International

Typical Applications

Industrial Motor Drive

Features

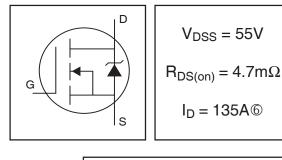
- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this product are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

Absolute Maximum Ratings

	<u> </u>		
	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$ Continuous Drain Current, $V_{GS} @ 10V$		135©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	96©	A
I _{DM}	Pulsed Drain Current ①	700	
$P_D @T_C = 25^{\circ}C$	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy®	380	mJ
E _{AS} (6 sigma)	Single Pulse Avalanche Energy Tested Value®	1220	-
I _{AR}	Avalanche Current [®]	See Fig.12a, 12b, 15, 16	A
E _{AR}	Repetitive Avalanche Energy@		mJ
dv/dt	Peak Diode Recovery dv/dt 3	2.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	


Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case		0.75	°C/W
R _{0JA}	Junction-to-Ambient(PCB Mounted, steady state)**		40	0/11

 $\label{eq:HEXFET} \begin{array}{l} \mathsf{HEXFET}(\mathsf{R}) \text{ is a registered trademark of International Rectifier.} \\ www.irf.com \end{array}$

PD-95944A IRF2805SPbF IRF2805LPbF

HEXFET[®] Power MOSFET

International **TOR** Rectifier

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage				V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	J Breakdown Voltage Temp. Coefficient		0.06		V/°C	Reference to 25°C, I _D = 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.9	4.7	mΩ	V _{GS} = 10V, I _D = 104A ④	
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$	
g fs	Forward Transconductance	91			S	$V_{DS} = 25V, I_D = 104A$	
1	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V, V_{GS} = 0V$	
IDSS	Diam to obtice Leakage Ourient			250		$V_{DS} = 44V, V_{GS} = 0V, T_J = 150^{\circ}C$	
1	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 20V$	
IGSS	Gate-to-Source Reverse Leakage			-200		$V_{GS} = -20V$	
Qg	Total Gate Charge		150	230		I _D = 104A	
Q _{gs}	Gate-to-Source Charge		38	57	nC	$V_{DS} = 44V$	
Q _{gd}	Gate-to-Drain ("Miller") Charge		52	78		V _{GS} = 10V ④	
t _{d(on)}	Turn-On Delay Time		14			V _{DD} = 28V	
tr	Rise Time		120			I _D = 104A	
t _{d(off)}	Turn-Off Delay Time		68		ns	$R_{G} = 2.5\Omega$	
t _f	Fall Time		110			V _{GS} = 10V ④	
1	Internal Drain Inductance		4.5			Between lead,	
L _D			4.5		nH	6mm (0.25in.)	
			7 -			from package	
LS	Internal Source Inductance		7.5			and center of die contact	
C _{iss}	Input Capacitance		5110			$V_{GS} = 0V$	
C _{oss}	Output Capacitance		1190		pF	$V_{DS} = 25V$	
C _{rss}	Reverse Transfer Capacitance		210			f = 1.0MHz, See Fig. 5	
C _{oss}	Output Capacitance		6470		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$	
Coss	Output Capacitance		860			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$	
Coss eff.	s eff. Effective Output Capacitance (5)		1600			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 44V$	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			175©	Α	MOSFET symbol	
	(Body Diode)					showing the	
I _{SM}	Pulsed Source Current	70	700	700	integral reverse		
	(Body Diode) ①			700		p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 104A, V_{GS} = 0V$ (4)	
t _{rr}	Reverse Recovery Time		80	120	ns	$T_J = 25^{\circ}C, I_F = 104A$	
Qrr	Reverse Recovery Charge		290	430	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{S}+L_{D}$)					

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- (2) Starting $T_J = 25^{\circ}$ C, L = 0.08mH R_G = 25 Ω , I_{AS} = 104A. (See Figure 12).
- 3 I_{SD} \leq 104A, di/dt \leq 240A/µs, V_{DD} \leq V_{(BR)DSS}, T_{J} \leq 175°C
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.

S C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- ② Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- Inis value determined from sample failure population. 100% tested to this value in production.

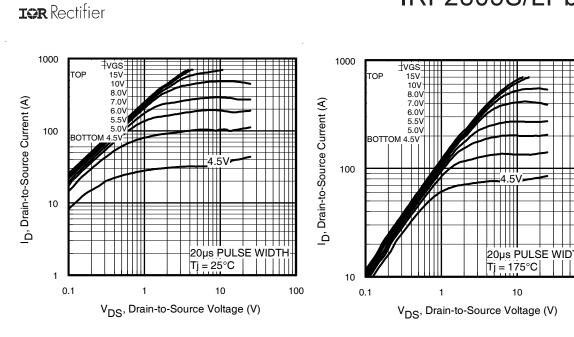
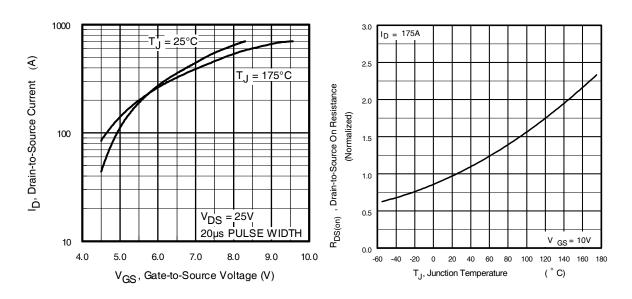


Fig 1. Typical Output Characteristics

100

3



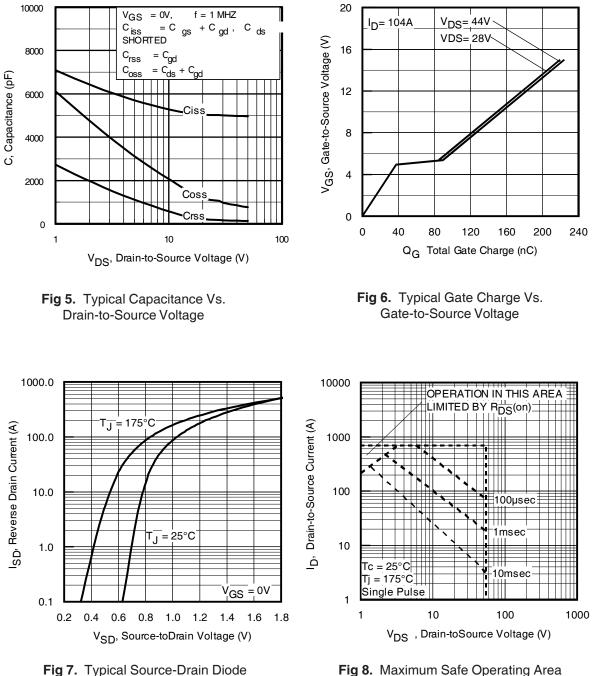
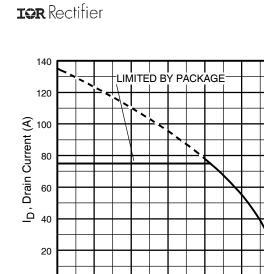
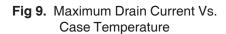

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature


www.irf.com

International

International


Forward Voltage

International

0 L

50

75

100

 T_C , Case Temperature (°C)

125

150

175

IRF2805S/LPbF

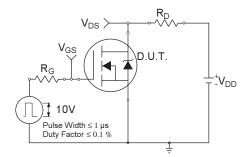


Fig 10a. Switching Time Test Circuit

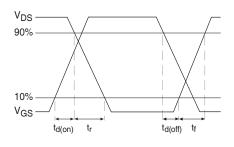


Fig 10b. Switching Time Waveforms

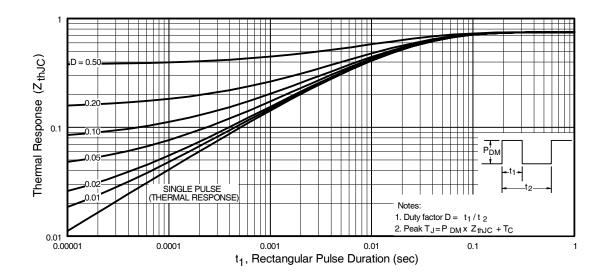
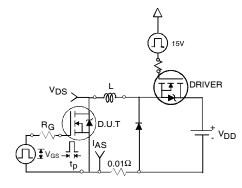
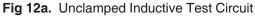




Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

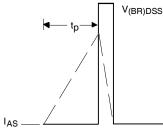


Fig 12b. Unclamped Inductive Waveforms

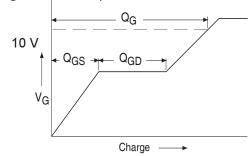
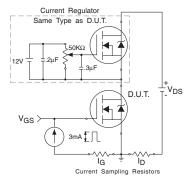



Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

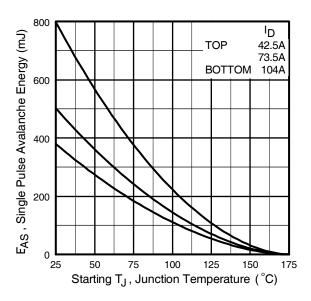


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

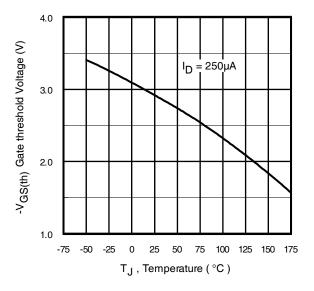
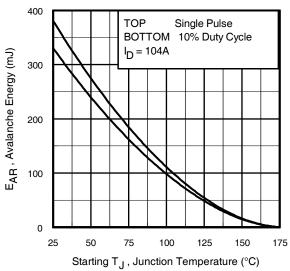
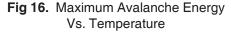




Fig 14. Threshold Voltage Vs. Temperature www.irf.com

10000 Duty Cycle = Single Pulse 1000 Allowed avalanche Current vs Avalanche Current (A) avalanche pulsewidth, tav TH assuming $\Delta Tj = 25^{\circ}C$ due to 100 0.01 avalanche losses. Note: In no case should Tj be allowed to 0.0 exceed Tjmax TIM 10 0.10 T 1 0.1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec)

Fig 15. Typical Avalanche Current Vs.Pulsewidth

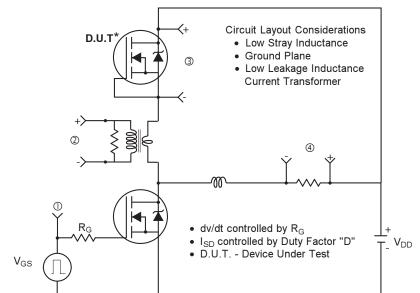
www.irf.com

International

TOR Rectifier

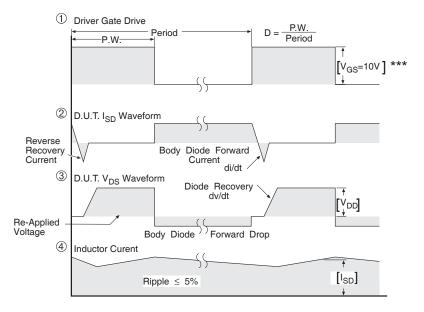
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

IRF2805S/LPbF


- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. Δ T = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).
 - t_{av =} Average time in avalanche.
 - $D = Duty cycle in avalanche = t_{av} \cdot f$

 $Z_{thJC}(D, t_{av}) = Transient thermal resistance, see figure 11)$

$$\begin{split} \textbf{P}_{D \;(ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot \textbf{I}_{av}) = \Delta T / \; \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2 \Delta T / \; [1.3 \cdot BV \cdot \textbf{Z}_{th}] \\ \textbf{E}_{AS \;(AR)} &= \textbf{P}_{D \;(ave)} \cdot \textbf{t}_{av} \end{split}$$

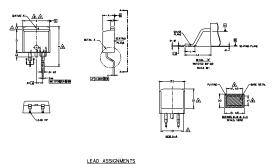

7

International

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** $V_{\rm GS}$ = 5.0V for Logic Level and 3V Drive Devices



International **TOR** Rectifier

IRF2805S/LPbF

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

1.- ANODE (TWO DIE) / OPEN (ONE DIE) 4.- CATHODE 3.- ANODE

DIODES

1.- GATE 4.- DRAIN 3.- SOURCE

2. HEXFET

S Y ⊠ B O	DIMENSIONS				
B	MILLIM	ETERS	INC	N O T E S	
L	MIN.	MAX.	MIN.	MAX.	E S
Α	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
b	0.51	0,99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
с	0,38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1,14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270		4
Е	9.65	10,67	.380	.420	3,4
E1	6.22	-	.245		4
е	2.54	BSC	.100 BSC		
н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	-	1.65	-	.066	4
L2	-	1.78	-	.070	
L3	0.25	BSC	.010		
L4	4.78	5.28	.188	.208	

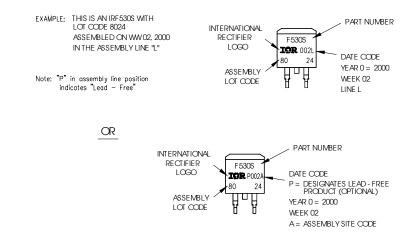
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME 114.5M-1994 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

SUPENSION D & E DO NOT INCLUDE WOLD FLASH. WOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIVENSIONS ARE MEASURED AT THE OUTWOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

A THERWAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5 DIMENSION 61 AND C1 APPLY TO BASE METAL ONLY.

6, DATUM A & B TO BE DETERMINED AT DATUM PLANE H,

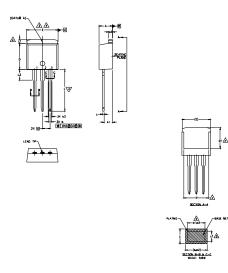

7, CONTROLLING DIMENSION; INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

D²Pak (TO-263AB) Part Marking Information

IGBTS. COPACK

1.- GATE 2. 4.- COLLECTOR 3.- EMITTER



Notes:

1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

International **IOR** Rectifier

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. WOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTWOST EXTREMES OF THE PLASTIC BODY.

A THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

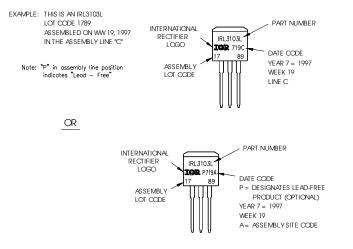
5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

6. CONTROLLING DIMENSION: INCH.

7.- OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(mox.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

S Y M		Ņ				
B	MILLIM	ETERS	INC	N T E S		
L	MIN.	MAX.	MIN.	MAX.	Š	
Α	4.06	4.83	.160	.190		
A1	2.03	3.02	.080	.119		
ь	0.51	0.99	.020	.039		
b1	0,51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
b3	1,14	1,73	.045	.068	5	
с	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1,14	1.65	.045	,065		
D	8.38	9.65	.330	.380	3	
D1	6.86	-	.270	-	4	
Е	9.65	10.67	.380	.420	3,4	
E1	6.22	-	.245		4	
е	2.54 BSC		.100 BSC			
L	13,46	14,10	.530	.555		
L1	-	1.65	-	.065	4	
L2	3.56	3.71	.140	.146		

LEAD ASSIGNMENTS


HEXFET

1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

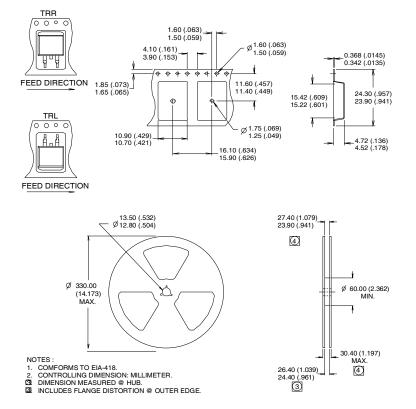
IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

TO-262 Part Marking Information

Notes:

1. For an Automotive Qualified version of this part please see<u>http://www.irf.com/product-info/auto/</u>


2. For the most current drawing please refer to IR website at http://www.irf.com/package/

10

International

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2010 www.irf.com 11

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.