

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

SI2304DS

N-channel enhancement mode field-effect transistor

Rev. 01 — 17 August 2001

Product data

Description

N-channel enhancement mode field-effect transistor in a plastic package using TrenchMOS™¹ technology

Product availability:

SI2304DS in SOT23.

2. **Features**

- TrenchMOS[™] technology
- Very fast switching
- Subminiature surface mount package.

Applications

- Battery management
- High speed switch
- Low power DC to DC converter.

Pinning information

Pinning - SOT23, simplified outline and symbol Table 1:

Pin	Description	Simplified outline	Symbol
1	gate (g)		
2	source (s)	3	d I
3	drain (d)	1	g

TrenchMOS is a trademark of Koninklijke Philips Electronics N.V.

N-channel enhancement mode field-effect transistor

5. Quick reference data

Table 2: Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage (DC)	T _j = 25 to 150 °C	_	_	30	V
I _D	drain current (DC)	T_{sp} = 25 °C; V_{GS} = 5 V	_	_	1.7	Α
P _{tot}	total power dissipation	$T_{sp} = 25 ^{\circ}C$	_	_	0.83	W
Tj	junction temperature		_	_	150	°C
R_{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 500 \text{ mA}$	_	_	117	$m\Omega$
		$V_{GS} = 4.5 \text{ V}; I_D = 500 \text{ mA}$	_	_	190	$m\Omega$

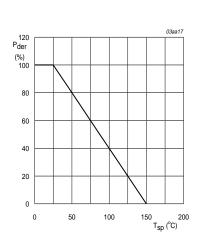
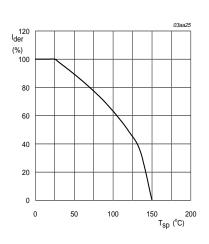

6. Limiting values

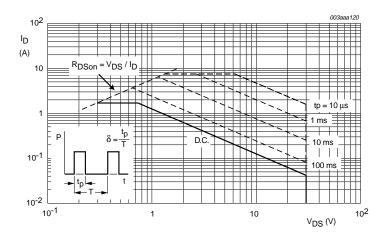
Table 3: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit	
V_{DS}	drain-source voltage (DC)	T _j = 25 to 150 °C	-	30	V	
V_{DGR}	drain-gate voltage (DC)	T_j = 25 to 150 °C; R_{GS} = 20 $k\Omega$	-	30	V	
V_{GS}	gate-source voltage (DC)		-	±20	V	
I_D	drain current (DC)	T_{sp} = 25 °C; V_{GS} = 5 V; Figure 2 and 3	-	1.7	Α	
		T_{sp} = 100 °C; V_{GS} = 5 V; Figure 2 and 3	-	1.1	Α	
I_{DM}	peak drain current	T_{sp} = 25 °C; pulsed; $t_p \le 10 \ \mu s$	-	7.5	Α	
P _{tot}	total power dissipation	T _{sp} = 25 °C; Figure 1	-	0.83	W	
T_{stg}	storage temperature		-65	+150	°C	
Tj	operating junction temperature		-65	+150	°C	
Source-drain diode						
I _S	source (diode forward) current (DC)	T _{sp} = 25 °C	-	0.83	Α	
I _{SM}	peak source (diode forward) current	T_{sp} = 25 °C; pulsed; $t_p \le 10 \mu s$	-	3.3	Α	

N-channel enhancement mode field-effect transistor

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$


Fig 1. Normalized total power dissipation as a function of solder point temperature.

$$V_{GS} \ge 10 \text{ V}$$

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100\%$$

Fig 2. Normalized continuous drain current as a function of solder point temperature.

 $T_{sp} = 25^{\circ}C$; I_{DM} is single pulse

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage.

N-channel enhancement mode field-effect transistor

7. Thermal characteristics

Table 4: Thermal characteristics

Symbol	Parameter	Conditions	Value	Unit
R _{th(j-sp)}	thermal resistance from junction to solder point	mounted on a metal clad substrate; Figure 4	100	K/W

7.1 Transient thermal impedance

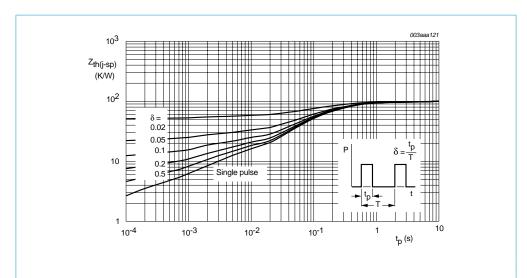
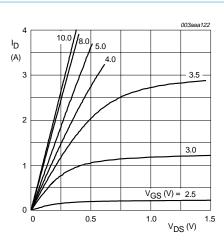


Fig 4. Transient thermal impedance from junction to solder point as a function of pulse duration.

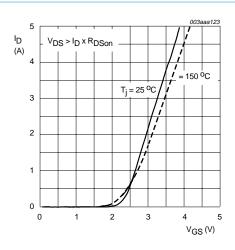
N-channel enhancement mode field-effect transistor

8. Characteristics


Table 5: Characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified

$V_{GS(th)} = V_{GS(th)} = V_{$	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static ch	aracteristics					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$V_{(BR)DSS}$	drain-source breakdown voltage	$I_D = 10 \mu A; V_{GS} = 0 V$				
$ V_{GS(ih)} \\ V_{GS(ih)} \\ V_{GS(ih)} \\ V_{GS} \\ V_{GS}$			T _j = 25 °C	30	40	_	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = −55 °C	27	_	_	V
$ \frac{T_{j} = 150 \ ^{\circ}C}{T_{j} = -55 \ ^{\circ}C} \qquad 0.5 - - 0.7 2.7 100 \ ^{\circ}D_{j} = 150 \ ^{\circ}C \qquad 0.5 - 0.7 2.7 100 \ ^{\circ}D_{j} = 150 \ ^{\circ}C \qquad 0.5 - 0.01 0.5 0.$	$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; \text{ Figure 9}$				
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			T _j = 25 °C	1.5	2	_	V
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			T _j = 150 °C	0.5	_	_	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = −55 °C	_	_	2.7	V
	I _{DSS}	drain-source leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			T _j = 25 °C	_	0.01	0.5	μΑ
$ \begin{array}{c} R_{DSon} \\ R_{DSon} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			T _j = 150 °C	_	_	10	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{GSS}	gate-source leakage current	$V_{GS} = \pm 10 \text{ V}; V_{DS} = 0 \text{ V}$	_	10	100	nΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I_D = 500 mA; Figure 7 and 8				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 25 °C	-	_	117	$\text{m}\Omega$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{GS} = 4.5 \text{ V}; I_D = 500 \text{ mA}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 25 °C	-	_	190	$\text{m}\Omega$
$\begin{array}{c} g_{fs} & \text{forward transconductance} \\ Q_{g(tot)} & \text{total gate charge} \\ Q_{gs} & \text{gate-source charge} \\ Q_{gd} & \text{gate-drain (Miller) charge} \\ \hline C_{iss} & \text{input capacitance} \\ C_{rss} & \text{reverse transfer capacitance} \\ \hline C_{fr} & \text{rise time} \\ \hline t_{d(off)} & \text{turn-off delay time} \\ \hline t_{f} & \text{fall time} \\ \hline \\ Source-drain diode \\ \hline \end{array}$ $\begin{array}{c} V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DD} = 15 \text{ V; } V_{GS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DD} = 15 \text{ V; } V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DD} = 15 \text{ V; } V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DD} = 15 \text{ V; } V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 13} \\ V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ A; } \text{Figure 14} \\ V_{DS} = 10 \text{ V; } I_{D} = 10 V;$			T _j = 150 °C	_	_	300	$m\Omega$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dynamic	characteristics					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 _{fs}	forward transconductance	$V_{DS} = 10 \text{ V}; I_D = 1 \text{ A}$	1.4	2.5	_	S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q _{g(tot)}	total gate charge	$V_{DD} = 15 \text{ V}; V_{GS} = 10 \text{ V}; I_D = 0.5 \text{ A}; Figure 13$	_	4.6		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q_{gs}	gate-source charge		_	0.6	_	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q_{gd}	gate-drain (Miller) charge		_	1.35	1.83	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}$; $V_{DS} = 10 \text{ V}$; $f = 1 \text{ MHz}$; Figure 11	_	147	195	pF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{oss}	output capacitance		_	65	78	pF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{rss}	reverse transfer capacitance		_	41	56	pF
$t_{d(off)}$ turn-off delay time $-$ 18 35 r t_{f} fall time $-$ 13 19 r Source-drain diode	t _{d(on)}	turn-on delay time	$V_{DD} = 15 \text{ V}; R_L = 15 \Omega; V_{GS} = 10 \text{ V}$	_	4	6	ns
t _f fall time – 13 19 r Source-drain diode	t _r	rise time		_	7.5	12	ns
Source-drain diode	t _{d(off)}	turn-off delay time		_	18	35	ns
	t _f	fall time		_	13	19	ns
	Source-c	Irain diode					
V_{SD} source-drain (diode forward) voltage $I_S = 0.83$ A; $V_{GS} = 0$ V; Figure 12 - 0.7 1.2	V _{SD}	source-drain (diode forward) voltage	$I_S = 0.83 \text{ A}$; $V_{GS} = 0 \text{ V}$; Figure 12	_	0.7	1.2	V
t_{rr} reverse recovery time $I_S = 1$ A; $dI_S/dt = -100$ A/ μs ; $V_{GS} = 0$ V; $-$ 69 $-$ r $V_{DS} = 25$ V	t _{rr}	reverse recovery time		_	69	_	ns


Product data

N-channel enhancement mode field-effect transistor

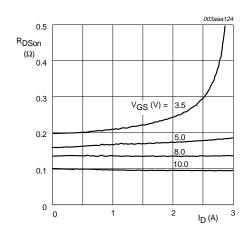

T_i = 25 °C

Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values.

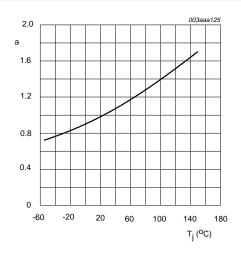
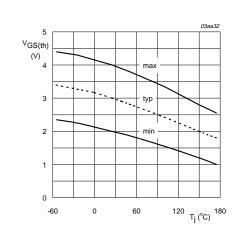

 T_i = 25 °C and 175 °C; $V_{DS} > I_D \times R_{DSon}$

Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values.

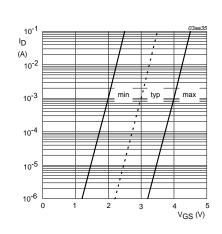
T_j = 25 °C

Fig 7. Drain-source on-state resistance as a function of drain current; typical values.



 $a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$

Fig 8. Normalized drain source on-state resistance factor as a function of junction temperature.


Product data

N-channel enhancement mode field-effect transistor

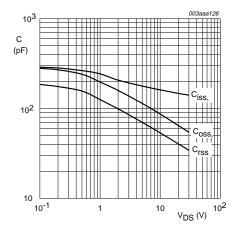
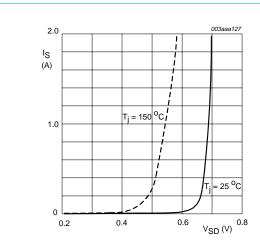
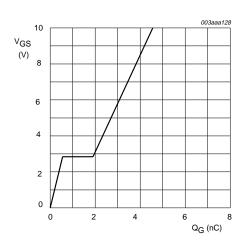

 $I_D = 1 \text{ mA}; V_{DS} = V_{GS}$

Fig 9. Gate-source threshold voltage as a function of junction temperature.

 $T_j = 25 \,^{\circ}C; \, V_{DS} = 5 \,^{\circ}V$


Fig 10. Sub-threshold drain current as a function of gate-source voltage.

 $V_{GS} = 0 V$; f = 1 MHz


Fig 11. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values.

N-channel enhancement mode field-effect transistor

 $T_i = 25$ °C and 150 °C; $V_{GS} = 0$ V

Fig 12. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values.

 $I_D = 0.5 \text{ A}; V_{DD} = 15 \text{ V}$

Fig 13. Gate-source voltage as a function of gate charge; typical values.

N-channel enhancement mode field-effect transistor

9. Package outline

Plastic surface mounted package; 3 leads

SOT23

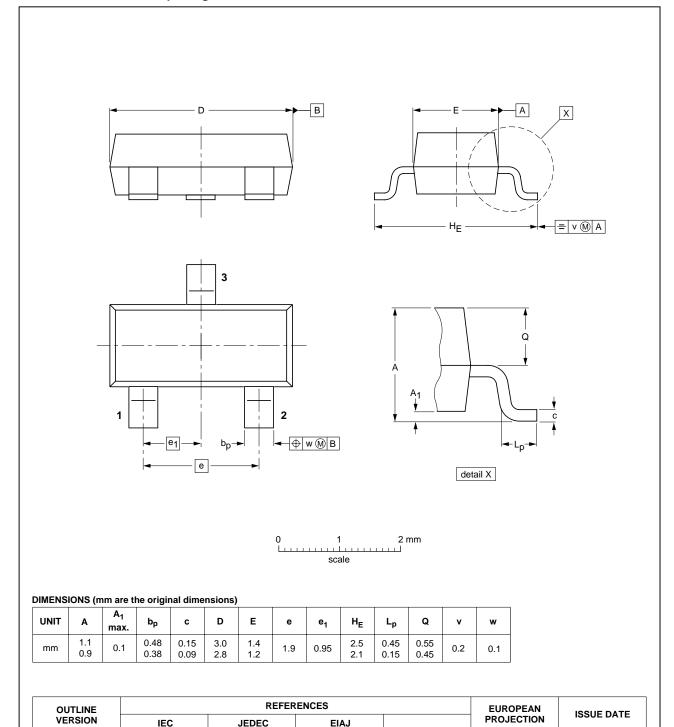


Fig 14. SOT23.

SOT23

9397 750 08526

Downloaded from Arrow.com.

© Koninklijke Philips Electronics N.V. 2001. All rights reserved.

97-02-28

99-09-13

TO-236AB

N-channel enhancement mode field-effect transistor

10. Revision history

Table 6: Revision history

Rev	Date	CPCN	Description
01	20010817	-	Product data; initial version

SI2304DS Philips Semiconductors

N-channel enhancement mode field-effect transistor

11. Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definition
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

- Please consult the most recently issued data sheet before initiating or completing a design.
- The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com

12. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

13. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information, please visit http://www.semiconductors.philips.com. For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.

9397 750 08526

Fax: +31 40 27 24825

11 of 12

Product data

N-channel enhancement mode field-effect transistor

Contents

1	Description
2	Features
3	Applications
4	Pinning information 1
5	Quick reference data
6	Limiting values
7	Thermal characteristics
7.1	Transient thermal impedance
8	Characteristics
9	Package outline 9
10	Revision history
11	Data sheet status
12	Definitions
13	Disclaimers 11

© Koninklijke Philips Electronics N.V. 2001. Printed in The Netherlands

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 17 August 2001 Document order number: 9397 750 08526

