

Features

- N channel
- Logic level
- Enhancement mode
- Temperature sensor with thyristor characteristic
 The drain pin is electrically shorted to the tab

Pin	1	2	3
	G	D	S

Туре	V_{DS}	ID	R _{DS(on)}	Package	Ordering Code
BTS 131	50 V	25 A	0.06 Ω	TO-220AB	C67078-A5002-A4

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain-source voltage	V _{DS}	50	V
Drain-gate voltage, $R_{\rm GS}$ = 20 k Ω	$V_{\rm DGR}$	50	
Gate-source voltage	V _{GS}	± 10	
Continuous drain current, $T_{\rm C}$ = 25 °C	ID	25	Α
ISO drain current $T_{\rm C}$ = 85 °C, $V_{\rm GS}$ = 10 V, $V_{\rm DS}$ = 0.5 V	I _{D-ISO}	6.5	
Pulsed drain current, $T_{\rm C} = 25 ^{\circ}{\rm C}$	I _{D puls}	100	
Short circuit current, $T_j = -55 \dots + 150 \text{ °C}$	I _{SC}	80	
Short circuit dissipation, $T_j = -55 \dots + 150 \text{ °C}$	P _{SCmax}	1200	W
Power dissipation	P _{tot}	75	
Operating and storage temperature range	$T_{\rm j}, T_{\rm stg}$	- 55 + 150	°C
DIN humidity category, DIN 40 040	-	E	-
IEC climatic category, DIN IEC 68-1	-	55/150/56	
Thermal resistance			K/W
Chip-case	R _{th JC}	≤ 1.67	
Chip-ambient	R _{th JA}	≤ 75	

Electrical Characteristics

at $T_{\rm j}$ = 25 °C, unless otherwise specified.

Parameter	Symbol		Values		Unit
		min.	typ.	max.	

Static Characteristics

Drain-source breakdow $V_{GS} = 0, I_D = 0.25 \text{ mA}$	wn voltage	$V_{(BR)DSS}$	50	_	_	V
Gate threshold voltage $V_{\text{GS}} = V_{\text{DS}}, I_{\text{D}} = 1 \text{ mA}$)	$V_{ m GS(th)}$	1.5	2.0	2.5	
Zero gate voltage drai $V_{GS} = 0 \text{ V}, V_{DS} = 50 \text{ V}$	n current	I _{DSS}				μΑ
	<i>T</i> _j = 25 °C <i>T</i> _j = 125 °C			1 100	10 300	
Gate-source leakage of $V_{GS} = 20 \text{ V}, V_{DS} = 0$	current	I _{GSS}				
	$T_{\rm j}$ = 25 °C $T_{\rm j}$ = 150 °C			10 2	100 4	nA μA
$\overline{ \text{Drain-source on-state} } \\ V_{\text{GS}} = 4.5 \text{ V}, I_{\text{D}} = 12 \text{ A} \\ \end{array}$	resistance	R _{DS(on)}	_	0.05	0.06	Ω

Dynamic Characteristics

Forward transconductance	g_{fs}				S
$V_{\text{DS}} \ge 2 \times I_{\text{D}} \times R_{\text{DS(on)max}}, I_{\text{D}} = 12 \text{ A}$		12	17	22	
Input capacitance	$C_{\rm iss}$				pF
$V_{\rm GS}$ = 0, $V_{\rm DS}$ = 25 V, f = 1 MHz		800	1050	1400	
Output capacitance	$C_{\rm oss}$				
$V_{\rm GS} = 0, \ V_{\rm DS} = 25 \ V, f = 1 \ MHz$		-	500	750	
Reverse transfer capacitance	$C_{\rm rss}$				
$V_{\rm GS} = 0, \ V_{\rm DS} = 25 \ V, f = 1 \ MHz$		-	200	300	
Turn-on time t_{on} , $(t_{on} = t_{d(on)} + t_r)$	t _{d(on)}	-	25	40	ns
$V_{\rm CC} = 30 \text{ V}, V_{\rm GS} = 5 \text{ V}, I_{\rm D} = 3 \text{ A}, R_{\rm GS} = 50 \Omega$	<i>t</i> r	-	60	90	
Turn-off time t_{off} , $(t_{off} = t_{d(off)} + t_{f})$	t _{d(off)}	_	100	130	
$V_{\rm CC} = 30 \text{ V}, V_{\rm GS} = 5 \text{ V}, I_{\rm D} = 3 \text{ A}, R_{\rm GS} = 50 \Omega$	t _f	-	75	95	

Electrical Characteristics (cont'd)

at $T_{\rm j}$ = 25 °C, unless otherwise specified.

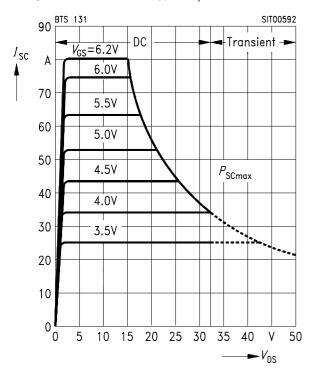
Parameter	Symbol	Values			Unit
		min.	typ.	max.	

Reverse Diode

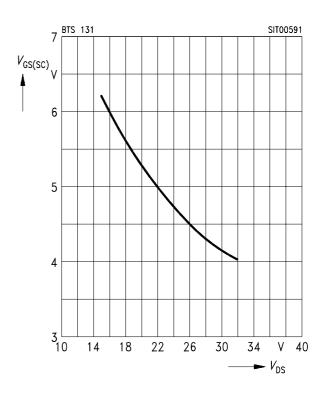
Continuous source current	Is	-	-	25	A
Pulsed source current	I _{SM}	-	-	100	
Diode forward on-voltage $I_{\rm F}$ = 25 A, $V_{\rm GS}$ = 0 V	$V_{\rm SD}$	_	1.3	1.8	V
Reverse recovery time $I_{\rm F} = I_{\rm S}, di_{\rm F}/dt = 100 \text{ A}/\mu \text{s}, V_{\rm R} = 30 \text{ V}$	t _{rr}	_	150	_	ns
Reverse recovery charge $I_{\rm F} = I_{\rm S}$, $di_{\rm F}/dt = 100$ A/µs, $V_{\rm R} = 30$ V	Qrr	_	1.0	_	μC

Temperature Sensor

Forward voltage	$V_{TS(on)}$				V
$I_{\text{TS(on)}} = 5 \text{ mA}, T_{\text{j}} = -55 \dots + 150 \text{ °C}$		-	1.3	1.4	
Sensor override, $t_p \le 100 \ \mu s$ $T_j = -55 \ \dots + 160 \ ^{\circ}C$		_	_	10	
Forward current $T_{\rm j} = -55 \dots + 150 ^{\circ}\text{C}$ Sensor override, $t_{\rm p} \le 100 \mu\text{s}$	I _{TS(on)}	_	_	5	mA
$T_{\rm j} = -55 \dots + 160 ^{\circ}{\rm C}$		-	_	600	
Holding current, $V_{TS(off)} = 5 \text{ V}$, $T_j = 25 \text{ °C}$ $T_j = 150 \text{ °C}$	I _H	0.05 0.05	0.1 0.2	0.5 0.3	
Switching temperature $V_{\text{TS}} = 5 \text{ V}$	T _{TS(on)}	150	_	_	°C
Turn-off time $V_{\text{TS}} = 5 \text{ V}, I_{\text{TS(on)}} = 2 \text{ mA}$	t _{off}	0.5	_	2.5	μs

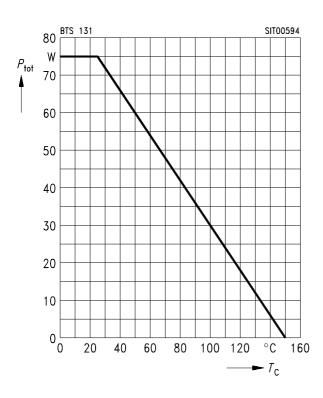

Examples for short-circuit protection

at $T_i = -55 \dots + 150 \text{ °C}$, unless otherwise specified.

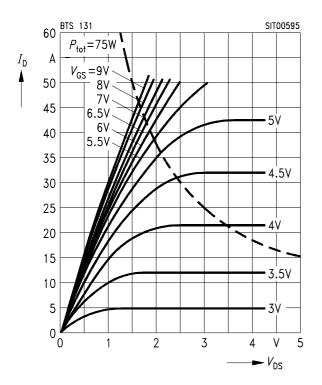

Parameter	Symbol	Examples			Unit
		1	2	-	
Drain-source voltage	$V_{\sf DS}$	15	30	-	V
Gate-source voltage	V _{GS}	6.2	4.1	_	
Short-circuit current	I _{SC}	≤ 80	≤ 37	_	A
Short-circuit dissipation	P _{SC}	1200	1100	_	W
Response time $T_{\rm j}$ = 25 °C, before short circuit	t _{SC(off)}	25	25	_	ms

Short-circuit protection $I_{SC} = f(V_{DS})$ Parameter: V_{GS}

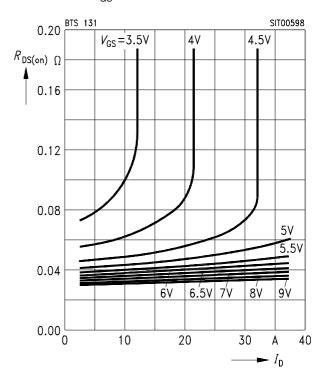
Diagram to determine $I_{\rm SC}$ for $T_{\rm i} = -55... + 150$ °C



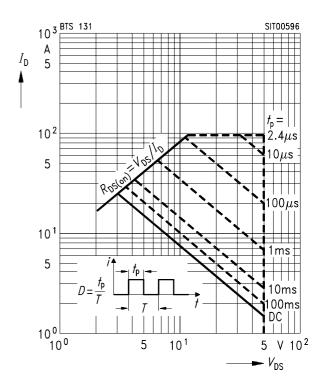
Max. gate voltage $V_{GS(SC)} = f(V_{DS})$ Parameter: $T_j = -55 \dots + 150$ °C

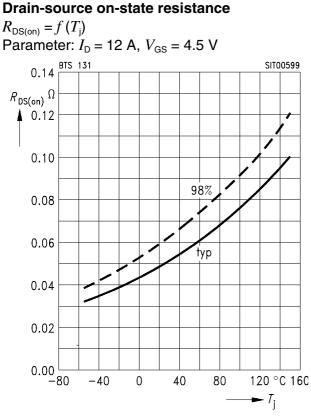


Max. power dissipation $P_{tot} = f(T_c)$

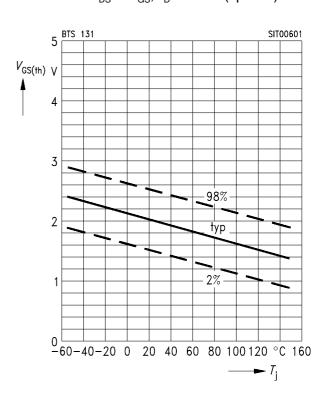


Typical output characteristics $I_{\rm D} = f(V_{\rm DS})$ Parameter: $t_{\rm p} = 80 \ \mu s$

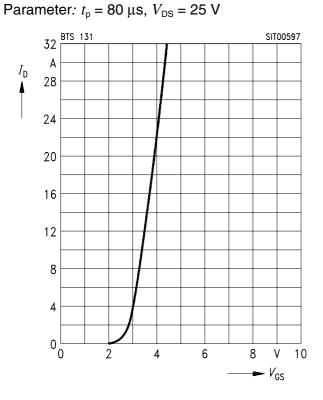



Typ. drain-source on-state resistance $R_{\text{DS(on)}} = f(I_{\text{D}})$

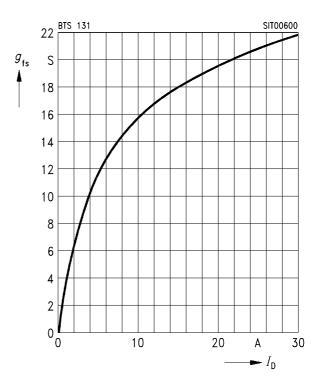
Parameter: V_{GS}



Safe operating area $I_{\rm D} = f(V_{\rm DS})$ Parameter: D = 0.01, $T_{\rm C} = 25 \ ^{\circ}{\rm C}$



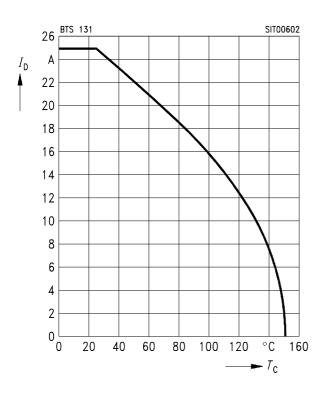
Gate threshold voltage $V_{GS(th)} = f(T_i)$ Parameter: $V_{DS} = V_{GS}$, $I_D = 1$ mA (spread)



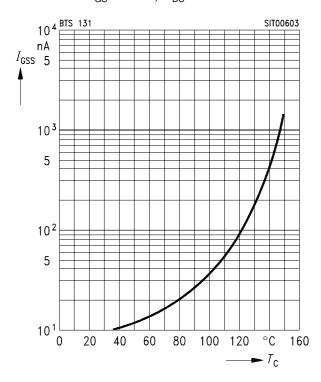
Typ. transfer characteristic

 $I_{\rm D} = f(V_{\rm GS})$

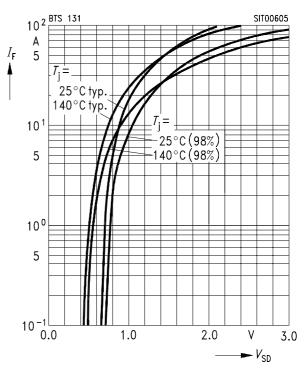
Typ. transconductance $g_{fs} = f(I_D)$ Parameter: $t_p = 80 \ \mu s$, $V_{DS} = 25 \ V$



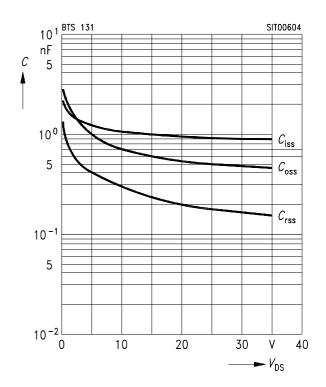
ineon


Continuous drain current $I_{\rm D} = f(T_{\rm C})$

Parameter: $V_{\rm GS} \ge 4.5 \text{ V}$


Typ. gate-source leakage current $I_{GSS} = f(T_{C})$

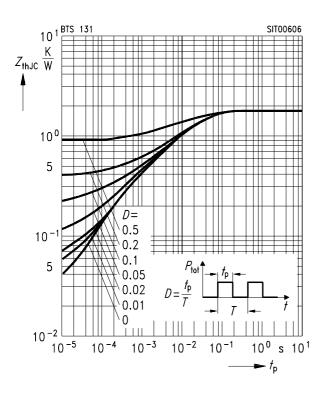
Parameter: $V_{GS} = 10 \text{ V}, V_{DS} = 0$

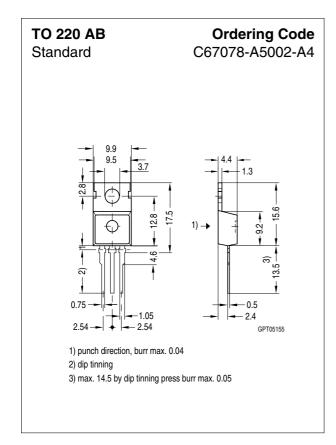


Forward characteristics of reverse diode $I_{\rm F}$ = $f\left(V_{\rm SD}\right)$

Parameter: T_j , $t_p = 80 \ \mu s$ (spread)

Typ. capacitances $C = f(V_{DS})$ Parameter: $V_{GS} = 0, f = 1$ MHz





Transient thermal impedance $Z_{\text{thJC}} = f(t_{\text{p}})$

Parameter: $D = t_p/T$

Edition 04.97

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2000. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.