60 MHz

International Rectifier

IRMCF311

Dual Channel Sensorless Motor Control IC for Appliances

Features

- MCETM (Motion Control Engine) Hardware based computation engine for high efficiency sinusoidal sensorless control of permanent magnet AC motor
- Integrated Power Factor Correction control
- Supports both interior and surface permanent magnet motors
- Built-in hardware peripheral for single shunt current feedback reconstruction
- No external current or voltage sensing operational amplifier required
- Dual channel three/two-phase Space Vector PWM
- Two-channel analog output (PWM)
- Embedded 8-bit high speed microcontroller (8051) for flexible I/O and man-machine control
- JTAG programming port for emulation/debugger
- Two serial communication interface (UART)
- I²C/SPI serial interface
- Watchdog timer with independent analog clock
- Three general purpose timers
- Two special timers: periodic timer, capture timer
- External EEPROM and internal RAM facilitate debugging and code development
- Pin compatible with IRMCK311, OTP-ROM version
- 1.8V/3.3V CMOS

Product Summary

Maximum crystal frequency

maximum crystal frequency	60 IVIHZ
Maximum internal clock (SYSCLK) freque	ency 128 MHz
Sensorless control computation time	11 µsec typ
MCE [™] computation data range	16 bit signed
Program RAM loaded from external EEP	ROM 48K bytes
Data RAM	8K bytes
GateKill latency (digital filtered)	2 µsec
PWM carrier frequency counter	16 bits/ SYSCLK
A/D input channels	6
A/D converter resolution	12 bits
A/D converter conversion speed	2 µsec
8051 instruction execution speed	2 SYSCLK
Analog output (PWM) resolution	8 bits
UART baud rate (typ)	57.6K bps
Number of I/O (max)	14
Package (lead-free)	QFP64

Description

IRMCF311 is a high performance RAM based motion control IC designed primarily for appliance applications. IRMCF311 is designed to achieve low cost and high performance control solutions for advanced inverterized appliance motor control. IRMCF311 contains two computation engines. One is Motion Control Engine (MCETM) for sensorless control of permanent magnet motors; the other is an 8-bit high-speed microcontroller (8051). Both computation engines are integrated into one monolithic chip. The MCETM contains a collection of control elements such as Proportional plus Integral, Vector rotator, Angle estimator, Multiply/Divide, Low loss SVPWM, Single Shunt IFB. The user can program a motion control algorithm by connecting these control elements using a graphic compiler. Key components of the sensorless control algorithms, such as the Angle Estimator, are provided as complete pre-defined control blocks implemented in hardware. A unique analog/digital circuit and algorithm to fully support single shunt current reconstruction is also provided. The 8051 microcontroller performs 2-cycle instruction execution (60MIPS at 120MHz). The MCE and 8051 microcontroller are connected via dual port RAM to process signal monitoring and command input. An advanced graphic compiler for the MCETM is seamlessly integrated into the MATLAB/Simulink environment, while third party JTAG based emulator tools are supported for 8051 developments. IRMCF311 comes with a small QFP64 pin lead-free package.

TABLE OF CONTENTS

1	Ove	erview	4
2	IRN	MCF311 Block Diagram and Main Functions	5
3	Pin	out	7
4	Inp	ut/Output of IRMCF311	8
	4.1	8051 Peripheral Interface Group	
	4.2	Motion Peripheral Interface Group	
	4.3	Analog Interface Group	
	4.4	Power Interface Group	11
	4.5	Test Interface Group	11
5	Ap	plication Connections	12
6	DC	Characteristics	13
	6.1	Absolute Maximum Ratings	13
	6.2	System Clock Frequency and Power Consumption	13
	6.3	Digital I/O DC Characteristics	14
	6.4	PLL and Oscillator DC Characteristics	15
	6.5	Analog I/O DC Characteristics	15
	6.6	Analog I/O DC Characteristics	16
	6.7	Under Voltage Lockout DC Characteristics	17
	6.8	CMEXT and AREF Characteristics	17
7	AC	Characteristics	18
	7.1	PLL AC Characteristics	18
	7.2	Analog to Digital Converter AC Characteristics	
	7.3	Op amp AC Characteristics	20
	7.4	Op Amp AC Characteristics	20
	7.5	SYNC to SVPWM and A/D Conversion AC Timing	21
	7.6	GATEKILL to SVPWM AC Timing	22
	7.7	Interrupt AC Timing	22
	7.8	I ² C AC Timing	23
	7.9	SPI AC Timing	24
	7.9	.1 SPI Write AC timing	24
	7.9	.2 SPI Read AC Timing	25
	7.10	UART AC Timing	26
	7.11	CAPTURE Input AC Timing	27
	7.12	JTAG AC Timing	28
8	I/O	Structure	29
9	Pin	List	32
1() P	ackage Dimensions	35
1 1	l P	Part Marking Information	36

TABLE OF FIGURES

Figure 1.	Typical Application Block Diagram Using IRMCF311	4
Figure 2.	IRMCF311 Internal Block Diagram	
Figure 3.	IRMCF311 Pin Configuration.	
Figure 4.	Input/Output of IRMCF311	8
Figure 5.	Application Connection of IRMCF311	
Figure 6.	Clock Frequency vs. Power Consumption	13
Figure 7	All digital I/O and PWM outputs	29
Figure 8	RESET, GATEKILL I/O	
Figure 9	Analog input	30
Figure 10	Analog operational amplifier output and AREF I/O structure	30
Figure 11	VSS, AVSS and PLLVSS pin structure	
Figure 12	VDD1, VDD2, AVDD and PLLVDD pin structure	31
Figure 13	XTAL0/XTAL1 pins structure	31
	TABLE OF TABLES	
Table 1.	Absolute Maximum Ratings	13
Table 2.	System Clock Frequency	
Table 3.	Digital I/O DC Characteristics	
Table 4.	PLL DC Characteristics	15
Table 5.	Analog I/O DC Characteristics	15
Table 6.	Analog I/O DC Characteristics	16
Table 7.	UVcc DC Characteristics	
Table 8.	CMEXT and AREF DC Characteristics	17
Table 9.	PLL AC Characteristics	
Table 10.	A/D Converter AC Characteristics	
Table 11.	Current Sensing OP Amp AC Characteristics	
Table 12.	Voltage sensing OP Amp AC Characteristics	
Table 13.	SYNC AC Characteristics	
Table 14.	GATEKILL to SVPWM AC Timing	
Table 15.	Interrupt AC Timing	
Table 16.	I ² C AC Timing	
Table 17.	SPI Write AC Timing	
Table 18.	SPI Read AC Timing	
Table 19.	UART AC Timing	
Table 20.	CAPTURE AC Timing	
Table 21.	JTAG AC Timing	
Table 22.	Pin List	34

Overview

IRMCF311 is a new International Rectifier integrated circuit device primarily designed as a one-chip solution for complete inverter controlled air conditioner motor control applications. Unlike a traditional microcontroller or DSP, the IRMCF311 provides a built-in closed loop sensorless control algorithm using the unique Motion Control Engine (MCETM) for permanent magnet motors. The MCETM consists of a collection of control elements, motion peripherals, a dedicated motion control sequencer and dual port RAM to map internal signal nodes. IRMCF311 also employs a unique single shunt current reconstruction circuit to eliminate additional analog/digital circuitry and enables a direct shunt resistor interface to the IC. Motion control programming is achieved using a dedicated graphical compiler integrated into the MATLAB/SimulinkTM development environment. Sequencing, user interface, host communication, and upper layer control tasks can be implemented in the 8051 high-speed 8-bit microcontroller. The 8051 microcontroller is equipped with a JTAG port to facilitate emulation and debugging tools. Figure 1 shows a typical application schematics using IRMCF311.

IRMCF311 is intended for development purpose and contains 48K bytes of RAM, which can be loaded from external EEPROM for 8051 program execution. For high volume production, IRMCK311 contains OTP ROM in place of program RAM to reduce the cost. Both IRMCF311 and IRMCK311 come in the same 64-pin QFP package with identical pin configuration to facilitate PC board layout and transition to mass production

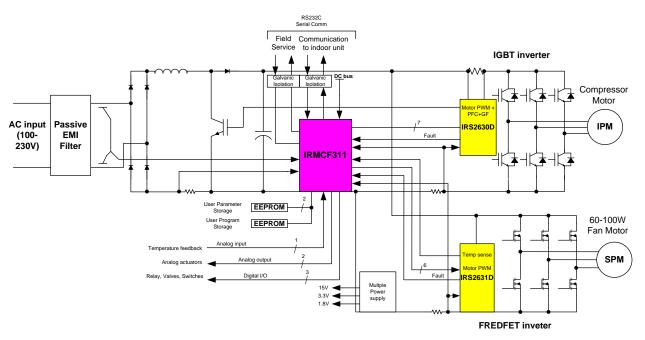


Figure 1. Typical Application Block Diagram Using IRMCF311

2 IRMCF311 Block Diagram and Main Functions

IRMCF311 block diagram is shown in Figure 2.

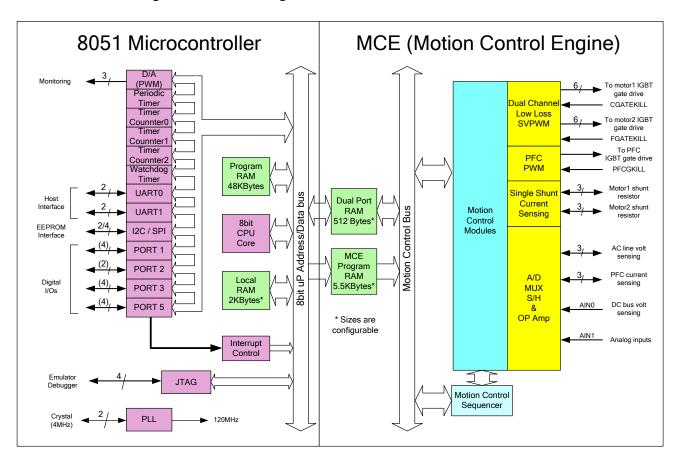


Figure 2. IRMCF311 Internal Block Diagram

IRMCF311 contains the following functions for sensorless AC motor control applications:

- Motion Control Engine (MCETM)
 - Proportional plus Integral block
 - o Low pass filter
 - o Differentiator and lag (high pass filter)
 - o Ramp
 - o Limit
 - Angle estimate (sensorless control)
 - o Inverse Clark transformation
 - Vector rotator
 - o Bit latch

- Peak detect
- Transition
- o Multiply-divide (signed and unsigned)
- o Divide (signed and unsigned)
- o Adder
- o Subtractor
- o Comparator
- Counter
- Accumulator
- o Switch
- o Shift
- o ATAN (arc tangent)
- o Function block (any curve fitting, nonlinear function)
- o 16-bit wide Logic operations (AND, OR, XOR, NOT, NEGATE)
- o MCETM program and data memory (6K byte). Note 1
- o MCETM control sequencer

• 8051 microcontroller

- o Three 16-bit timer
- o 16-bit periodic timer
- o 16-bit analog watchdog timer
- o 16-bit capture timer
- o Up to 14 discrete I/Os
- o Six-channel 12-bit A/D
 - Four buffered channels (0 1.2V input)
 - Two unbuffered channels (0 1.2V input)
- o JTAG port (4 pins)
- o Up to two channels of analog output (8-bit PWM)
- o Two UART
- o I²C/SPI port
- o 48K byte program RAM loaded from external EEPROM
- o 2K byte data RAM. Note 1

Note 1: Total size of RAM is 8K byte including MCE program, MCE data, and 8051 data. Different sizes can be allocated depending on applications.

3 Pinout

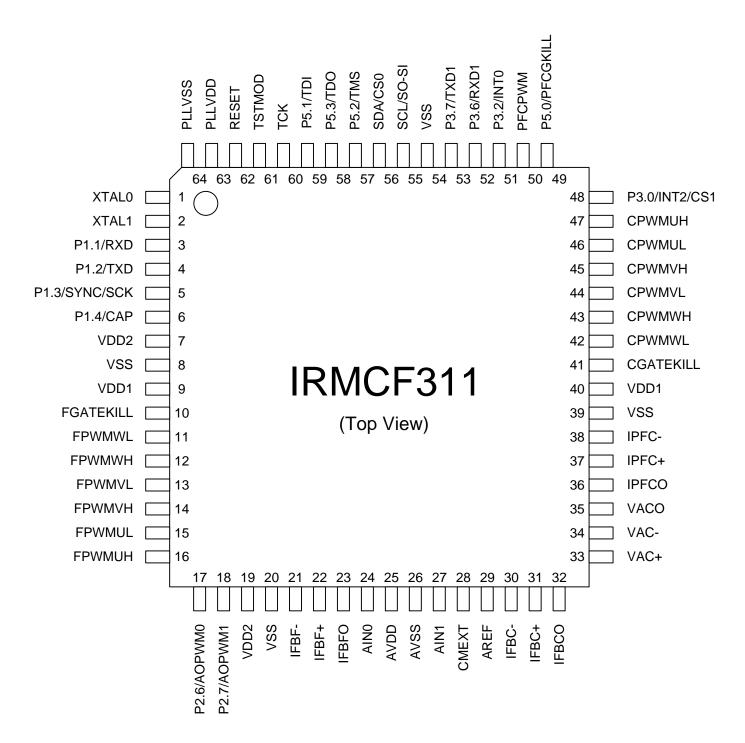


Figure 3. IRMCF311 Pin Configuration

4 Input/Output of IRMCF311

All I/O signals of IRMCF311 are shown in Figure 4. All I/O pins are 3.3V logic interface except A/D interface pins.

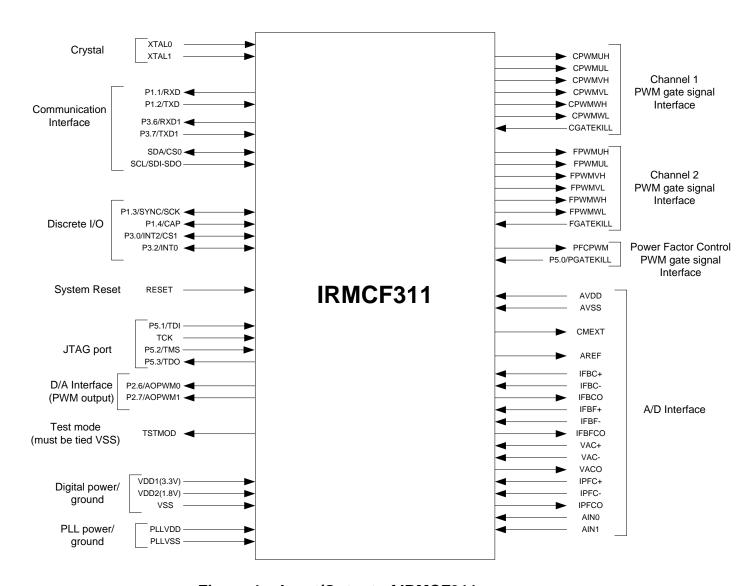


Figure 4. Input/Output of IRMCF311

4.1 8051 Peripheral Interface Group

UART Interface

P1.1/RXD Input, Receive data to IRMCF311

International IRMCF311

P1.2/TXD	Output, Transmit data from IRMCF311
P3.6/RXD1	Input, 2 nd channel Receive data to IRMCF311
P3.7/TXD1	Output, 2 nd channel Transmit data from IRMCF311

Discrete I/O Interface

P1.3/SYNC/SCK Input/output port 1.3, can be configured as SYNC output or SPI clock,

needs to be pulled up to VDD1 in order to boot from I²C EEPROM

P1.4/CAP Input/output port 1.4, can be configured as Capture Timer input

P3.0/INT2/CS1 Input/output port 3.0, can be configured as external interrupt 2 or SPI chip

select 1

P3.2/INT0 Input/output port 3.2, can be configured as external interrupt 0

Analog output Interface

P2.6/AOPWM0 Output, PWM output 0, 8-bit resolution, configurable carrier frequency P2.7/AOPWM1 Output, PWM output 1, 8-bit resolution, configurable carrier frequency

Crystal Interface

XTAL0 Input, connected to crystal XTAL1 Output, connected to crystal

Reset Interface

RESET Inout, system reset, needs to be pulled up to VDD1 but doesn't require

external RC time constant

I²C/SPI Interface

SCL/SO-SI Output, I²C clock output or SPI data

SDA/CS0 Input/output, I²C data line or SPI chip select 0

P3.0/INT2/CS1 Input/output, INT2 or SPI chip select 1

P1.3/SYNC/SCK Input/output, SYNC output or SPI clock, needs to be pulled up to VDD1

in order boot from I²C EEPROM

4.2 Motion Peripheral Interface Group

PWM

CPWMUH	Output, motor 1 PWM phase U high side gate signal
CPWMUL	Output, motor 1 PWM phase U low side gate signal
CPWMVH	Output, motor 1 PWM phase V high side gate signal
CPWMVL	Output, motor 1 PWM phase V low side gate signal
CPWMWH	Output, motor 1 PWM phase W high side gate signal

International IRMCF311

CPWMWL	Output, motor 1 PWM phase W low side gate signal
FPWMUH	Output, motor 2 PWM phase U high side gate signal
FPWMUL	Output, motor 2 PWM phase U low side gate signal
FPWMVH	Output, motor 2 PWM phase V high side gate signal
FPWMVL	Output, motor 2 PWM phase V low side gate signal
FPWMWH	Output, motor 2 PWM phase W high side gate signal
FPWMWL	Output, motor 2 PWM phase W low side gate signal
PFCPWM	Output, PFC PWM

Fault

CGATEKILL Input, upon assertion, this negates all six PWM signals for motor 1,

programmable logic sense

P5.0/PFCGKILL Input, upon assertion, this negates PFCPWM signal, programmable logic

sense, can be configured as discrete I/O in which case CGATEKILL

negates PFCPWM

FGATEKILL Input, upon assertion, this negates all six PWM signals for motor 2,

programmable logic sense

4.3 Analog Interface Group

AVDD	Analog power (1.8V)
AVSS	Analog power return
AREF	Buffered 0.6V output
CMEXT	Unbuffered 0.6V, input to the AREF buffer, capacitor needs to be
CMEAT	connected.
IFBC+	Input, Operational amplifier positive input for shunt resistor current sensing of motor 1
IFBC-	Input, Operational amplifier negative input for shunt resistor current
II DC-	sensing of motor 1
IFBCO	Output, Operational amplifier output for shunt resistor current sensing of
	motor 1
IFBF+	Input, Operational amplifier positive input for shunt resistor current
	sensing of motor 2
IFBF-	Input, Operational amplifier negative input for shunt resistor current
	sensing of motor 2
IFBFO	Output, Operational amplifier output for shunt resistor current sensing of
	motor 2
IPFC+	Input, Operational amplifier positive input for PFC current sensing
IPFC-	Input, Operational amplifier negative input for PFC current sensing
IPFO	Output, Operational amplifier output for PFC current sensing
VAC+	Input, Operational amplifier positive input for PFC AC voltage sensing
VAC-	Input, Operational amplifier negative input for PFC AC voltage sensing
VACO	Output, Operational amplifier output for PFC AC voltage sensing
	output, operational amplifier output for 11 of 10 votage benoming

International IRMCF311

AINO Input, Analog input channel 0 (0 - 1.2V), typically configured for DC bus

voltage input

AIN1 Input, Analog input channel 1 (0 - 1.2V), needs to be pulled down to

AVSS if unused

4.4 Power Interface Group

VDD1 Digital power for I/O (3.3V)

VDD2 Digital power for core logic (1.8V)

VSS Digital common
PLLVDD PLL power (1.8V)
PLLVSS PLL ground return

4.5 Test Interface Group

TSTMOD Must be tied to VSS, used only for factory testing.

P5.1/TDI Input, JTAG test data input, or programmable discrete I/O P5.2/TMS Input, JTAG test mode select, or programmable discrete I/O

TCK Input, JTAG test clock

P5.3/TDO Output, JTAG test data output, or programmable discrete I/O

5 Application Connections

Typical application connection is shown Figure 5. All components necessary to implement a complete sensorless drive control algorithm are shown connected to IRMCF311.

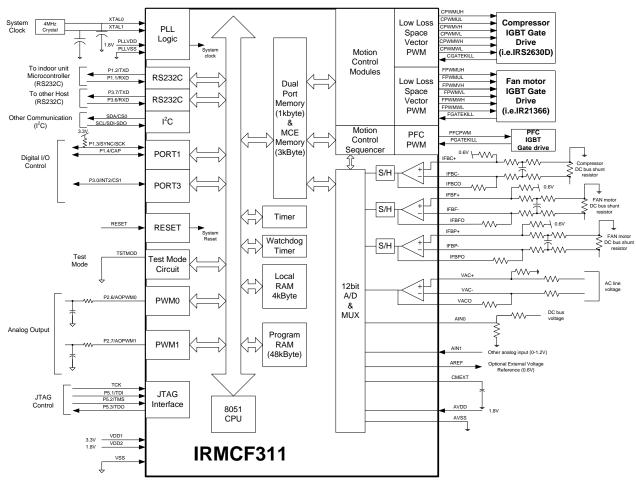


Figure 5. Application Connection of IRMCF311

6 DC Characteristics

6.1 Absolute Maximum Ratings

Symbol	Parameter	Min	Тур	Max	Condition
V_{DD1}	Supply Voltage	-0.3 V	-	3.6 V	Respect to VSS
V_{DD2}	Supply Voltage	-0.3 V	-	1.98 V	Respect to VSS
V_{IA}	Analog Input Voltage	-0.3 V	-	1.98 V	Respect to AVSS
$ m V_{ID}$	Digital Input Voltage	-0.3 V	-	3.65 V	Respect to VSS
T_{A}	Ambient Temperature	-40 °C	-	85 °C	
T_{S}	Storage Temperature	-65 °C	-	150 °C	

Table 1. Absolute Maximum Ratings

Caution: Stresses beyond those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and function of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied.

6.2 System Clock Frequency and Power Consumption

Symbol	Parameter	Min	Тур	Max	Unit
SYSCLK	System Clock	32	-	128	MHz

Table 2. System Clock Frequency

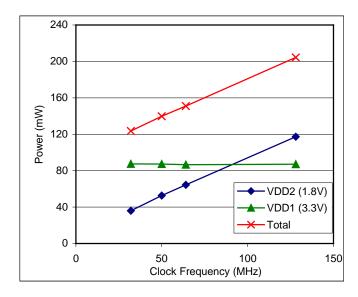


Figure 6. Clock Frequency vs. Power Consumption

6.3 Digital I/O DC Characteristics

Symbol	Parameter	Min	Тур	Max	Condition
V_{DD1}	Supply Voltage	3.0 V	3.3 V	3.6 V	Recommended
V_{DD2}	Supply Voltage	1.62 V	1.8 V	1.98 V	Recommended
$V_{ m IL}$	Input Low Voltage	-0.3 V	-	0.8 V	Recommended
V_{IH}	Input High Voltage	2.0 V		3.6 V	Recommended
C_{IN}	Input capacitance	-	3.6 pF	_	(1)
I_{L}	Input leakage current		±10 nA	±1 μA	$V_0 = 3.3 \text{ V or } 0 \text{ V}$
$I_{OL1}^{(2)}$	Low level output current	8.9 mA	13.2 mA	15.2 mA	$V_{OL} = 0.4 \text{ V}$
I _{OH1} ⁽²⁾	High level output current	12.4 mA	24.8 mA	38 mA	$V_{OH} = 2.4 \text{ V}$
$I_{OL2}^{(3)}$	Low level output current	17.9 mA	26.3 mA	33.4 mA	$V_{OL} = 0.4 \text{ V}$
I _{OH2} ⁽³⁾	High level output current	24.6 mA	49.5 mA	81 mA	$V_{OH} = 2.4 \text{ V}$

Table 3. Digital I/O DC Characteristics

Note:

- (1) Data guaranteed by design.
- (2) Applied to SCL/SO-SI, SDA/CS0 pins.
- (3) Applied to P1.1/RXD, P1.2/TXD, P1.3/SYNC/SCK, P1.4/CAP, P2.6/AOPWM0, P2.7/AOPWM1, P3.0/INT2/CS1, P3.2/INT0, P3.6/RXD1, P3.7/TXD1, P5.0/PFCGKILL, P5.2/TMS, P5.3/TDO, P5.1/TDI, CGATEKILL, FGATEKILL, CPWMUL, CPWMUH, CPWMVL, CPWMVH, CPWMWH, FPWMUL, FPWMUH, FPWMVL, FPWMVH, FPWMWH, and PFCPWM pins.

6.4 PLL and Oscillator DC Characteristics

Symbol	Parameter	Min	Тур	Max	Condition
V_{PLLVDD}	Supply Voltage	1.62 V	1.8 V	1.92 V	Recommended
$V_{\rm ILOSC}$	Oscillator Input Low	V_{PLLVSS}	-	0.2*	$V_{PLLVDD} = 1.8 \text{ V}$
	Voltage			V_{PLLVDD}	(1)
$V_{\rm IHOSC}$	Oscillator Input High	0.8*		V_{PLLVDD}	$V_{PLLVDD} = 1.8 \text{ V}$
	Voltage	V_{PLLVDD}			(1)

Table 4. PLL DC Characteristics

Note:

(1) Data guaranteed by design.

6.5 Analog I/O DC Characteristics

- OP amps for current sensing (IFBC+, IFBC-, IFBCO, IFBF+, IFBF-, IFBFO, IPFC+, IPFC-, IPFCO)

CARFF=	1nF.	C _{MFXT} =	100nF.	Unless s	specified,	$Ta = 25^{\circ}$	C.
~AKEr			TOOIII.	C III C D D	opecinica,	- u - u	\sim .

Symbol	Parameter	Min	Тур	Max	Condition
V_{AVDD}	Supply Voltage	1.71 V	1.8 V	1.89 V	Recommended
V _{OFFSET}	Input Offset Voltage	1	-	26 mV	$V_{AVDD} = 1.8 \text{ V}$
$V_{\rm I}$	Input Voltage Range	0 V		1.2 V	Recommended
V _{OUTSW}	OP amp output operating range	50 mV	-	1.2 V	$V_{AVDD} = 1.8 \text{ V}$
C _{IN}	Input capacitance	-	3.6 pF	-	(1)
R_{FDBK}	OP amp feedback resistor	5 kΩ	-	20 kΩ	Requested between op amp output and negative input
OP _{GAINCL}	Operating Close loop Gain	80 db	-	-	(1)
CMRR	Common Mode Rejection Ratio	-	80 db	-	(1)
I_{SRC}	Op amp output source current	-	1 mA	-	$V_{OUT} = 0.6 \text{ V}$
I_{SNK}	Op amp output sink current	-	100 μΑ	-	$V_{OUT} = 0.6 \text{ V}$

Table 5. Analog I/O DC Characteristics

Note:

6.6 Analog I/O DC Characteristics

- OP amp for voltage sensing (VAC+,VAC-,VACO)

 $C_{AREF} = 1nF$, $C_{MEXT} = 100nF$. Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
V_{AVDD}	Supply Voltage	1.71 V	1.8 V	1.89 V	
V _{OFFSET}	Input Offset Voltage	1	-	26 mV	$V_{AVDD} = 1.8 \text{ V}$
$V_{\rm I}$	Input Voltage Range	0 V		1.2 V	
V_{OUTSW}	OP amp output operating range	50 mV	-	1.2 V	$V_{AVDD} = 1.8 \text{ V}$
C_{IN}	Input capacitance	-	3.6 pF	-	(1)
OP GAINCL	Operating Close loop Gain	80 db	-	-	(1)
CMRR	Common Mode Rejection Ratio	-	80 db	-	(1)
I_{SRC}	Op amp output source current	-	5 mA	-	$V_{OUT} = 0.6 \text{ V}$
I _{SNK}	Op amp output sink current	-	500 μΑ	-	$V_{OUT} = 0.6 \text{ V}$

Table 6. Analog I/O DC Characteristics

Note:

6.7 Under Voltage Lockout DC Characteristics

- Based on AVDD (1.8V)

Unless specified, $Ta = 25^{\circ}C$.

Symbol	Parameter	Min	Тур	Max	Condition
UV_{CC+}	UVcc positive going	1.53 V	1.66 V	1.71 V	$V_{\rm DD1} = 3.3 \text{ V}$
	Threshold				
UV_{CC}	UVcc negative going	1.52 V	1.62 V	1.71 V	$V_{DD1} = 3.3 \text{ V}$
	Threshold				
$UV_{CC}H$	UVcc Hysteresys	1	40 mV	ı	

Table 7. UVcc DC Characteristics

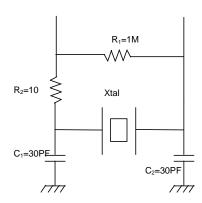
6.8 CMEXT and AREF Characteristics

 $C_{AREF} = 1nF$, $C_{MEXT} = 100nF$. Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
V_{CM}	CMEXT voltage	495 mV	600 mV	700 mV	$V_{AVDD} = 1.8 \text{ V}$
V_{AREF}	Buffer Output Voltage	495 mV	600 mV	700 mV	$V_{AVDD} = 1.8 \text{ V}$
$\Delta V_{\rm o}$	Load regulation (V _{DC} -	-	1 mV	-	(1)
	0.6)				
PSRR	Power Supply Rejection	-	75 db	-	(1)
	Ratio				

Table 8. CMEXT and AREF DC Characteristics

Note:

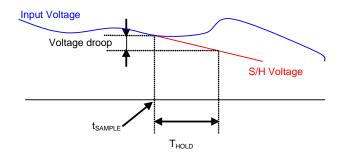

7 AC Characteristics

7.1 PLL AC Characteristics

Symbol	Parameter	Min	Тур	Max	Condition
F _{CLKIN}	Crystal input	3.2 MHz	4 MHz	60 MHz	(1)
	frequency				(see figure below)
F_{PLL}	Internal clock	32 MHz	50 MHz	128 MHz	(1)
	frequency				
F_{LWPW}	Sleep mode output	$F_{CLKIN} \div 256$	_	-	(1)
	frequency				
J_{S}	Short time jitter	-	200 psec	-	(1)
D	Duty cycle	_	50 %	_	(1)
T _{LOCK}	PLL lock time	-	-	500 μsec	(1)

Table 9. PLL AC Characteristics

Note:


7.2 Analog to Digital Converter AC Characteristics

Unless specified, $Ta = 25^{\circ}C$.

Symbol	Parameter	Min	Тур	Max	Condition
T_{CONV}	Conversion time	-	-	2.05 μsec	(1)
T_{HOLD}	Sample/Hold	-	-	10 μsec	Voltage droop ≤
	maximum hold time				15 LSB
					(see figure below)

Table 10. A/D Converter AC Characteristics

Note:

7.3 Op amp AC Characteristics

- OP amps for current sensing (IFBC+, IFBC-, IFBCO, IFBF+, IFBF-, IFBFO, IPFC+, IPFC-, IPFCO)

Unless specified, $Ta = 25^{\circ}C$.

Symbol	Parameter	Min	Тур	Max	Condition
OP_{SR}	OP amp slew rate	-	10 V/μsec	-	$V_{AVDD} = 1.8 \text{ V},$
					$CL = 33 \text{ pF}^{(1)}$
OP _{IMP}	OP input impedance	-	$10^8 \Omega$	-	(1)
T_{SET}	Settling time	-	400 ns	-	$V_{AVDD} = 1.8 \text{ V},$
					$V_{AVDD} = 1.8 \text{ V},$ $CL = 33 \text{ pF}^{(1)}$

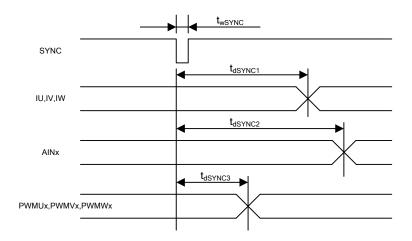
Table 11. Current Sensing OP Amp AC Characteristics

Note:

(1) Data guaranteed by design.

7.4 Op Amp AC Characteristics

- OP amp for voltage sensing (VAC+,VAC-,VACO)


Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
OP_{SR}	OP amp slew rate		2.5 V/μsec	_	$V_{AVDD} = 1.8 \text{ V},$ $CL = 33 \text{ pF}^{(1)}$
					$CL = 33 pF^{(1)}$
OP_{IMP}	OP input impedance	-	$10^8 \Omega$	_	(1)
T_{SET}	Settling time		650 ns		$V_{AVDD} = 1.8 \text{ V},$
	_				$V_{AVDD} = 1.8 \text{ V},$ $CL = 33 \text{ pF}^{(1)}$

Table 12. Voltage sensing OP Amp AC Characteristics

Note:

7.5 SYNC to SVPWM and A/D Conversion AC Timing

Unless specified, $Ta = 25^{\circ}C$.

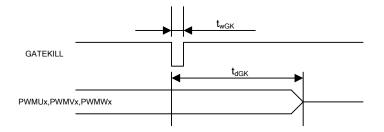
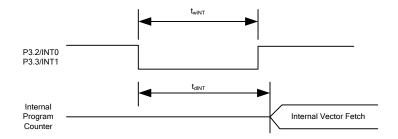

Symbol	Parameter	Min	Тур	Max	Unit
t _{wSYNC}	SYNC pulse width	-	32	-	SYSCLK
t _{dSYNC1}	SYNC to current	-	-	100	SYSCLK
	feedback conversion				
	time				
t _{dSYNC2}	SYNC to AIN0-6	-	-	200	SYSCLK
	analog input				(1)
	conversion time				
t _{dSYNC3}	SYNC to PWM output	-	-	2	SYSCLK
	delay time				

Table 13. SYNC AC Characteristics

Note:

(1) AIN1 through AIN6 channels are converted once every 6 SYNC events

7.6 GATEKILL to SVPWM AC Timing

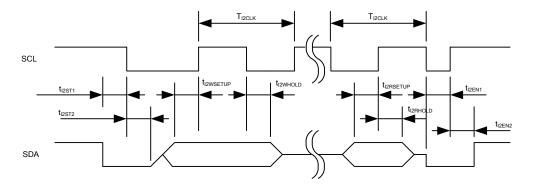


Unless specified, $Ta = 25^{\circ}C$.

Symbol	Parameter	Min	Тур	Max	Unit
$t_{ m wGK}$	GATEKILL pulse	32	-	-	SYSCLK
	width				
$t_{ m dGK}$	GATEKILL to PWM	-	-	100	SYSCLK
	output delay				

Table 14. GATEKILL to SVPWM AC Timing

7.7 Interrupt AC Timing



Unless specified, $Ta = 25^{\circ}C$.

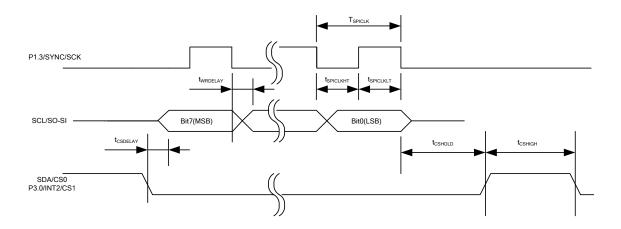
Symbol	Parameter	Min	Тур	Max	Unit
$t_{ m wINT}$	INT0, INT1 Interrupt	4	-	-	SYSCLK
	Assertion Time				
$t_{ m dINT}$	INT0, INT1 latency	-	_	4	SYSCLK

Table 15. Interrupt AC Timing

7.8 I²C AC Timing

Unless specified, $Ta = 25^{\circ}C$.

Symbol	Parameter	Min	Typ	Max	Unit
T _{I2CLK}	I ² C clock period	10	-	8192	SYSCLK
t _{I2ST1}	I ² C SDA start time	0.25	-	-	T_{I2CLK}
t _{I2ST2}	I ² C SCL start time	0.25	-	-	T_{I2CLK}
t _{I2WSETUP}	I ² C write setup time	0.25	-	-	T_{I2CLK}
t _{I2WHOLD}	I ² C write hold time	0.25	-	-	T_{I2CLK}
t _{I2RSETUP}	I ² C read setup time	I ² C filter time ⁽¹⁾	-	-	SYSCLK
t _{12RHOLD}	I ² C read hold time	1	-	-	SYSCLK

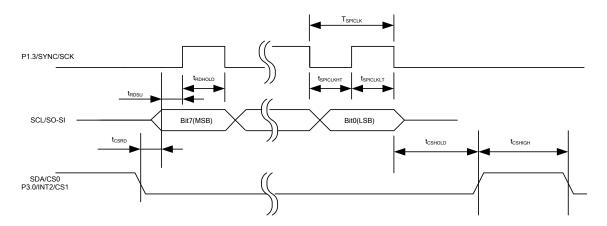

Table 16. I²C AC Timing

Note:

(1) I²C read setup time is determined by the programmable filter time applied to I²C communication.

7.9 SPI AC Timing

7.9.1 SPI Write AC timing

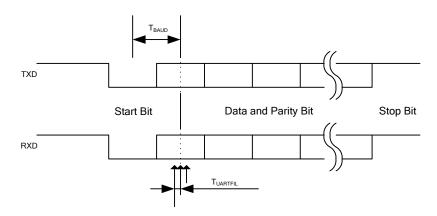


Unless specified, $Ta = 25^{\circ}C$.

Symbol	Parameter	Min	Тур	Max	Unit
T _{SPICLK}	SPI clock period	4	-	-	SYSCLK
t _{SPICLKHT}	SPI clock high time	-	1/2	-	T_{SPICLK}
t _{SPICLKLT}	SPI clock low time	-	1/2	-	T_{SPICLK}
t _{CSDELAY}	CS to data delay time	-	-	10	nsec
t _{WRDELAY}	CLK falling edge to data delay time	-	-	10	nsec
t _{CSHIGH}	CS high time between two consecutive byte transfer	1	-	-	T_{SPICLK}
t _{CSHOLD}	CS hold time	-	1	-	T _{SPICLK}

Table 17. SPI Write AC Timing

7.9.2 SPI Read AC Timing



Unless specified, $Ta = 25^{\circ}C$.

Symbol	Parameter	Min	Тур	Max	Unit
T_{SPICLK}	SPI clock period	4	-	-	SYSCLK
t _{SPICLKHT}	SPI clock high time	-	1/2	-	T _{SPICLK}
t _{SPICLKLT}	SPI clock low time	-	1/2	-	T_{SPICLK}
t_{CSRD}	CS to data delay time	-	-	10	nsec
$t_{ m RDSU}$	SPI read data setup time	10	-	-	nsec
t_{RDHOLD}	SPI read data hold time	10	-	-	nsec
t _{CSHIGH}	CS high time between two consecutive byte transfer	1	-	-	T_{SPICLK}
t _{CSHOLD}	CS hold time	-	1	-	T_{SPICLK}

Table 18. SPI Read AC Timing

7.10 UART AC Timing

Unless specified, $Ta = 25^{\circ}C$.

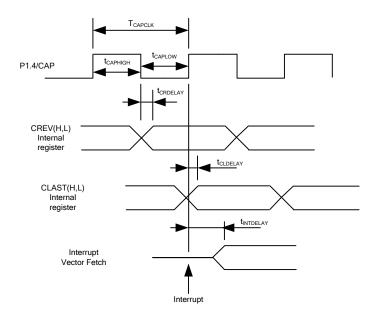
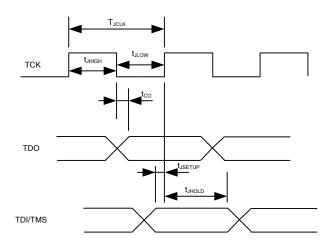

Symbol	Parameter	Min	Тур	Max	Unit
T_{BAUD}	Baud Rate Period	-	57600	-	bit/sec
$T_{UARTFIL}$	UART sampling filter period (1)	-	1/16	-	$T_{ m BAUD}$

Table 19. UART AC Timing

Note:

(1) Each bit including start and stop bit is sampled three times at center of a bit at an interval of $1/16~T_{BAUD}$. If three sampled values do not agree, then UART noise error is generated.

7.11 CAPTURE Input AC Timing



Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
T_{CAPCLK}	CAPTURE input	8	-	-	SYSCLK
	period				
t _{CAPHIGH}	CAPTURE input high	4	-	-	SYSCLK
	time				
t_{CAPLOW}	CAPTURE input low	4	-	-	SYSCLK
	time				
t _{CRDELAY}	CAPTURE falling edge	-	-	4	SYSCLK
	to capture register latch				
	time				
t _{CLDELAY}	CAPTURE rising edge	-	-	4	SYSCLK
	to capture register latch				
	time				
t _{INTDELAY}	CAPTURE input	-	-	4	SYSCLK
	interrupt latency time				

Table 20. CAPTURE AC Timing

7.12 JTAG AC Timing

Unless specified, $Ta = 25^{\circ}C$.

Symbol	Parameter	Min	Тур	Max	Unit
T_{JCLK}	TCK Period	-	-	50	MHz
t _{JHIGH}	TCK High Period	10	-	-	nsec
$t_{ m JLOW}$	TCK Low Period	10	-	-	nsec
t_{CO}	TCK to TDO propagation	0	-	5	nsec
	delay time				
$t_{ m JSETUP}$	TDI/TMS setup time	4	-	_	nsec
t _{JHOLD}	TDI/TMS hold time	0	-	_	nsec

Table 21. JTAG AC Timing

8 I/O Structure

The following figure shows the PWM and digital I/O structure.

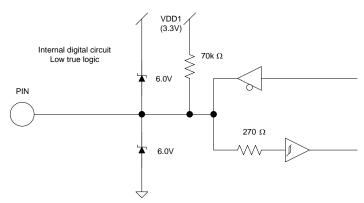


Figure 7 All digital I/O and PWM outputs

The following figure shows RESET and GATEKILL I/O structure.

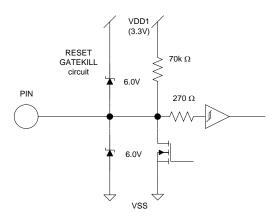


Figure 8 RESET, GATEKILL I/O

The following figure shows the analog input structure.

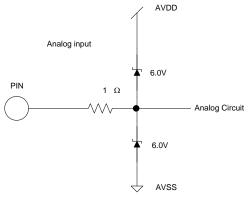


Figure 9 Analog input

The following figure shows all analog operational amplifier output pins and AREF pin I/O structure.

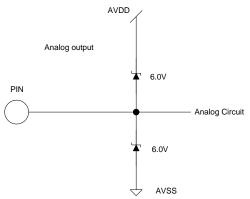


Figure 10 Analog operational amplifier output and AREF I/O structure

The following figure shows the VSS, AVSS and PLLVSS pin structure

Figure 11 VSS, AVSS and PLLVSS pin structure

The following figure shows the VDD1, VDD2, AVDD and PLLVDD pin structure

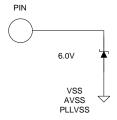


Figure 12 VDD1, VDD2, AVDD and PLLVDD pin structure

The following figure shows the XTAL0 and XTAL1 pins structure

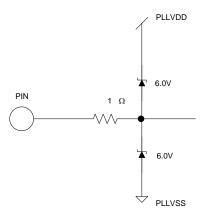
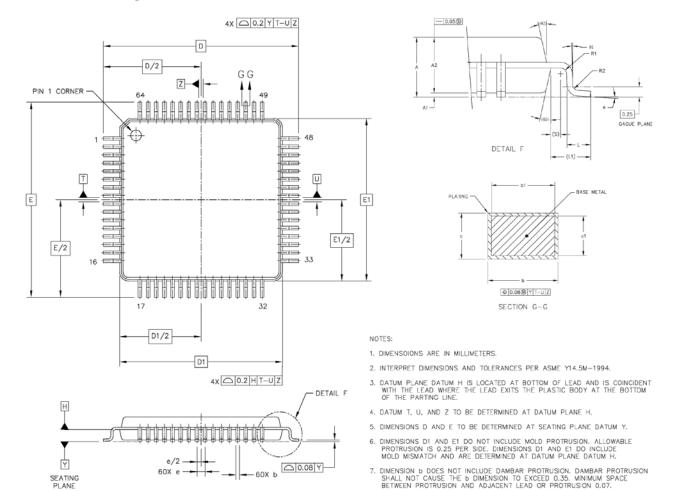


Figure 13 XTAL0/XTAL1 pins structure

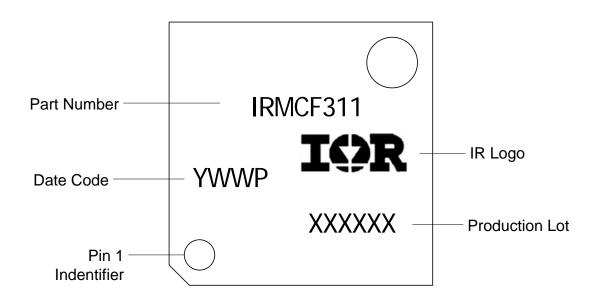
9 Pin List


Pin		Internal IC	Pin		
Number	Pin Name	Pull-up	Type	Description	
		/Pull-down		•	
1	XTAL0		I	Crystal input	
2	XTAL1		О	Crystal output	
3	P1.1/RXD	70 kΩ Pull	I/O	Discrete programmable I/O or UART receive inpu	
		up			
4	P1.2/TXD	70 kΩ Pull	I/O	Discrete programmable I/O or UART transmit	
		up		output	
5	P1.3/SYNC/	70 kΩ Pull	I/O	Discrete programmable I/O or SYNC output or SPI	
	SCK	up		clock, needs to be pulled up to VDD1 in order to	
				boot from I ² C EEPROM	
6	P1.4/CAP	70 kΩ Pull	I/O	Discrete programmable I/O or Capture Timer input	
		up			
7	VDD2		P	1.8V digital power	
8	VSS		P	Digital common	
9	VDD1		P	3.3V digital power	
10	FGATEKILL	70 kΩ Pull	I	Fan PWM shutdown input, 2-µsec digital filter,	
		up		configurable either high or low true.	
11	FPWMWL	70 kΩ Pull	О	Fan PWM gate drive for phase W low side,	
		up		configurable either high or low true	
12	FPWMWH	70 kΩ Pull	О	Fan PWM gate drive for phase W high side,	
		up		configurable either high or low true	
13	FPWMVL	70 kΩ Pull	О	Fan PWM gate drive for phase V low side,	
		up		configurable either high or low true	
14	FPWMVH	70 kΩ Pull	О	Fan PWM gate drive for phase V high side,	
		up		configurable either high or low true	
15	FPWMUL	70 kΩ Pull	О	Fan PWM gate drive for phase U low side,	
		up		configurable either high or low true	
16	FPWMUH	70 kΩ Pull	О	Fan PWM gate drive for phase U high side,	
		up		configurable either high or low true	
17	P2.6/	70 kΩ Pull	I/O	Discrete programmable I/O or analog output 0	
	AOPWM0	up		(PWM)	
18	P2.7/	70 kΩ Pull		Discrete programmable I/O or analog output 1	
	AOPWM1	up		(PWM)	
19	VDD2		P	1.8V digital power	
20	VSS		P	Digital common	
21	IFBF-		I	Fan single shunt current sensing OP amp input (-)	
22	IFBF+		I	Fan single shunt current sensing OP amp input (+)	
23	IFBFO		О	Fan single shunt current sensing OP amp output	

Pin Number	Pin Name	Internal IC Pull-up /Pull-down	Pin Type	Description		
24	AIN0		I	Analog input channel 0, 0-1.2V range, needs to be pulled down to AVSS if unused		
25	AVDD		P	1.8V analog power		
26	AVSS		P	Analog common		
27	AIN1		I	Analog input channel 1, 0-1.2V range, needs to be pulled down to AVSS if unused		
28	CMEXT		О	Unbuffered analog reference voltage output (0.6V), capacitor needs to be connected.		
29	AREF		О	Analog reference voltage output (0.6V)		
30	IFBC-		I	Compressor single shunt current sensing OP amp input (-)		
31	IFBC+		I	Compressor single shunt current sensing OP amp input (+)		
32	IFBCO		О	Compressor single shunt current sensing OP amp output		
33	VAC-		I	AC input voltage sensing OP amp input (-)		
34	VAC+		I	AC input voltage sensing OP amp input (+)		
35	VACO		О	AC input voltage sensing OP amp output		
36	IPFCO		О	PFC shunt current sensing OP amp output		
37	IPFC+		I	PFC shunt current sensing OP amp input (+)		
38	IPFC-		I	PFC shunt current sensing OP amp input (-)		
39	VSS		P	Digital common		
40	VDD1		P	3.3V digital power		
41	CGATEKILL	70 kΩ Pull up	I	Compressor PWM shutdown input, 2-µsec digital filter, configurable either high or low true.		
42	CPWMWL	70 kΩ Pull up	О	Compressor PWM gate drive for phase W low side, configurable either high or low true		
43	CPWMWH	70 kΩ Pull up	О	Compressor PWM gate drive for phase W high side, configurable either high or low true		
44	CPWMVL	70 kΩ Pull up	О	Compressor PWM gate drive for phase V low side configurable either high or low true		
45	CPWMVH	70 kΩ Pull up	О	Compressor PWM gate drive for phase V high side configurable either high or low true		
46	CPWMUL	70 kΩ Pull up	О	Compressor PWM gate drive for phase U low side, configurable either high or low true		
47	CPWMUH	70 kΩ Pull up	О	Compressor PWM gate drive for phase U high side, configurable either high or low true		
48	P3.0/INT2	70 kΩ Pull up	I/O	Discrete programmable I/O or INT2 digital input		

Pin Number	Pin Name	Internal IC Pull-up /Pull-down	Pin Type	Description
49	P5.0/ PFCGKILL	70 kΩ Pull up	I	Discrete programmable I/O or PFC PWM shutdown input, 2-µsec digital filter, configurable either high or low true.
50	PFCPWM	70 kΩ Pull up	О	PFC PWM gate drive, configurable either high or low true
51	P3.2/INT0	70 kΩ Pull up	I/O	Discrete programmable I/O or INT0 input
52	P3.6/RXD1	70 kΩ Pull up	I/O	Discrete programmable I/O or 2 nd UART receive input
53	P3.7/TXD1	70 kΩ Pull up	I/O	Discrete programmable I/O or 2 nd UART transmit output
54	VSS	_	P	Digital common
55	SCL/SO-SI	70 kΩ Pull up	I/O	I ² C clock output or SPI data
56	SDA/CS0	70 kΩ Pull up	I/O	I ² C data or SPI chip select 0
57	P5.2/TMS	70 kΩ Pull up	I/O	Discrete programmable I/O or JTAG test mode select
58	P5.3/TDO	70 kΩ Pull up	I/O	Discrete programmable I/O or JTAG port test data output
59	P5.1/TDI	70 kΩ Pull up	I/O	Discrete programmable I/O or JTAG test data input
60	TCK		I	JTAG test clock
61	TSTMOD	58 kΩ pull down	I	Test mode. Must be tied to VSS. Factory use only
62	RESET	70 kΩ Pull up	I/O	Reset, low true, Schmitt trigger input
63	PLLVDD		P	1.8 V PLL power
64	PLLVSS		P	PLL ground

Table 22. Pin List


10 Package Dimensions

DIM	MIN	MAX	DIM	MIN	MAX	DIM	MIN	MAX
Α		1.6	L1	1	REF			
A1	0.05	0.15	R1	0.1	0.2			
A2	1.35	1.45	R2	0.1	0.2			
b	0.17	0.27	S	0.2	REF			
b1	0.17	0.23	θ	0.	7 °			
С	0.09	0.2	θ1	0.				
c1	0.09	0.16	θ2	12°	REF			
D	12	BSC	θ3	12°	REF			
D1	10	BSC						
е	0.5	BSC						
Е	12	BSC						
E1	10	BSC						
L	0.45	0.75						

This document is the property of International Rectifier and may not be copied or distributed without expressed consent.

11 Part Marking Information

Order Information

Lead-Free Part in 64-lead QFP Moisture sensitivity rating – MSL3

Part number	Order quantities
IRMCF311TR	1500 parts on tape and reel in dry pack
IRMCF311TY	1600 parts on trays (160 parts per tray) in dry pack

The LQFP-64 is MSL3 qualified

This product has been designed and qualified for the industrial level
Qualification standards can be found at www.irf.com www.irf.com kww.irf.com www.irf.com www.irf.com www.irf.com www.irf.com kww.irf.com kww.irf.com kww.irf.com kww.irf.com <a h

Data and specifications subject to change without notice. 12/05/2006

www.irf.com