NXP Semiconductors

Technical Data

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

The 250 W CW RF power transistor is designed for industrial, scientific, medical (ISM) and industrial heating applications at 2450 MHz. This device is suitable for use in CW, pulse and linear applications. This high gain, high efficiency rugged device is targeted to replace industrial magnetrons and will provide longer life and easier servicing.

Typical Performance: In 2400–2500 MHz reference circuit, V_{DD} = 32 Vdc

Frequency (MHz)	Signal Type	P _{in} (W)	G _{ps} (dB)	η _D (%)	P _{out} (W)
2400	CW	9.0	14.5	55.5	255
2450		9.0	14.7	54.8	263
2500		9.0	14.3	55.5	242

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
2450	CW	> 10:1 at all Phase Angles	14 (3 dB Overdrive)	32	No Device Degradation

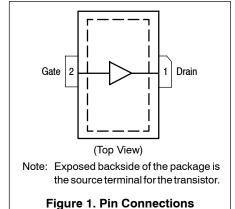
Features

- · Characterized with series equivalent large-signal impedance parameters
- · Internally matched for ease of use
- Qualified up to a maximum of 32 V_{DD} operation
- Integrated high performance ESD protection

Typical Applications

- Industrial heating and drying
- Material welding
- Plasma lighting
- Scientific
- · Medical: skin treatment, blood therapy, electrosurgery

Document Number: MRF7S24250N


Rev. 1, 9/2016

VRoHS

MRF7S24250N

2450 MHz, 250 W, 32 V RF POWER LDMOS TRANSISTOR

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	− 6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	769 3.85	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case CW: Case Temperature 98°C, 250 W CW, I _{DQ} = 100 mA, 2450 MHz	$R_{ heta JC}$	0.26	°C/W
Thermal Impedance, Junction to Case Pulse: Case Temperature 53°C, 250 W Peak, 100 μ sec Pulse Width, 10% Duty Cycle, I _{DQ} = 100 mA, 2450 MHz	$Z_{ heta JC}$	0.024	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 2500 V
Machine Model (per EIA/JESD22-A115)	B, passes 250 V
Charge Device Model (per JESD22-C101)	IV, passes 2000 V

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

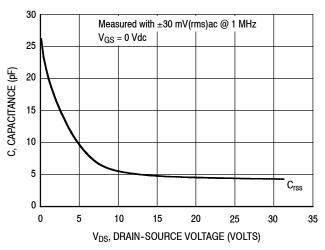
Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics				l	·
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	2	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics					
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 303 \mu \text{Adc})$	V _{GS(th)}	_	1.2	_	Vdc
Gate Quiescent Voltage (V _{DD} = 30 Vdc, I _D = 100 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.1	1.6	2.1	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3.7 Adc)	V _{DS(on)}	_	0.2	_	Vdc
Dynamic Characteristics ⁽⁴⁾					
Reverse Transfer Capacitance (V _{DS} = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	4.3		pF

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.nxp.com/RF/calculators.
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 4. Part internally matched both on input and output.

(continued)

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)


Characteristic	Symbol	Min	Тур	Max	Unit	
Functional Tests (In NXP Test Fixture, 50 ohm system) V_{DD} = 30 Vdc, I_{DQ} 100 μ sec Pulse Width, 10% Duty Cycle	Functional Tests (In NXP Test Fixture, 50 ohm system) V _{DD} = 30 Vdc, I _{DQ} = 100 mA, P _{in} = 9 W Peak (0.9 W Avg.), f = 2450 MHz, 100 μsec Pulse Width, 10% Duty Cycle					

Output Power	P _{out}	237	256	319	W
Drain Efficiency	η_{D}	48	50	=	%
Input Return Loss	IRL	_	-15.0	-8.5	dB

Table 6. Ordering Information

Device	Tape and Reel Information	Package
MRF7S24250NR3	R3 Suffix = 250 Units, 32 mm Tape Width, 13-inch Reel	OM-780-2L

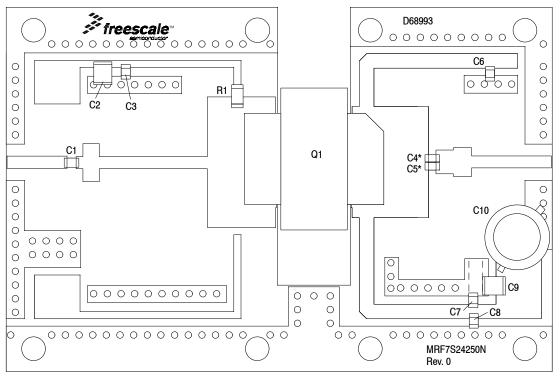
TYPICAL CHARACTERISTICS

Note: Each side of device measured separately.

Figure 2. Capacitance versus Drain-Source Voltage

2400–2500 MHz REFERENCE CIRCUIT — $2'' \times 3''$ (5.1 cm \times 7.6 cm)

Table 7. 2400–2500 MHz Performance (In NXP Reference Circuit, 50 ohm system)


 V_{DD} = 32 Vdc, I_{DQ} = 100 mA, T_{C} = 25°C

Frequency (MHz)	P _{in} (W)	G _{ps} (dB)	η _D (%)	P _{out} (W)
2400	9.0	14.5	55.5	255
2450	9.0	14.7	54.8	263
2500	9.0	14.3	55.5	242

Table 8. Load Mismatch/Ruggedness (In NXP Reference Circuit)

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
2450	CW	> 10:1 at all Phase Angles	14 (3 dB Overdrive)	32	No Device Degradation

2400–2500 MHz REFERENCE CIRCUIT — $2'' \times 3''$ (5.1 cm \times 7.6 cm)

^{*}C4 and C5 are mounted vertically.

Figure 3. MRF7S24250N Reference Circuit Component Layout — 2400–2500 MHz

Table 9. MRF7S24250N Reference Circuit Component Designations and Values — 2400–2500 MHz

Part	Description	Part Number	Manufacturer
C1, C3, C4, C5, C6, C7, C8	27 pF Chip Capacitors	ATC600F270JT250XT	ATC
C2, C9	10 μF Chip Capacitors	GRM32ER61H106KA12L	Murata
C10	220 μF, 50 V Electrolytic Capacitor	227CKE050M	Illinois Capacitor
Q1	RF Power LDMOS Transistor	MRF7S24250NR3	NXP
R1	10 Ω, 1/4 W Chip Resistor	CRCW120610R0FKEA	Vishay
PCB	Rogers RT6035HTC, 0.030", ε _r = 3.66	D68993	MTL

TYPICAL CHARACTERISTICS — 2400–2500 MHz REFERENCE CIRCUIT

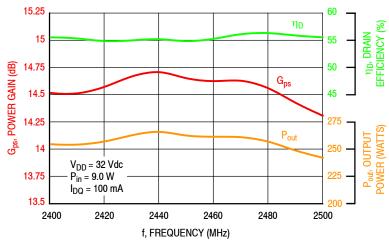


Figure 4. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power

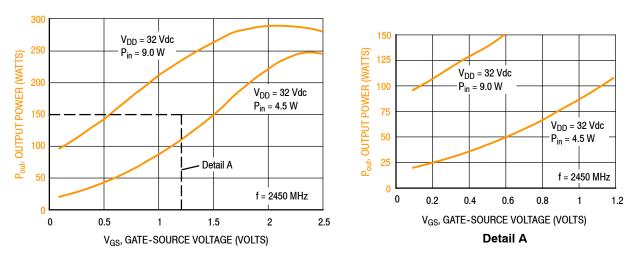


Figure 5. Output Power versus Gate-Source Voltage

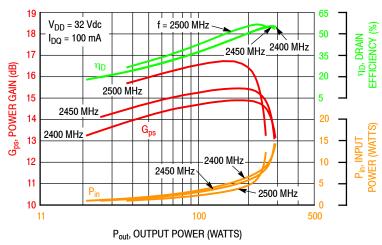
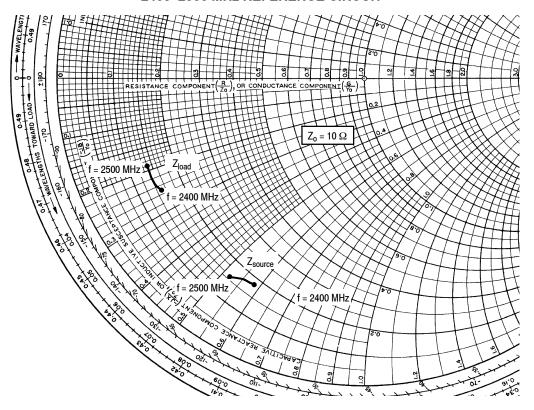



Figure 6. Power Gain, Drain Efficiency and Input Power versus Output Power and Frequency

MRF7S24250N

2400-2500 MHz REFERENCE CIRCUIT

f MHz	$Z_{source} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Z _{load} Ω
2400	1.76 – j5.76	1.49 – j2.45
2450	1.66 – j5.50	1.43 – j2.18
2500	1.56 – j5.23	1.36 – j1.90

Z_{source} = Test circuit impedance as measured from gate to ground.

 $Z_{load} \quad = \mbox{ Test circuit impedance as measured from} \\ \quad drain \mbox{ to ground.}$

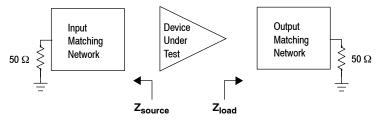


Figure 7. Series Equivalent Source and Load Impedance — 2400–2500 MHz

2450 MHz NARROWBAND PRODUCTION TEST FIXTURE — $3" \times 5"$ (7.6 cm \times 12.7 cm)

Table 10. 2450 MHz Narrowband Performance (In NXP Test Fixture, 50 ohm system) V_{DD} = 30 Vdc, I_{DQ} = 100 mA, P_{in} = 9 W Peak (0.9 W Avg.), f = 2450 MHz, 100 μ sec Pulse Width, 10% Duty Cycle

Characteristic	Symbol	Min	Тур	Max	Unit
Output Power	P _{out}	=	256	_	W
Drain Efficiency	η_{D}	_	49.0	_	%
Input Return Loss	IRL		-17	-9	dB

2450 MHz NARROWBAND PRODUCTION TEST FIXTURE — 3" × 5" (7.6 cm × 12.7 cm)

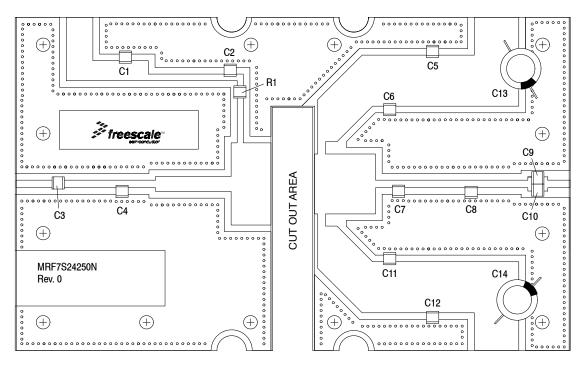
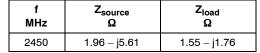



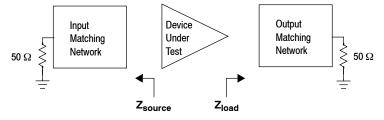
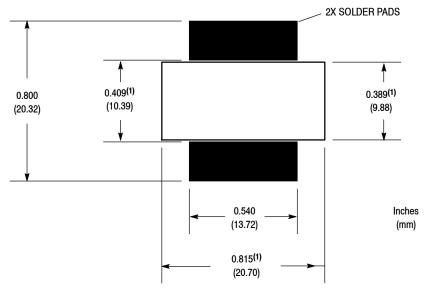
Figure 8. MRF7S24250N Narrowband Test Circuit Component Layout — 2450 MHz

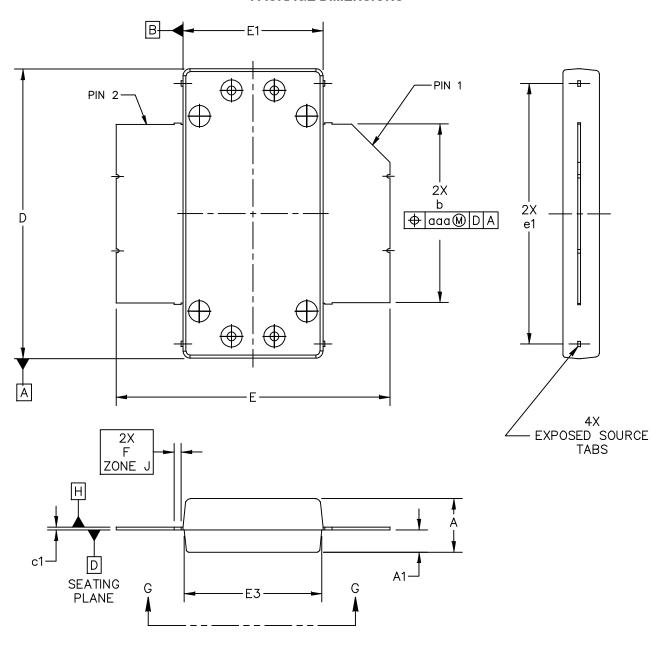
Table 11. MRF7S24250N Narrowband Test Circuit Component Designations and Values — 2450 MHz

Part	Description	Part Number	Manufacturer
C1, C5, C12	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C2, C6, C11	3 pF Chip Capacitors	ATC100B3R0CT500XT	ATC
C3	7.5 pF Chip Capacitor	ATC100B7R5CT500XT	ATC
C4	1.5 pF Chip Capacitor	ATC100B1R5BT500XT	ATC
C7	0.3 pF Chip Capacitor	ATC100B0R3BT500XT	ATC
C8	1.5 pF Chip Capacitor	ATC100B1R5BT500XT	ATC
C9. C10	8.2 pF Chip Capacitors	ATC100B8R2CT500XT	ATC
C13, C14	470 μF, 100 V Electrolytic Capacitors	MCGPR100V477M16X32-RH	Multicomp
R1	5.9 Ω, 1/4 W Chip Resistor	CRCW12065R90FKEA	Vishay
PCB	Taconic RF35, 0.030", $\epsilon_r = 3.5$	_	MTL

Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.


Figure 9. Narrowband Series Equivalent Source and Load Impedance — 2450 MHz

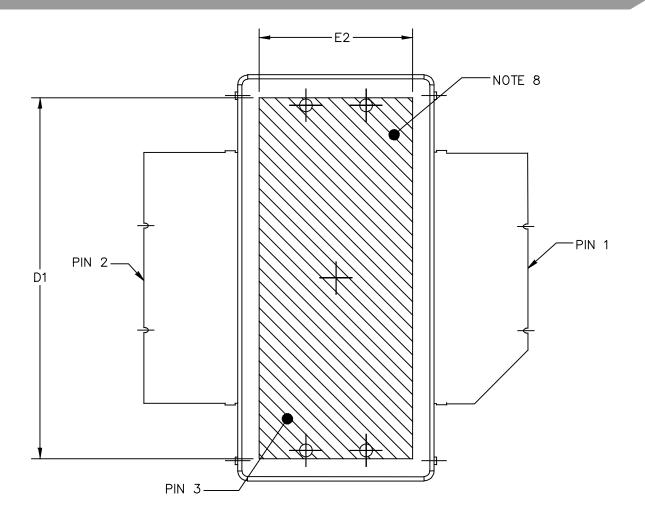

1. Slot dimensions are minimum dimensions and exclude milling tolerances

Figure 10. PCB Pad Layout for OM-780-2L

PACKAGE DIMENSIONS

NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA10831D	REV: C
OM780-2 STRAIGHT LEAD		STANDAF	RD: NON-JEDEC	
STIVITOTT ELIZAB		SOT1693	– 1	22 JAN 2016

BOTTOM VIEW VIEW G-G

NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED			PRINT VERSION NO	T TO SCALE
TITLE:		DOCUME	NT NO: 98ASA10831D	REV: C
OM780-2 STRAIGHT LEAD		STANDAF	RD: NON-JEDEC	
3 MAIGHT LEAD		S0T1693	— 1	22 JAN 2016

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A1 APPLIES WITHIN ZONE "J" ONLY
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.

STYLE 1:
PIN 1 - DRAIN
PIN 2 - GATE
PIN 3 - SOURCE

	INCH M			LIMETER			INCH	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	0. 148	. 152	3. 76	3. 86	b	. 497	. 503	12. 62	12. 78
A 1	. 059	. 065	1. 50	1. 65	c1	. 007	. 011	0. 18	0. 28
D	. 808	. 812	20. 5	20.62	e 1	. 721	. 729	18. 31	18. 52
D1	. 720		18. 29	9					
Е	. 762	. 770	19. 36	5 19. 56	aaa		. 004	0. 10	
E1	. 390	. 394	9. 91	10.01					
E2	. 306		7. 77						
E3	. 383	. 387	9. 73	9. 83					
F	F . 025 BSC		0.	635 BSC					
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANIC					AL OU	TLINE	PRINT VER	SION NOT T	O SCALE
TITLE:	TITLE:					DOCUMEN	NT NO: 98ASA	10831D	REV: C
OM780-2 STRAIGHT LEAD						STANDARD: NON-JEDEC			
STRAIGHT LEAD					-	S0T1693	-1	22	JAN 2016

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- · AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- · AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

White Paper

• RFPLASTICWP: Designing with Plastic RF Power Transistors

Software

- Electromigration MTTF Calculator
- · RF High Power Model
- .s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Aug. 2015	Initial Release of Data Sheet
1	Sept. 2016	 Table 2, Thermal Characteristics: added Thermal Impedance Z_{θJC} data, p. 2 Functional Tests table: table values updated to reflect current test data results. Added Min and Max values, p. 3

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2016 NXP B.V.

Document Number: MRF7S24250N

Rev. 1, 9/2016