_{\rm D} = (t_{\rm rd} \times I_{\rm D,ch})/\Delta V \tag{5.1}$$

Definitions:

- C_D = delay capacitor
- t_{rd} = reset delay time
- $I_{D,ch}$ = charge current, typical 60 μ A
- $\Delta V = V_{DU}$, typical 1.70 V
- V_{DU} = upper delay switching threshold at C_D for reset delay time

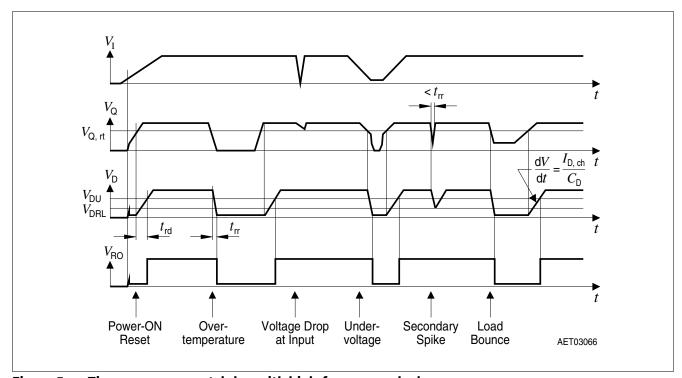


Figure 5 Time response, watchdog with high-frequency clock

5 V low drop fixed voltage regulator

Application information

5.2 Reset switching threshold

The present default value is typ. $4.65\,\text{V}$. When using the TLE4263 the reset threshold can be set to $3.5\,\text{V} < V_{\text{Q,rt}} < 4.6\,\text{V}$ by connecting an external voltage divider to pin RADJ. The calculation can be easily done since the reset adjust input current can be neglected. If this feature is not needed, the pin must be connected to GND.

$$V_{\text{O,rt}} = (1 + R_1/R_2) \times V_{\text{RADJ,th}}$$
 (5.2)

Definitions:

- $V_{O,rt}$ = reset threshold
- V_{RADJ,th} = comparator reference voltage, typical 1.35 V

5.3 Watchdog timing

The frequency of the watchdog pulses must be higher than the minimum pulse sequence which is set by the external reset delay capacitor C_D . Calculation can be done according to the formula given in **Figure 6**.

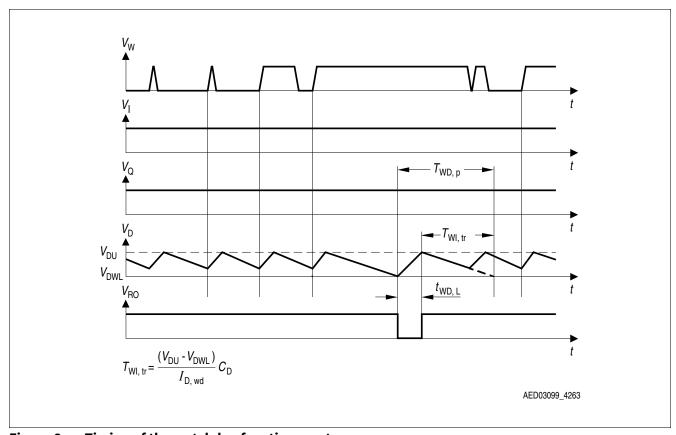


Figure 6 Timing of the watchdog function reset

Package information

6 Package information

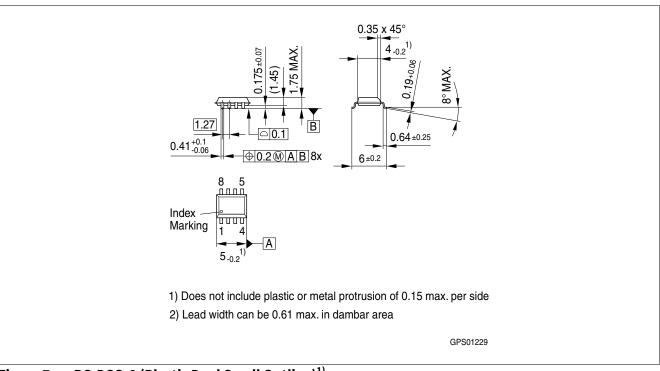


Figure 7 PG-DSO-8 (Plastic Dual Small Outline)¹⁾

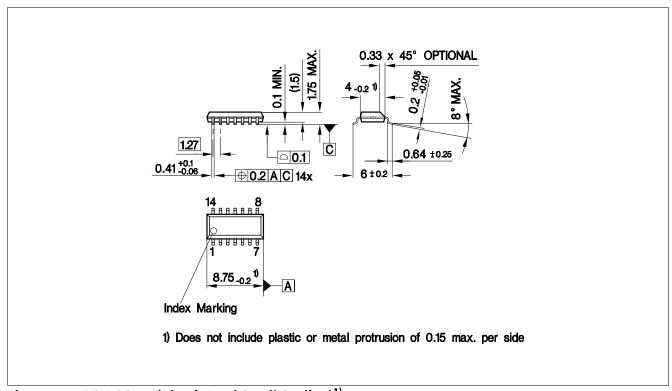


Figure 8 PG-DSO-14 (Plastic Dual Small Outline)¹⁾

¹⁾ Dimension in mm

5 V low drop fixed voltage regulator

Package information

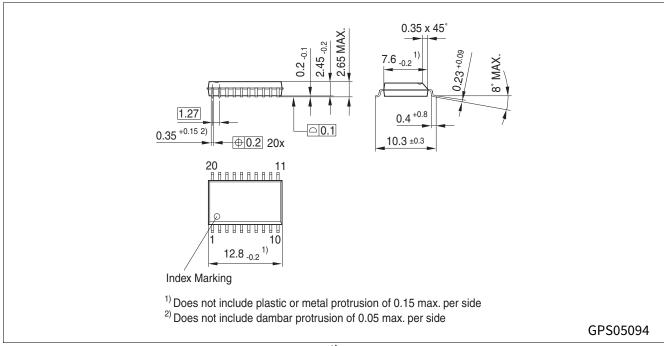


Figure 9 PG-DSO-20 (Plastic Dual Small Outline)¹⁾

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

5 V low drop fixed voltage regulator

Revision history

7 Revision history

Revision	Date	Changes
3.0	2018-10-04	Updated layout and structure Page 8: output current changed to output current limitation, add note V_Q = 4.8V Drop voltage: added footnote Updated package drawing "PG-DSO-14" Editorial changes
2.9	2013-11-25	Package version changed: - PG-DSO-20-35 to PG-DSO-20 Package naming harmonized according to Infineon standards: - PG-DSO-8-16 to PG-DSO-8 - PG-DSO-14-30 to PG-DSO-14
2.8	2007-03-20	Initial version of RoHS-compliant derivate of TLE4263 Page 1: AEC certified statement added Page 1 and Page 16 ff: RoHS compliance statement and Green product feature added Page 1 and Page 16 ff: Package changed to RoHS compliant version Legal Disclaimer updated

Trademarks

Edition 2018-10-04 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference Z8F52231383

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.