

M9328MX21ADSE Application Development System

User's Manual

Document Number: UMS-21100

Rev. A 07/2006

Chapter 1 General Information

1.1	Description	
1.2	M9328MX21ADSE Features	
1.3	System and User Requirements	
1.4	M9328MX21ADSE Diagram	
1.5	ADS Specifications	. 1-4
Chap	ter 2 Configuration and Operation	
2.1	Introduction	. 2-1
2.2	Configuring Board Components.	
2.2.1	Peripheral Selection Switch (S1)	
2.2.2	Mode/User Switch (S2)	
2.3	Operation	
2.3.1	Functional Block Diagram	
2.3.2	On-Board Memory	
2.3.3	Memory Map	
2.3.4	USB On-The-Go Interface	
2.3.5	UART and IrDA	
2.3.6	Ethernet	
2.3.7	Touchscreen ADC.	
2.3.8	CD Quality CODEC	
2.3.9	Keypad	
2.3.10	Memory Mapped I/O	
2.3.11	Audio Indicator (Buzzer)	
2.3.12	LED Indicators	
2.4	Using The Board Connectors	2-12
2.5	Add-On Module Connections and Usage	2-13
2.5.1	Using the TFT LCD Display Panel	
2.5.2	Using the Keypad	
2.5.3	Using a NAND Flash Card	2-16
2.5.4	Using a SD/MMC Card	2-16
2.5.5	Using Image Sensor Daughter Card	2-16
2.5.6	Using the PCMCIA Daughter Card	2-16
2.5.7	Using the TV Encoder Card	2-17
Chap	ter 3 Support Information	
3.1	Introduction	2 1
3.2	CPU to Base Board Connectors PX1, PX2, PY1, and PY2	
3.3	CPU to Option Card Connectors	
3.3 3.4	UART/RS-232 Connectors	
3.4.1	UART1 Connector	
3.4.1	UART4 Connector	
3.4.2	External UART Connector	
J. 4 .J	Laternal CART Connector	J-20

3.5	Multi-ICE Connector	3-20
3.6	Ethernet Connector	3-21
3.7	USB OTG Connector	3-22
3.8	NAND Flash Connector	3-22
3.9	External Keypad Connector	3-25
3.10	LCD Panel Connector	3-26
3.11	TV Encoder Connector	3-27
3.12	SD/MMC Connector	3-28
3.13	Extension and Image Sensor Connectors	3-28
3 14	Disposal Information	3_33

M9328MX21ADSE User's Manual, Rev. A

2

About This Book

This manual explains how to connect and operate the M9328MX21ADS i.MX21 Application Development System.

Audience

The audience for this manual is handheld communication device designers. It is assumed that users are engineers or technicians with experience using development systems.

Organization

The manual consists of three chapters.

- Chapter 1 General Information introduces the user to the features and capabilities of the ADS.
- Chapter 2 Configuration and Operation contains configuration information, connection descriptions, and other operational information that may be useful during the development process.
- Chapter 3 Support Information contains connector pin assignments, connector signal descriptions, and other useful information about the ADS.

Revision History

The following table summarizes changes to this document since the previous release (Rev. A).

Revision History

Location	Revision

Conventions

Units and measures in this manual conform to the International System of Units (SI) as defined by National Institute of Standards and Technology Special Publication 811.

M9328MX21ADSE User's Manual, Rev. A
Freescale Semiconductor
P-1

Downloaded from Arrow.com.

Definitions, Acronyms, and Abbreviations

The following acronyms and abbreviations are used in this manual. This list does not include signal, register, and software mnemonics.

ADS Application Development System

CD Compact Disk

CMOS Complementary Metal Oxide Semiconductor

CODEC Code/Decode

CPU Central Processing Unit

DCE Data Communications Equipment
DIN Deutsches Institut für Normung

DIP Dual In-line Package

DTE Data Terminal Equipment

DUART Dual Universal Asynchronous Receiver/Transmitter

I²C Inter-Integrated Circuit ICE In-Circuit Emulator

I/O Input/Output

IrDA Infrared Data Association
JTAG Joint Test Access Group
LCD Liquid Crystal Display
LED Light Emitting Diode

MB Megabyte

MCU Microcontroller Unit
MMC Multi-media Card
NAND Negative AND

OTG On the Go

PC Personal Computer

PCMCIA Personal Computer Memory Card International Association

SD SanDisk (Smart Media)

SDRAM Synchronous Dynamic Random Access Memory

SI System International (international system of units and measures)

SSI Synchronous Serial Interface

TFT Thin Film Transistor

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus
VDC Volts Direct Current

Chapter 1 General Information

1.1 Description

The M9328MX21ADSE helps you develop applications for the i.MX21 MCU.

The ADS has 19 connectors and sockets that support application software, target board debugging, and optional circuit cards. A separate LCD display panel and a separate keypad are supplied with the ADS. When you connect the LCD panel and keypad to the ADS Base board, they align with each other.

1.2 M9328MX21ADSE Features

ADS features include:

- i.MX21 Multimedia Application Processor
- Two clock-source crystals, 32.768 KHz and 26 MHz
- Power connector for +5.0-volts in from an external regulated power supply, an in-line fuse, and a power on/off switch.
- Voltage regulators that step down the 5.0 VDC input to Vcc (3.0 VDC), 2.5 VDC, 1.8 VDC and 1.5 VDC
- Multi-ICE debug support
- Two 8 MB × 16-bit Burst Flash memory devices configured as one 32 MB, 32-bit device
- Two 16 MB \times 16-bit SDRAM devices configured as one 64 MB, 32-bit device
- High speed expansion connectors for adding optional cards.
- Two-board system: modular CPU board plugs into Base board; Base board has connections for LCD display panel and keypad
- Memory mapped expansion I/O
- Software readable board revisions
- Configuration and user definable DIP switches
- SD/MMC memory card connector
- Two RS-232 transceivers and DB9 connectors (one configured for DCE and one for DTE operation) supporting on-chip UART ports
- External UART with RS-232 transceiver and DB9 connector
- IrDA transceiver that conforms to Specification 1.4 of the Infrared Data Association
- USB OTG (On The Go) interface transceiver and USB mini AB connector
- Separate LCD panel assembly that connects to the Base board and interfaces directly with the ADS
- Touch panel controller for use with the LCD
- Separate keypad unit with 36 push button keys

M9328MX21ADSE User's Manual, Rev. A
Freescale Semiconductor
1-1

General Information

- Separate CMOS Image Sensor Card
- Audio CODEC includes an 11.28 MHz crystal oscillator, a 3.5 mm audio input jack, a 3.5 mm microphone jack, and a 3.5 mm headphone jack
- Cirrus Logic CS8900A-CQ3Z Ethernet controller, with RJ-45 connector for connecting to a system hub
- Two 32×3 -pin DIN expansion connectors with most i.MX21 I/O signals
- Variable resistor for emulation of a battery voltage level
- NAND Flash card (Plugs into CPU Board)
- LED indicators for power, external bus activity, Ethernet activity, and two LEDs for user defined status indiction
- Universal power supply with 5.0-volt output @ 2.4 Amperes
- USB cable
- RS-232 serial cable
- Two RJ-45 Ethernet cables, network, and crossover

1.3 System and User Requirements

To use the ADS, you need:

- An IBM PC or compatible computer that has:
 - A Windows® 98, Windows METM, Windows XPTM, Windows 2000, or Windows NT® (version 4.0) operating system
 - A parallel port and a Multi-ICE device (not included)
- A + 5 VDC power supply @ 2.4 A, with a 2 mm female (inside positive) power connector (included)

CAUTION

Never supply more than +5.5-volts power to your M9328MX21ADSE. Doing so can damage board components.

1.4 M9328MX21ADSE Diagram

Figure 1-1 shows the connectors and other major parts of the ADS Base board and CPU board.

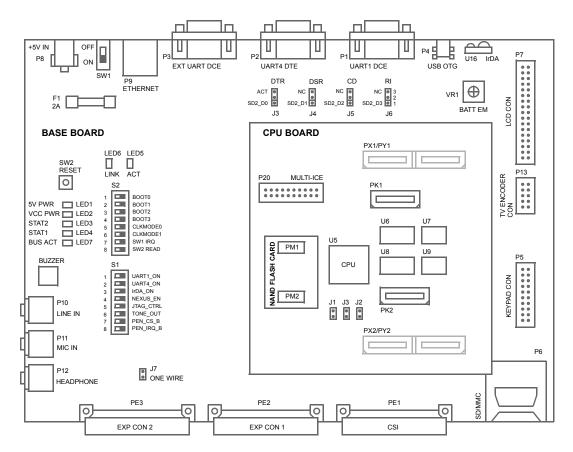


Figure 1-1. M9328MX21ADSE Application Development System

Important board components on the CPU card are:

- U5 i.MX21 MCU
- PX1, PX2 connections to the Base board (bottom side)
- PK1, PK2 connections to option cards
- P20 ARM Multi-ICE connector
- PM1 & PM2 NAND Flash card connectors
- J1, J2, J3 Power interruption jumpers for measuring CPU current consumption

Important board components on the Base board are:

- PY1, PY2 connections to the CPU board
- P1 RS-232 DB9 connector for the processor's UART1, DCE pinout
- P2 RS-232 DB9 connector for the processor's UART4, DTE pinout
- P3 RS-232 DB9 connector for the External UART, DCE pinout
- P4 USB OTG connector
- P5 Keypad module connector
- P6 SD/MMC card connector
- P7 LCD/touch panel connector

General Information

- P8 5.0-volt input power connector
- P9 RJ-45 Ethernet connectors
- P10 Line In to audio CODEC
- P11 Microphone In to audio CODEC
- P12 Headphone Out to audio CODEC
- P13 TV Encoder connector
- PE1 Connector to an Image Sensor card
- PE2, PE3 I/O Extension connectors
- S1 Peripheral enable and JTAG select DIP switches
- S2 Boot mode, clock mode, and user defined DIP switches
- SW1 Power switch
- SW2 Reset switch
- LED1 5 volt power LED (green)
- LED2 3 volt power LED (green)
- LED3 and LED4 General-purpose LEDs (orange)
- LED5, LED6 Ethernet activity LEDs (green, orange)
- LED7 external bus activity LED (red)
- U16 IrDA transceiver
- VR1 emulate the battery voltage level
- J3, J4, J5 and J6 Modem control enable jumpers for RS-232 DTE interface on P2
- J7 One wire interface

1.5 ADS Specifications

Table 1-1 shows M9328MX21ADSE specifications.

Table 1-1. Specifications

Characteristic	Specifications
Clock speed (SDRAM/FLASH)	CPU 266MHz, System 133MHz
Ports	10Base-T (RJ-45), RS-232 serial, USB OTG
Temperature: operating storage	0° to +50° C -40° to +85° C
Relative humidity	0 to 90% (noncondensing)
Power requirements	4.5V — 5.5 VDC @ 2.4 A
Dimensions	7.15 x 9.45 in (18.2 x 24.1 cm)

Chapter 2 Configuration and Operation

2.1 Introduction

This section contains configuration information, connection descriptions, and other operational information that may be useful during the development process.

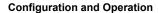

2.2 Configuring Board Components

Table 2-1 is a summary of configuration settings. The following paragraphs provide additional information about configuring and using the ADS.

Table 2-1. Component Configuration Settings

Component	Position	Effect
System Power Switch, SW1	SW1 OFF ON BOARD EDGE	Move this switch to the ON position to enable the power source connected to P8 to power the system. Factory setting is OFF.
System Reset Switch, SW2	SW2	Push to reset the M9328MX21ADSE.
Peripheral Selection Switch, S1	1	The UART1 and UART4 transceivers are forced enabled, the IrDA module is enabled by software, Nexus is disabled, ARM mode JTAG is selected, and the buzzer is connected to PWMO. The LCD touch panel signals are connected. Factory setting is shown. Subsection 2.2.1 explains other settings for this switch.
Mode Switch, S2	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Configures 32-bit Burst Flash as the boot device and the Default clock bypass mode is selected. Factory setting is shown Subsection 2.2.2 explains other settings for this switch.
Power Headers (on CPU card) J1, VCC (3.0 V) J2, 1.8 V J3, 1.5 V	1 2	Connects specified power signal. Factory Setting (Leave jumper installed during normal use.)
	1 2	Connect ammeter across pins to measure processor current consumption from the specified power source.

Freescale Semiconductor 2-1

Table 2-1. Component Configuration Settings (continued)

Component	Position	Effect
Modem Control Enable Jumpers (on Base board) J3, DTR J4, DSR J5, CD	1 2 3	The specified RS-232 control signal of P2 connects to the specified I/O signal. J3 - DTR (pin 4) is controlled by SD2_D0 (output) J4 - DSR (pin 6) can be read on SD2_D1 (input) J5 - CD (pin 1) can be read on SD2-D2 (input) J6 - RI (pin 9) can be read on SD2-D3 (input)
J6, RI	1 2 3	The specified RS-232 control signal of P2 is not connected to any I/O signal and cannot be controlled or read. J3 - DTR is forced active (positive), SD2_D0 is unused J4 - DSR cannot be read, SD2_D1 is unused J5 - CD cannot be read, SD2_D2 is unused J6 - RI cannot be read, SD2_D3 is unused

2.2.1 Peripheral Selection Switch (S1)

S1 is a DIP switch that consists of eight slide switches. Seven of the switches enable and disable software control of the UART transceivers, the IrDA buffers, the Nexus buffer, the touch panel controls, and the buzzer. One switch selects JTAG operation mode.

Table 2-2 shows S1 functionality.

Table 2-2. S1 Switch Settings

Switch Name	Setting	Effect
S1-1, UART1 ON	ON	Forces the UART1 transceiver to be enabled.
S1-1, UARTI_ON	OFF	UART1_EN_B bit controls the UART1 transceiver
S1-2, UART4 ON	ON	Forces the UART4 transceiver to be enabled.
31-2, UART4_ON	OFF	UART4_EN_B bit controls the UART4 transceiver
S1-3, IrDA ON	ON	Forces the IrDA module buffers to be enabled.
31-3, IIDA_ON	OFF	IrDA_EN bit controls the IrDA buffers
S1-4, NEXUS EN	ON	Internal test only.
31-4, NEXOS_EN	OFF	Set to OFF for debugging purposes.
S1-5, JTAG _CTRL	ON	Internal test only.
S1-5, TIAG_CTIL	OFF	ARM Multi-ICE mode selected after TRST.
S1-6, TONE OUT	ON	The buzzer is controlled by the PWMO output.
31-0, TONE_OUT	OFF	PWMO is disconnected from the buzzer circuit.
S1-7, PEN CS B	ON	CSPI_SS0 controls the chip enable of the Touch controller.
O 1-1, 1 LIN_OO_D	OFF	Disables CSPI_SS0 control of the Touch controller chip enable.
S1-8, PEN IRQ B	ON	UART3_CTS is connected to PENIRQ_B out of the Touch controller.
O 1-0, 1 LIV_INQ_D	OFF	UART3_CTS is not connected to PENIRQ_B out of the Touch controller.*

^{*}PENIRQ_B is not connected to anything.

Figure 2-1 shows an example configuration. The switches are set so that the UART1 transceiver and the IrDA module are forced enabled; the UART4 transceiver can be enabled by software; and the NEXUS buffer and buzzer are disabled. In addition, ARM mode JTAG is selected and the LCD touch control signals are enabled.

2-3

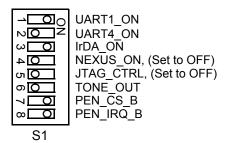


Figure 2-1. Switch S1

2.2.2 Mode/User Switch (S2)

S2 is a DIP switch that consists of eight slide switches. S2-1 to S2-4 configure boot mode and S2-5 and S2-6 control the clock bypass modes. These switch settings take effect only on power up or after a reset. S2 also provides two user definable switches (S2-7 and S2-8). S2-7 can be used to cause an interrupt when switched (SW1 IRQ through signal UART3 CTS).

Table 2-3 lists the settings for the boot-mode subswitches, S2-1 through S2-4.

BOOT3 BOOT2 BOOT1 **BOOT0 Boot Mode, Device** S2-4 S2-3 S2-2 S2-1 Internal bootstrap ROM (USB/UART) ON ON ON ON/OFF NAND, 8-bit, 2KB per page OFF ON ON ON NAND, 16-bit, 2KB per page ON ON OFF OFF NAND, 16-bit, 512bytes per page OFF ON ON ON CS0, 16-bit, D[15:0] OFF ON OFF ON CS0, 32-bit OFF ON OFF ON NAND 8-bit, 512bytes per page ON OFF OFF OFF

Table 2-3. Boot Mode Switch Settings

Figure 2-2 shows an example configuration. S2-1 through S2-4 configure the system to boot from the 8-bit NAND Flash. S2-5 and S2-6 are always set to OFF. S2-7 and S2-8 are set for user-defined functions.

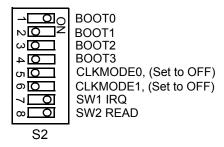


Figure 2-2. Switch S2

M9328MX21ADSE User's Manual, Rev. A
Freescale Semiconductor

Downloaded from Arrow.com.

2.3 Operation

This section describes how the system functions and how to use the boards.

2.3.1 Functional Block Diagram

Figure 2-3 shows the functional interconnections of the ADS in a block diagram format.

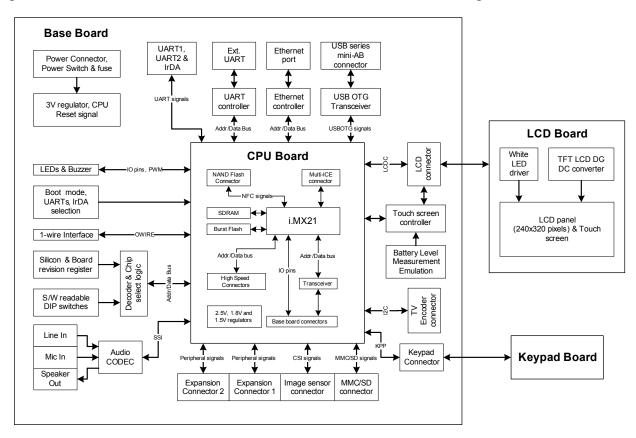


Figure 2-3. Functional Block Diagram of M9328MX21ADSE

2.3.2 On-Board Memory

Figure 2-4 and Figure 2-5 show the on-board memory interface. The M9328MX21ADSE is equipped with 8M x 32-bit Burst Flash and 16M x 32-bit SDRAM. The chip selects \overline{CSO} and \overline{CSO} (\overline{CSDO}) are used for Burst Flash and SDRAM chip selects, respectively.

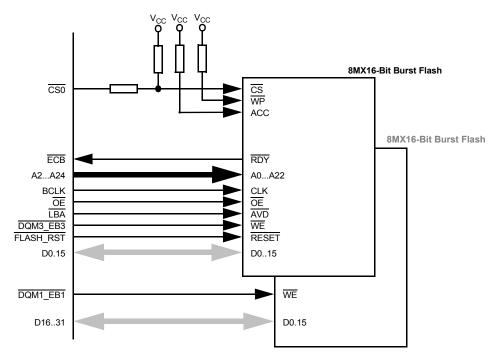


Figure 2-4. Burst Flash Interface

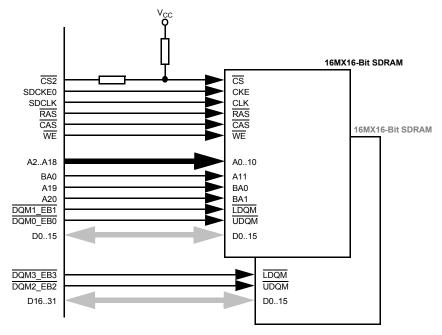


Figure 2-5. SDRAM Interface

2.3.3 Memory Map

Table 2-4 shows the memory map for external peripherals on the ADS board. Because the Burst Flash and the Ethernet Controller do not take up the entire address space of the associated chip selects, software can access the same physical memory location at more than one range of addresses. For instance, SDRAM uses

Configuration and Operation

the entire 64 MB address space allowed for $\overline{\text{CSD0}}$, but the Burst Flash occupies only 32 MB of the 64 MB space available to $\overline{\text{CS0}}$, so it appears in two different ranges of addresses. $\overline{\text{CS1}}$ covers 16 MB allowing many repetitions of the memory mapped peripherals.

		•		
Peripheral	Chip Select	Address Range (HEX)	Act Mem Size	
SDRAM	CSD0	0xC000_0000 to 0xC3FF_FFFF	64 MB	
Burst FLASH	CS0	0xC800 0000 to 0xC9FF_FFFF	32 MB	
Ethernet Controller	CS1	0xCC00 0000 to 0xCC00_000F*	16 BYTES	
External DUART	CS1	0xCC20 0000 to 0xCC20_000F*	16 BYTES	
Read CPU and Base board versions	CS1	Read 0xCC40_0000* D7-D0 = CPU, D15-D8 = Base board	2 BYTES	
Mamary Mannad I/O	CS1	Write to 0xCC80_0000* (Output)	2 BYTES	
Memory Mapped I/O	CS1	Read 0xCC80_0000* (Input)	2 BYTES	
* For I/O operations only D15 - D0 are used				

Table 2-4. M9328MX21ADSE Memory Map

2.3.4 USB On-The-Go Interface

The i.MX21 USB OTG Device Module interfaces with a Phillips ISP1301BS USB transceiver connected to P4, a mini AB USB connector. The interface can function as either a USB host or USB device. The interface includes a Maxim MAX3355EUD+ USB power supply chip which can provide power on the USB bus in host mode. This power supply chip is enabled by the USB_PWR signal. For details on the operation of the USB interface, refer to the i.MX21 data sheet. Figure 2-6 shows the USB interface connection.

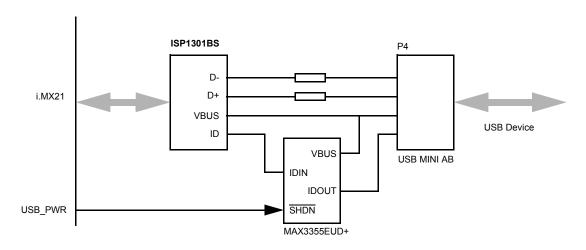


Figure 2-6. USB OTG Interface

2.3.5 UART and IrDA

Figure 2-7 shows how to connect the UART and IrDA circuits.

M9328MX21ADSE User's Manual, Rev. A

Freescale Semiconductor

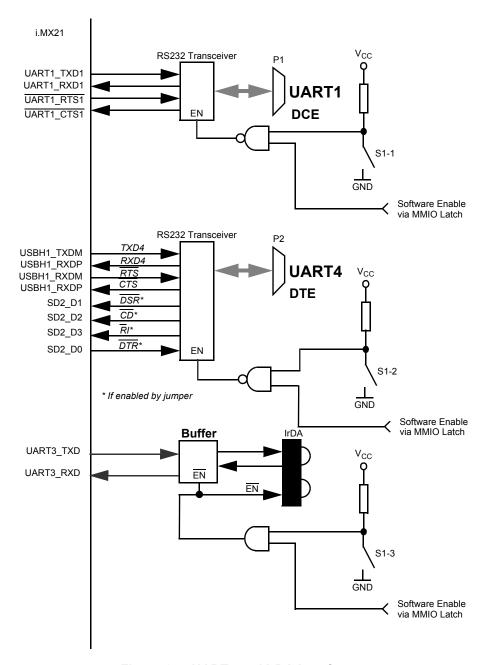



Figure 2-7. UARTs and IrDA Interface

2.3.6 Ethernet

The ADS is equipped with a Cirrus Logic CS8900A-CQ3Z Crystal LAN ISA Ethernet Controller that can interface with the i.MX21. The CS8900A-CQ3Z has 10BaseT transmit and receive filters and operates in I/O mode. Figure 2-8 shows the Ethernet interface.

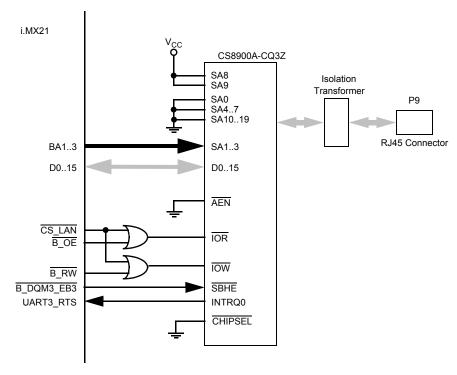


Figure 2-8. Ethernet Interface

2.3.7 Touchscreen ADC

The ADS is equipped with an Analog Devices AD7873BRQZ ADC. The ADC communicates with the touchscreen of the LCD on the Base board. Variable resistor VR1 on the Base board can be used to change the VBAT input voltage to the ADC. The i.MX21 communicates with the ADC via the CSPI1 interface. Setting S1-7 to ON connects CSPI1_SS0 to the ADC chip select. Setting S1-8 to ON connects the ADC interrupt out to UART3 CTS. Figure 2-9 shows the ADC interface.

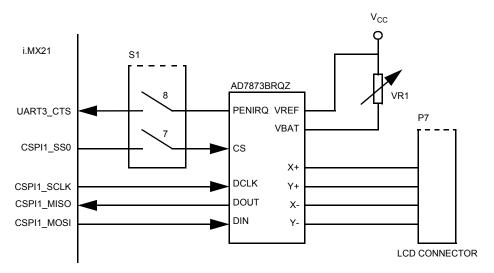


Figure 2-9. ADC Interface

2.3.8 CD Quality CODEC

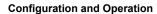
The ADS has a Wolfson WM8731SEDS 32-bit linear low power stereo CODEC with a built-in headphone driver (U24). The CODEC is controlled by the i.MX21, which sends the digital audio data via an SSI2 interface and control data via an I²C interface.

The CODEC has stereo line and mono microphone level audio inputs as well as stereo headphone outputs. It features a mute function, programmable line level volume control, and a bias voltage output suitable for an electret type microphone. Table 2-5 shows the CODEC connectors and describes their basic functions.

Connector	Descriptions
P10	Stereo line in jack
P11	Dynamic microphone input jack
P12	Headphone jack for audio out

Table 2-5. Audio Connectors

The WM8731SEDS data sheet is available at http://www.wolfsonmicro.com/


2.3.9 Keypad

The ADS includes an external keypad module that connects to the Base board. The keys provide tactile feedback. The i.MX21 keypad interface reads the pad via the KCOL[5:0] and KROW[5:0] signals. the interface has chording diodes to prevent ghost key presses. The keys are labeled with numeric, cursor control, soft key, and spare key functions, but the actual functionality is determined by user software. The default keypad can be replaced by a custom design. The UART2 signals that are multiplexed internally with the KCOL[7,6] and KROW[7,6] signals are brought out to keypad connector P5. This allows the use of an 8x8 keypad matrix. Table 2-6 shows the key switch connections to the keypad signals by function name (as labeled on the PCB) and the switch reference designators.

	KCOL5	KCOL4	KCOL3	KCOL2	KCOL1	KCOL0
KROW5	APP1	SEND	KEY 1	UP	KEY 2	END
	SW1	SW2	SW3	SW4	SW5	SW6
KROW4	APP2	HOME	LEFT	ACTION	RIGHT	BACK
	SW7	SW8	SW9	SW10	SW11	SW12
KROW3	DOWN	APP3	1 -	2 ABC	3 DEF	EXTRA 2
	SW13	SW14	SW15	SW16	SW17	SW18
KROW2	VOL UP	APP4	4 GHI	5 JKL	6 MNO	EXTRA 3
	SW19	SW20	SW21	SW22	SW23	SW24
KROW1	VOL DOWN	EXTRA 1	7 PQRS	8 TUV	9 WXYZ	EXTRA 4
	SW25	SW26	SW27	SW28	SW29	SW30
KROW0	POWER	RECORD	*	0 +	#	EXTRA 5
	SW31	SW32	SW33	SW34	SW35	SW36

Table 2-6. Keypad Layout and Connections

Freescale Semiconductor 2-9

2.3.10 Memory Mapped I/O

The ADS uses Memory Mapped I/O to add I/O functions without using the I/O resources of the processor. The following paragraphs describe the I/O functions.

2.3.10.1 Input I/O

A memory read of hex address $0xCC80_0000$ inputs the state of the ADS signals connected to latches U5 and U7. Table 2-7 shows which signal is associated with each data bit.

Table 2-7. Input Buffer Signals

BIT	Signal	Description
BIT 0	SD_WP	Secure Data Write Protect
BIT 1	SW_SEL	Software readable switch
BIT 2	RESET_E_UART	External UART Reset
BIT 3	RESET_BASE	Ethernet controller Reset
BIT 4	CSI_CTL2	Image Sensor control 2
BIT 5	CSI_CTL1	Image Sensor control 1
BIT 6	CSI_CTL0	Image Sensor control 0
BIT 7	UART1_EN	UART1 transceiver enable
BIT 8	UART4_EN	UART4 transceiver enable
BIT 9	LCDON	LCD enable
BIT 10	IRDA_EN	IrDA transceiver enable
BIT 11	IRDA_FIR_SEL	Reserved
BIT 12	IRDA_MD0_B	IrDA SD/Mode (inverted)
BIT 13	IRDA_MD1	Reserved
BIT 14	LED4_ON LED 4 control	
BIT 15	LED3_ON	LED 3 control

2.3.10.2 Output I/O

A memory write to hex address 0xCC80_0000 causes U5 and U7 to latch the logic state of the data bus. Each latch output is associated with the data bus signal of the same number (Bit 0 is equal to DATA0, and so on). All output bits are forced to logic 0 (low) on power up or reset. Table 2-8 shows the functions associated with each data bit.

Table 2-8. Output Latch Functions

Bit	Signal	Description
BIT 0	TP6	Test point
BIT 1	TP7	Test point
BIT 2	RESET_E_UART*	External UART Reset (U17)
BIT 3	RESET_BASE*	Ethernet controller Reset (U9)
BIT 4	CSI_CTL2	Image Sensor control 2
BIT 5	CSI_CTL1	Image Sensor control 1I
BIT 6	CSI_CTL0	Image Sensor control 0
BIT 7	UART1_EN**	UART1 transceiver enable
BIT 8	UART4_EN**	UART4 transceiver enable
BIT 9	LCDON	LCD enable
BIT 10	IRDA_EN**	IrDA transceiver enable
BIT 11	IRDA_FIR_SEL	Reserved
BIT 12	IRDA_MD0_B	IrDA SD/Mode (inverted)
BIT 13	IRDA_MD1	Reserved
BIT 14	LED4_ON	LED 4 control, logic 1 turns on LED
BIT 15	LED3_ON	LED 3 control, logic 1 turns on LED

^{*} Toggle the pin from a logic 0 (low) to a logic 1 (high) and back to logic 0 to reset the selected peripheral.

^{**} The associated x_ON switch (see Table 1-2) must be set OFF to allow the state of these bits to control the associated interface. Setting the bit to logic 1 (high) enables the interface and setting it to logic 0 (low) disables the interface.

2.3.11 Audio Indicator (Buzzer)

The ADS includes an audio indicator or buzzer, U23. When S1-6 is ON, the PWMO pin of the i.MX21 controls this function. This buzzer operates from 1 KHz to 10 KHz. The maximum sound level is reached when the frequency is 3 KHz and the duty cycle is 50%.

2.3.12 LED Indicators

Table 2-9 shows the ADS LED indicators and their associated functions.

Table 2-9. Function of LED Indicators

Reference #	Color	Name	Function
LED1	Green	5V PWR	5 V power is ON
LED2	Green	VCC PWR	3 V power is ON
LED3	Orange	STAT 2	User status controlled by Output BIT 15*
LED4	Orange	STAT 1	User status controlled by Output BIT 14*
LED5	Green	ACTIVE	Blinking indicates LAN Activity
LED6	Orange	LINK	Link good or host controlled output
LED7	Red	BUS ACT	Blinking indicates external bus activity

^{*} A logic high level at the controlling pin turns on the LED. A logic low turns it off.

2.4 Using The Board Connectors

Table 2-10 shows the ADS connectors and functions, as well as special instructions for using the connectors. Figure 1-1 in Chapter 1 shows the connector locations and reference designators.

Table 2-10. M9328MX21ADSE Connectors

Connector	Function	Comments
P1	UART1	RS-232 DCE interface to UART1 of the i.MX21
P2	UART4	RS-232 DTE interface to UART4 of the i.MX21
P3	External UART	RS-232 DCE interface to Port A of the ST16C2552 UART
P4	USB OTG	USB On The Go mini AB connector
P5	Keypad module	Connect the Keypad ribbon cable between this connector and the corresponding connector of the Keypad Module, J1.
P6	SD/MMC	Slide the MMC card into the connector until it snaps into place.
P7	LCD panel	Connect LCD ribbon cable between this connector and the corresponding connector of the LCD display panel, J11.
P8	Power	Plug the 5-volt power-supply jack end into this connector.

Table 2-10. M9328MX21ADSE Connectors (continued)

Connector	Function	Comments
P9	Ethernet	Standard Ethernet connector. A cable for direct network and one for crossover connections (direct to a PC) have been provided.
P10	Line In	Standard 3.5 mm connector for stereo audio input to the WM8731SEDS CODEC
P11	Microphone In	Standard 3.5 mm connector for a microphone. Use only dynamic microphones with a 200 to 600 ohms impedance.
P12	Headphone	Standard 3.5 mm connector for stereo audio. This is the amplified stereo output of the WM8731SEDS. Use headphones with a 16 to 32 ohms impedance.
P13	TV encoder	This connector is used with P7 together to connect the TV encoder card.
PE1	Image Sensor	Connect the image-sensor daughter board to this connector.
PE2, PE3	Expansion	Standard 48 pin, three row, male DIN connectors. Can be connected to directly or cabled to a custom circuit board.
PY1, PY2	CPU	Connect the CPU module to these connectors.
PX1, PX2	Base board	Connect these to the Base board PY connectors.
PK1, PK2	Option Cards	Connect an appropriate Option Card to these connectors
P20 (CPU)	Multi-ICE	Standard ARM Multi-ICE connector
PM1, PM2 (CPU)	NAND Flash	Plug the NAND Flash module into this connector.

2.5 Add-On Module Connections and Usage

Figure 2-10 through Figure 2-12 show how to connect the ADS add-on modules. The following paragraphs describe how to connect and use the add-on modules.

Configuration and Operation

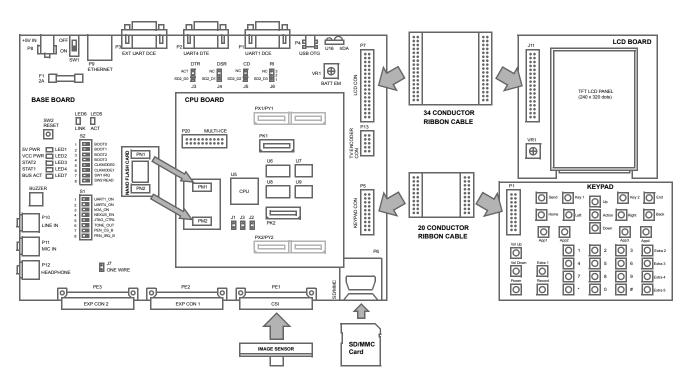


Figure 2-10. Installation of the Main Boards

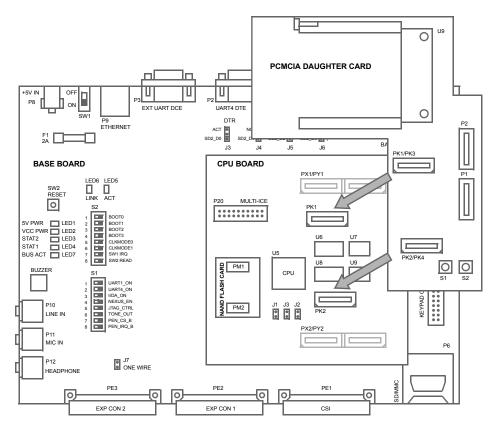


Figure 2-11. Installation of the PCMCIA Daughter Card

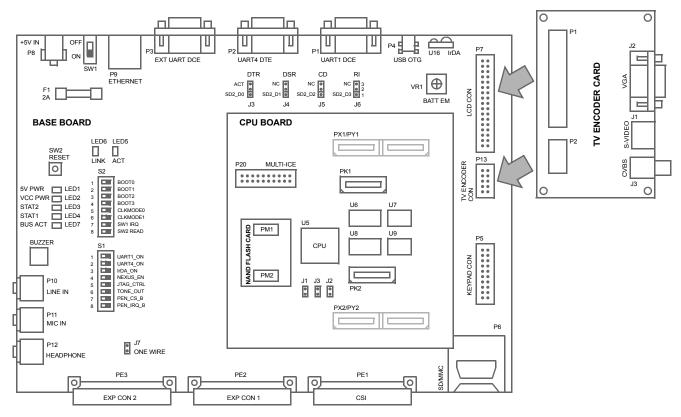


Figure 2-12. Installation of the TV Encoder Card

2.5.1 Using the TFT LCD Display Panel


The ADS is equipped with a Sharp LQ035Q7DB02 touch control enabled TFT LCD display assembly. The ADS documentation CD contains specifications for the TFT LCD component.

CAUTION

Make sure that the input power to the main board is disconnected or switched off before connecting the LCD module. Connecting the module with power applied can damage the LCD module and/or the main board.

To use the TFT LCD display, connect the 34 conductor ribbon cable supplied with the ADS from J11 on the LCD module to P7 on the Base board.

The potentiometer VR1, which is to the left of the LCD panel just below J11, controls flickering of the display screen. This control is set at the factory and normally does not require adjustment. However, if the TFT LCD display flickers, you may adjust VR1 to stabilize the display. Use a suitable flat head or phillips head screwdriver. Because the adjustment is normally done with power applied, we recommend use of a plastic blade tool.

2.5.2 Using the Keypad

To use the keypad module, connect the 20 conductor ribbon cable supplied with the ADS from connector P1 of the Keypad module to P5 of the M9328MX21ADSE Base board.

2.5.3 Using a NAND Flash Card

CAUTION

To avoid circuit damage, do not plug-in the NAND Flash card with power applied to the board.

To use the NAND Flash module supplied with the ADS, connect PN1 & PN2 of the NAND Flash module to PM1 & PM2 on the CPU board. Before installing the card, make sure that S1-4 (the NEXUS_ON switch) is OFF and that the PCMCIA Daughter Card is not installed. For details on the NAND Flash interface, refer to the specification document on the documentation CD.

2.5.4 Using a SD/MMC Card

Connector P6 on the Base board is a SD/MMC card holder. You must obtain a compatible card for use with this connector. Note the card power is connected to 3.0 V

2.5.5 Using Image Sensor Daughter Card

Connector PE1 is pre-configured to operate directly with the IM8012 image sensor daughter card supplied with the ADS. Communication with this card takes place through the I²C interface. For details on image sensor operation, refer to the data sheet on the documentation CD

CAUTION

To avoid circuit damage, do not plug-in the image sensor card with power applied to the board.

To install the image sensor card, plug its 48 position DIN connector into PE1 of the Base board. When the image sensor card is installed, the two boards are at a right angle to each other, with the image sensor facing away from the Base board.

2.5.6 Using the PCMCIA Daughter Card

CAUTION

Make sure that the input power to the Base board is disconnected when installing the PCMCIA daughter card.

To use the PCMCIA daughter card supplied with the ADS, install the card in the sockets PK1 and PK2 on the CPU board. Before installing the daughter card, make sure that S1-4 (the NEXUS_ON switch) is OFF and that there is no NAND Flash card installed at PM1 & PM2.

You must supply a compatible PCMCIA card for use with the PCMCIA daughter card.

2.5.7 Using the TV Encoder Card

A TV encoder card is supplied with the ADS. The main component is a FS453LF (PC to TV Video Scan converter) from FOCUS Enhancements Semiconductor. For details on TV encoder operation, refer to its data sheet, available at http://www.focusinfo.com/

CAUTION

Make sure that input power is disconnected or switched off before the TV encoder card is installed. Connecting the card with power applied can damage the TV encoder card and the Base board.

This TV encoder cannot be used at the same time as the LCD display because they share connector P7 on the Base board. To use the TV encoder module, you must disconnect the LCD board from P7 on the Base board and install the TV encoder module in P7 and P13 of the Base board.

Configuration and Operation

Chapter 3 Support Information

3.1 Introduction

This section contains connector pin assignments, connector signal descriptions, and other useful information about the M9328MX21ADSE. Both the CPU and Base board connectors are described.

The tables in this section list signal names as they appear in the schematics for the boards. The figures usually refer to the same signal name, but may substitute a generally accepted standard name for that function. For example, all RS-232 transmitted data signals are referred to as TXD regardless of which RS-232 connector is being illustrated. Also, the use of "_B" at the end of a signal name indicates that the active state of the signal is logic level zero or ground potential (active low).

3.2 CPU to Base Board Connectors PX1, PX2, PY1, and PY2

The PX1 and PX2 connectors located at the bottom side of the ADS CPU card connect this board to the ADS Base board through connectors PY1 and PY2 located on the top side of the board. Figure 3-1 shows the pin assignments for the PX1 and PY1 connectors. Table 3-1 provides signal descriptions for these connectors. Figure 3-2 shows the pin assignments for the PX2 and PY2 connectors and Table 3-2 provides signal descriptions for these connectors.

Support Information

```
PX1
       OE ACD
                                 VCC
                              2
FLM_VSYNC_SPS
                 3
                              4
                                 CONTRAST
       SPL_SPR
                 5
                              6
                                 LP HSYNC
           VCC
                 7
                              8
                                 PS
           CLS
                 9
                             10
                                 REV
         LSCLK
                 11
                             12
                                 LD17 R5
       LD16_R4
                 13
                             14
                                 LD15_R3
       LD14_R2
                 15
                             16
                                 LD13_R1
       LD12_R0
                 17
                             18
                                 LD11_G5
       LD10_G4
                                 LD9 G3
                 19
                             20
        LD8 G2
                             22
                                 LD7_G1
                 21
        LD6_G0
                 23
                             24
                                 LD5_B5
        LD4_B4
                 25
                             26
                                 LD3_B3
        LD2_B2
                 27
                             28
                                 LD1_B1
        LD0 B0
                                 VCC
                 29
                             30
    UART3 RXD
                                 UART3 RTS
                 31
                             32
                             34
    UART3_TXD
                 33
                                 UART3_CTS
    USBG_RXDP
                 35
                             36
                                 USBG_OE_B
    USBG_RXDM
                 37
                             38
                                 USBG_ON_B
    USBG_TXDP
                 39
                             40
                                 USBG_FS
    USBG TXDM
                             42
                                 USBG SCL
                 41
                             44
                                 P5V
     USBG_SDA
                 43
           P5V
                 45
                             46
                                 USBH1_FS
   USBH1_TXDP
                 47
                             48
                                 USB_OC_B
   USBH1_TXDM
                                 USBH1 OE B
                 49
                             50
   USBH1_RXDP
                                 USBH_ON_B
                 51
                             52
                             54
   USBH1_RXDM
                 53
                                 USB_PWR
    USB BYP B
                 55
                             56
                                 USBOTG EN
           P5V
                 57
                             58
                                 B_DQM3_EB3_B
          TP22
                 59
                             60
                                 GND
        CLK 26
                 61
                             62
                                 VCC
    UART1_RTS
                             64
                                 UART1_CTS
                 63
                                 UART1_TXD
    UART1_RXD
                 65
                             66
    UART2_RTS
                 67
                             68
                                 UART2_CTS
    UART2_RXD
                                 UART2_TXD
                 69
                             70
         BOOT3
                                 BOOT2
                 71
                             72
                             74
                 73
         BOOT1
                                 BOOT0
         PWM0
                 75
                             76
                                 TIN
     JTAG_CTRL
                 77
                             78
                                 TOUT
    RESET_IN_B
                                 RESET_OUT_B
                             80
                 79
         POR B
                                 RTCK GPIO
                 81
                             82
                             84
     CLKMODE0
                 83
                                 CLKMODE1
       B_CS5_B
                 85
                             86
                                 B_CS4_B
       B_CS1_B
                 87
                             88
                                 B_CS0_B
                                 B_RW_B
        B_OE_B
                 89
                             90
   B NEXUSEVTI
                                 NEXUS EN B
                 91
                             92
                             94
          B_A0
                 93
                                 B_A1
          B_A2
                 95
                             96
                                 B_A3
          B_D7
                 97
                             98
                                 B D15
          B D6
                             100 B D14
                 99
          B_D5
                             102 B_D13
                 101
          B_D4
                             104 B_D12
                103
          B D3
                105
                             106 B_D11
          B_D2
                 107
                             108
                                 B_D10
          B D1
                             110 B D9
                109
          B D0
                 111
                             112
                                 B D8
         B_A20
                113
                             114
                                 B_A21
         B A22
                115
                             116
                                 B A23
         B_A24
                 117
                             118
                                 B_A25
          TP25
                119
                             120
                                 GND
```

Figure 3-1. CPU to Base Board PX1/PY1 Connector Pin Assignments

Table 3-1. CPU to Base Board PX1/PY1 Connector Signals

Pin(s)	Signal	Description
1	OE_ACD	OUTPUT ENABLE / ALTERNATE CRYSTAL DIRECTION
2, 7, 30, 62	VCC	+3.0 VDC power
3	FLM_VSYNC_SPS	FIRST LINE MARKER / VERTICAL SYNCHRONIZATION
4	CONTRAST	LCD bias voltage used as contrast control
5	SPL_SPR	SAMPLING LEFT to RIGHT— Horizontal scan direction
6	LP_HSYNC	LINE PULSE / HORIZONTAL SYNCHRONIZATION
8	PS	Control signal output for source driver (Sharp panel dedicated signal)
9	CLS	Start signal output for gate driver. Inverted version of PS (Sharp panel dedicated signal)
10	REV	Signal for common electrode driving signal preparation (Sharp panel dedicated signal)
11	LSCLK	LCD SHIFT CLOCK — Output to LCD
12	LD17_R5	LCD DATA 17 / RED BIT 5 — Output data to LCO
13	LD16_R4	LCD DATA 16 / RED BIT 4 — Output data to LCD
14	LD15_R3	LCD DATA 15 / RED BIT 3 — Output data to LCD
15	LD14_R2	LCD DATA 14 / RED BIT 2 — Output data to LCD
16	LD13_R1	LCD DATA 13 / RED BIT 1 — Output data to LCD
17	LD12_R0	LCD DATA 12 / RED BIT 0 — Output data to LCD
18	LD11_G5	LCD DATA 11 / GREEN BIT 5 — Output data to LCD
19	LD10_G4	LCD DATA 10 / GREEN BIT 4 — Output data to LCD
20	LD9_G3	LCD DATA 9 / GREEN BIT 3 — Output data to LCD
21	LD8_G2	LCD DATA 8 / GREEN BIT 2 — Output data to LCD
22	LD7_G1	LCD DATA 7 / GREEN BIT 1 — Output data to LCD
23	LD6_G0	LCD DATA 6 / GREEN BIT 0 — Output data to LCD
24	LD5_B5	LCD DATA 5 / BLUE BIT 5 — Output data to LCD
25	LD4_B4	LCD DATA 4 / BLUE BIT 4 — Output data to LCD
26	LD3_B3	LCD DATA 3 / BLUE BIT 3 — Output data to LCD
27	LD2_B2	LCD DATA 2 / BLUE BIT 2 — Output data to LCD
28	LD1_B1	LCD DATA 1 / BLUE BIT 1 — Output data to LCD
29	LD0_B0	LCD DATA 0 / BLUE BIT 0 — Output data to LCD
31	UART3_RXD	UART3 RECEIVED DATA — Serial input signal

Support Information

Table 3-1. CPU to Base Board PX1/PY1 Connector Signals (continued)

Pin(s)	Signal	Description
32	UART3_RTS	UART3 REQUEST TO SEND — Active low input signal
33	UART3_TXD	UART3 TRANSMITTED DATA — Serial output signal
34	UART3_CTS	UART3 CLEAR TO SEND — Active low output signal
35	USBG_RXDP	USB OTG RECEIVED DATA PLUS input
36	USBG_OE_B	USB OTG OUTPUT ENABLE
37	USBG_RXDM	USB OTG RECEIVED DATA MINUS input
38	USBG_ON_B	USB OTG transceiver ON
39	USBG_TXDP	USB OTG TRANSMITTED DATA PLUS output
40	USBG_FS	USB OTG FULL SPEED
41	USBG_TXDM	USB OTG TRANSMITTED DATA MINUS output
42	USBG_SCL	USB OTG SERIAL CLOCK
43	USBG_SDA	USB OTG SERIAL DATA
44, 45, 57	P5V	Swithched +5 VDC power
46	USBH1_FS	USB FULL SPEED
47	USBH1_TXDP	USB TRANSMITTED DATA PLUS output
48	USB_OC_B	USB OVER CURRENT input low.
49	USBH1_TXDM	USB TRANSMITTED DATA MINUS output
50	USBH1_OE_B	USB OUTPUT ENABLE
51	USBH1_RXDP	USB RECEIVED DATA PLUS input
52	USBH_ON_B	USB transceiver ON
53	USBH1_RXDM	USB RECEIVED DATA MINUS input
54	USB_PWR	USB POWER output.
55	USB_BYP_B	USB BY PASS input active low
56	USBOTG_EN	Not used
58	B_DQM3_EB3_B	BUFFERED ENABLE BYTE 3 — D[7:0] for SDRAM, D[31:24] for other memory types
59	TP22	Test point
60, 120	GND	GROUND
61	CLK_26	26 MHz clock from TV Encoder Card
63	UART1_RTS	UART1 REQUEST TO SEND — Active low input signal
64	UART1_CTS	UART1 CLEAR TO SEND — Active low output signal
65	UART1_RXD	UART1 RECEIVED DATA — Serial input signal

Table 3-1. CPU to Base Board PX1/PY1 Connector Signals (continued)

Pin(s)	Signal	Description
66	UART1_TXD	UART1 TRANSMITTED DATA — Serial output signal
67	UART2_RTS	UART2 REQUEST TO SEND — Active low input signal
68	UART2_CTS	UART2 CLEAR TO SEND — Active low output signal
69	UART2_RXD	UART2 RECEIVED DATA — Serial input signal
70	UART2_TXD	UART2 TRANSMITTED DATA — Serial output signal
71	воот3	BOOT location select input bit 3
72	BOOT2	BOOT location select input bit 2
73	BOOT1	BOOT location select input bit 1
74	воото	BOOT location select input bit 0
75	PWM0	PULSE WIDTH MODULATOR OUTPUT
76	TIN	TIMER INPUT CAPTURE — Timer input
77	JTAG_CTRL	JTAG CONTROL — input to select between and ARM and normal JTAG operation
78	TOUT	TIMER OUTPUT
79	RESET_IN_B	RESET IN — Active low reset signal to the processor
80	RESET_OUT_B	RESET OUT — Active low reset signal from the processor
81	POR_B	POWER ON RESET
82	RTCK_GPIO	RETURN CLOCK — JTAG signal, can be general purpose I/O
83	CLKMODE0	CLOCK MODE BIT 0 — Selects PLL bypass modes
84	CLKMODE1	CLOCK MODE BIT 1 — Selects PLL bypass modes
85	B_CS5_B	BUFFERED CHIP SELECTS 5 — Chip select signal, active low output (Reserved)
86	B_CS4_B	BUFFERED CHIP SELECTS 4 — Chip select signal, active low output (Reserved)
87	B_CS1_B	BUFFERED CHIP SELECTS 1 — Chip select signal, active low output
88	B_CS0_B	BUFFERED CHIP SELECTS 0 — Chip select signal, active low output (Reserved)
89	B_OE_B	BUFFERED OUTPUT ENABLE— Enables external devices to drive the data bus, active low output
90	B_RW_B	BUFFERED READ/WRITE — A low indicates an external write operation, a high indicates a read operation type
91	B_NEXUSEVTI	Internal use only
92	NEXUS_EN_B	Internal use only
93	B_A0	BUFFERED ADDRESS 0— Buffered address output (Reserved)
94	B_A1	BUFFERED ADDRESS 1— Buffered address output
95	B_A2	BUFFERED ADDRESS 2 — Buffered address output

Support Information

Table 3-1. CPU to Base Board PX1/PY1 Connector Signals (continued)

Pin(s)	Signal	Description
96	B_A3	BUFFERED ADDRESS 3 — Buffered address output
97	B_D7	BUFFERED DATA 7— Buffered bidirectional data bus bit
98	B_D15	BUFFERED DATA 15 — Buffered bidirectional data bus bit
99	B_D6	BUFFERED DATA 6 — Buffered bidirectional data bus bit
100	B_D14	BUFFERED DATA 14 — Buffered bidirectional data bus bit
101	B_D5	BUFFERED DATA 5— Buffered bidirectional data bus bit
102	B_D13	BUFFERED DATA 13 — Buffered bidirectional data bus bit
103	B_D4	BUFFERED DATA 4 — Buffered bidirectional data bus bit
104	B_D12	BUFFERED DATA 12 — Buffered bidirectional data bus bit
105	B_D3	BUFFERED DATA 3 — Buffered bidirectional data bus bit
106	B_D11	BUFFERED DATA 11 — Buffered bidirectional data bus bit
107	B_D2	BUFFERED DATA 2 — Buffered bidirectional data bus bit
108	B_D10	BUFFERED DATA 10— Buffered bidirectional data bus bit
109	B_D1	BUFFERED DATA 1 — Buffered bidirectional data bus bit
110	B_D9	BUFFERED DATA 9— Buffered bidirectional data bus bit
111	B_D0	BUFFERED DATA 0— Buffered bidirectional data bus bit
112	B_D8	BUFFERED DATA 8— Buffered bidirectional data bus bit
113	B_A20	BUFFERED ADDRESS 20 — Buffered address output (Reserved)
114	B_A21	BUFFERED ADDRESS 21 — Buffered address output
115	B_A22	BUFFERED ADDRESS 22 — Buffered address output
116	B_A23	BUFFERED ADDRESS 23 — Buffered address output
117	B_A24	BUFFERED ADDRESS 24 — Buffered address output (Reserved)
118	B_A25	BUFFERED ADDRESS 25 — Buffered address output (Reserved)
119	TP25	Test point


```
PX2
      SD1 D3
                                 VCC
                1
                             2
                                 SD1_CMD
       SD1_D2
                3
                             4
                5
                             6
      SD1_D1
                                 SD1 CLK
      SD1_D0
                7
                             8
                                 VCC
     SD2_CLK
                9
                             10
                                 SD2_CMD
      SD2 D3
                11
                             12
                                 SD2 D2
                13
                             14
      SD2_D1
                                 SD2_D0
   CSI_HSYNC
                15
                             16
                                 CSI_VSYNC
   CSI_PIXCLK
                17
                             18
                                 CSI_MCLK
       CSI D7
                                 CSI D6
                             20
                19
       CSI<sub>D5</sub>
                             22
                                 CSI<sub>D4</sub>
                21
       CSI_D3
                             24
                23
                                 CSI_D2
       CSI_D1
                25
                             26
                                 CSI D0
      I2C_CLK
                27
                             28
                                 IS2_DATA
     SSI3_CLK
                             30
                                 SSI3_TXD
                29
     SSI3 RXD
                             32
                                 SSI3 FS
                31
     SSI2_CLK
                33
                             34
                                 SSI2_TXD
                35
                             36
     SSI2_RXD
                                 SSI2_FS
     SSI1_CLK
                37
                             38
                                 SSI1_TXD
     SSI1_RXD
                                 SSI1_FS
                39
                             40
     SAP CLK
                41
                             42
                                 SAP RXD
      SAP_FS
                43
                             44
                                 SAP_TXD
   CSPI1_MOSI
                45
                             46
                                 CSPI1_MISO
   CSPI1_SCLK
                47
                             48
                                 CSPI1_SS0
    CSPI1 SS1
                49
                                 CSPI1_SS2
                             50
   CSPI1 RDY
                51
                             52
                                 VCC
   CSPI2_MOSI
                             54
                                 CSPI2_MISO
                53
   CSPI2 SCLK
                             56
                55
                                 CSPI2_SS0
    CSPI2_SS1
                57
                             58
                                 CSPI2_SS2
          P5V
                59
                             60
                                 P5V
          VCC
                61
                             62
                                 CPU BD ID0
  CPU_BD_ID7
                63
                             64
                                 CPU_BD_ID1
  CPU_BD_ID6
CPU_BD_ID5
                65
                             66
                                 CPU_BD_ID2
                67
                             68
                                 CPU_BD_ID3
  CPU_BD_ID4
                69
                             70
                                 VCC
     KP COL5
                                 KP ROW5
                71
                             72
     KP_COL4
                73
                             74
                                 KP_ROW4
                                 KP_ROW3
     KP_COL3
                75
                             76
     KP_COL2
                77
                             78
                                 KP_ROW2
     KP COL1
                                 KP_ROW1
                79
                             80
     KP_COL0
                             82
                                 KP_ROW0
                81
B_DQM0_EB0_B
                             84
                                 B_DQM1_EB1_B
                83
B_DQM2_EB2_B
                85
                             86
                                 TP21
         B_A4
                87
                             88
                                 B_A5
         B_A6
                89
                             90
                                 B_A7
         B A8
                             92
                                 B A9
                91
        B_A10
                93
                             94
                                 B_A11
        B_A12
                95
                             96
                                 B_A13
        B_A14
                97
                             98
                                 B_A15
                            100 B_A17
        B A16
                99
        B_A18
                            102 B_A19
                101
        B_D16
                            104 B_D17
               103
        B D18
               105
                            106 B_D19
        B_D20
               107
                            108 B_D21
        B_D22
                            110 B D23
               109
        B D24
                111
                            112
                                 B D25
        B_D26
               113
                            114
                                 B_D27
        B D28
                115
                            116
                                 B D29
        B_D30
                117
                            118
                                 B_D31
    RESET_SW
               119
                            120
                                 GND
```

Figure 3-2. CPU to Base Board PX2/PY2 Connector Pin Assignments

M9328MX21ADSE User's Manual, Rev. A

Freescale Semiconductor 3-7

Table 3-2. CPU to Base Board PX2/PY2 Connector Signals

Pin(s)	Signal	Description
1	SD1_D3	SD/MMC DATA BIT 3 — Serial data bit to SD/MMC card, bidirectional
2, 8, 52, 61, 70	VCC	+3.0 VDC power
3	SD1_D2	SD/MMC DATA BIT 2 — Serial data bit to SD/MMC card, bidirectional
4	SD1_CMD	SD/MMC COMMAND — Serial command bit to SD/MMC card, bidirectional
5	SD1_D1	SD/MMC DATA BIT 1 — Serial data bit to SD/MMC card, bidirectional
6	SD1_CLK	SD/MMC CLOCK — Clock output to SD/MMC card
7	SD1_D0	SD/MMC DATA BIT 0 — Serial data bit to SD/MMC card, bidirectional
9	SD2_CLK	SD/MMC CLOCK — Clock output to SD/MMC card
10	SD2_CMD	SD/MMC COMMAND — Serial command bit to SD/MMC card, bidirectional
11	SD2_D3	SD/MMC DATA BIT 3 — Serial data bit to SD/MMC card, bidirectional
12	SD2_D2	SD/MMC COMMAND — Serial command bit to SD/MMC card, bidirectional
13	SD2_D1	SD/MMC DATA BIT 1 — Serial data bit to SD/MMC card, bidirectional
14	SD2_D0	SD/MMC DATA BIT 2 — Serial data bit to SD/MMC card, bidirectional
15	CSI_HSYNC	CMOS SENSOR INTERFACE HORIZONTAL SYNC— Control input
16	CSI_VSYNC	CMOS SENSOR INTERFACE VERTICAL SYNC — Control input
17	CSI_PIXCLK	CMOS SENSOR INTERFACE PIXAL CLOCK — Data latch strobe
18	CSI_MCLK	CMOS SENSOR INTERFACE MASTER CLOCK — Clock output to sensor card
19	CSI_D7	CMOS SENSOR INTERFACE DATA 7— Image Sensor input data
20	CSI_D6	CMOS SENSOR INTERFACE DATA 6— Image Sensor input data
22	CSI_D5	CMOS SENSOR INTERFACE DATA 5— Image Sensor input data
21	CSI_D4	CMOS SENSOR INTERFACE DATA 4— Image Sensor input data
23	CSI_D3	CMOS SENSOR INTERFACE DATA 3— Image Sensor input data
24	CSI_D2	CMOS SENSOR INTERFACE DATA 2— Image Sensor input data
25	CSI_D1	CMOS SENSOR INTERFACE DATA 1— Image Sensor input data
26	CSI_D0	CMOS SENSOR INTERFACE DATA 0— Image Sensor input data
27	I2C_CLK	I SQUARED C CLOCK — Serial clock, bidirectional
28	IS2_DATA	I SQUARED C DATA — Serial data, bidirectional
29	SSI3_CLK	SYCHRONOUS SERIAL INTERFACE TRANSMITTER CLOCK — Bidirectional, output in master mode and input in slave mode

Table 3-2. CPU to Base Board PX2/PY2 Connector Signals (continued)

Pin(s)	Signal Description		
30	SSI3_TXD	SYCHRONOUS SERIAL INTERFACE TRANSMITTED DATA — Serial output signal	
31	SSI3_RXD	SYCHRONOUS SERIAL INTERFACE RECEIVED DATA — Serial input signal	
32	SSI3_FS	SYCHRONOUS SERIAL INTERFACE FRAME SYNC	
33	SSI2_CLK	SYCHRONOUS SERIAL INTERFACE TRANSMITTER CLOCK — Bidirectional, output in master mode and input in slave mode	
34	SSI2_TXD	SYCHRONOUS SERIAL INTERFACE TRANSMITTED DATA — Serial output signal	
35	SSI2_RXD	SYCHRONOUS SERIAL INTERFACE RECEIVED DATA — Serial input signal	
36	SSI2_FS	SYCHRONOUS SERIAL INTERFACE FRAME SYNC	
37	SSI1_CLK	SYCHRONOUS SERIAL INTERFACE TRANSMITTER CLOCK — Bidirectional, output in master mode and input in slave mode	
38	SSI1_TXD	SYCHRONOUS SERIAL INTERFACE TRANSMITTED DATA — Serial output signal	
39	SSI1_RXD	SYCHRONOUS SERIAL INTERFACE RECEIVED DATA — Serial input signal	
40	SSI1_FS	SYCHRONOUS SERIAL INTERFACE FRAME SYNC	
41	SAP_CLK	SYCHRONOUS AUDIO PORT CLOCK — Serial transmit clock, bidirectional, output in master mode, input in slave mode	
42	SAP_RXD	P_RXD SYCHRONOUS AUDIO PORT RECEIVED DATA — Serial data input	
43	SAP_FS	SYCHRONOUS AUDIO PORT FRAME SYNC — Bidirectional, output in master modinput in slave mode	
44	SAP_TXD	SYCHRONOUS AUDIO PORT TRANMITTED DATA — Serial data output	
45	CSPI1_MOSI	MASTER OUT / SLAVE IN — CSPI data signal (bidirectional)	
46	CSPI1_MISO	1_MISO MASTER IN / SLAVE OUT — CSPI data signal (bidirectional)	
47	CSPI1_SCLK	SERIAL CLOCK — Bidirectional	
48	CSPI1_SS0	SLAVE SELECT 0 — CSPI signal (bidirectional)	
49	CSPI1_SS1	SLAVE SELECT 1 — CSPI signal (bidirectional)	
50	CSPI1_SS2	SLAVE SELECT 2 — CSPI signal (bidirectional)	
51	CSPI1_RDY	READY — CSPI serial burst trigger, active low input	
53	CSPI2_MOSI	MASTER OUT / SLAVE IN — CSPI data signal (bidirectional)	
54	CSPI2_MISO	MASTER IN / SLAVE OUT — CSPI data signal (bidirectional)	
55	CSPI2_SCLK	SERIAL CLOCK — Bidirectional	
56	CSPI2_SS0	SLAVE SELECT 0 — CSPI signal (bidirectional)	
57	CSPI2_SS1	SLAVE SELECT 1 — CSPI signal (bidirectional)	
58	CSPI2_SS2	SLAVE SELECT 2 — CSPI signal (bidirectional)	
59, 60	P5V	Swithched +5 VDC power	

Table 3-2. CPU to Base Board PX2/PY2 Connector Signals (continued)

Pin(s)	Signal	Description	
62	CPU_BD_ID0	CPU BOARD ID 0 — Indicates the build revision of the CPU board	
63	CPU_BD_ID7	CPU BOARD ID 1 — Indicates the build revision of the CPU board	
64	CPU_BD_ID1	CPU BOARD ID 2 — Indicates the build revision of the CPU board	
65	CPU_BD_ID6	CPU BOARD ID 3 — Indicates the build revision of the CPU board	
66	CPU_BD_ID2	CPU BOARD ID 4 — Indicates the build revision of the CPU board	
67	CPU_BD_ID5	CPU BOARD ID 5 — Indicates the build revision of the CPU board	
68	CPU_BD_ID3	CPU BOARD ID 6 — Indicates the build revision of the CPU board	
69	CPU_BD_ID4	CPU BOARD ID 7 — Indicates the build revision of the CPU board	
71	KP_COL5	KEYPAD COLUMN 5 — Bidirectional signal use to scan a keypad	
72	KP_ROW5	KEYPAD ROW 5 — Bidirectional signal use to scan a keypad	
73	KP_COL4	KEYPAD COLUMN 4 — Bidirectional signal use to scan a keypad	
74	KP_ROW4	KEYPAD ROW 4 — Bidirectional signal use to scan a keypad	
75	KP_COL3	KEYPAD COLUMN 3 — Bidirectional signal use to scan a keypad	
76	KP_ROW3	KEYPAD ROW 3 — Bidirectional signal use to scan a keypad	
77	KP_COL2	KEYPAD COLUMN 2 — Bidirectional signal use to scan a keypad	
78	KP_ROW2	KEYPAD ROW 2 — Bidirectional signal use to scan a keypad	
79	KP_COL1	KEYPAD COLUMN 1 — Bidirectional signal use to scan a keypad	
80	KP_ROW1	KEYPAD ROW 1 — Bidirectional signal use to scan a keypad	
81	KP_COL0	KEYPAD COLUMN 0 — Bidirectional signal use to scan a keypad	
82	KP_ROW0	KEYPAD ROW 0 — Bidirectional signal use to scan a keypad	
83	B_DQM0_EB0_B	BUFFERED ENABLE BYTE 0 — D[31:24] for SDRAM, [D7:0] for other memory types (Reserved)	
84	B_DQM1_EB1_B	BUFFERED ENABLE BYTE 1 — D[23:16] for SDRAM, D[15:8] for other memory types (Reserved)	
85	B_DQM2_EB2_B	BUFFERED ENABLE BYTE 2 — D[15:8] for SDRAM, D[23:16] for other memory types (Reserved)	
86	TP21	Test point	
87	B_A4	BUFFERED ADDRESS 4 — Buffered address output (Reserved)	
88	B_A5	BUFFERED ADDRESS 5 — Buffered address output (Reserved)	
89	B_A6	BUFFERED ADDRESS 6 — Buffered address output (Reserved)	
90	B_A7	BUFFERED ADDRESS 7 — Buffered address output (Reserved)	
91	B_A8 BUFFERED ADDRESS 8 — Buffered address output (Reserved)		

Table 3-2. CPU to Base Board PX2/PY2 Connector Signals (continued)

Pin(s)	Signal	Description			
92	B_A9	BUFFERED ADDRESS 9 — Buffered address output (Reserved)			
93	B_A10	BUFFERED ADDRESS 10 — Buffered address output (Reserved)			
94	B_A11	BUFFERED ADDRESS 11 — Buffered address output (Reserved)			
95	B_A12	BUFFERED ADDRESS 12 — Buffered address output (Reserved)			
96	B_A13	BUFFERED ADDRESS 13 — Buffered address output (Reserved)			
97	B_A14	BUFFERED ADDRESS 14 — Buffered address output (Reserved)			
98	B_A15	BUFFERED ADDRESS 15 — Buffered address output (Reserved)			
99	B_A16	BUFFERED ADDRESS 16 — Buffered address output (Reserved)			
100	B_A17	BUFFERED ADDRESS 17 — Buffered address output (Reserved)			
101	B_A18	BUFFERED ADDRESS 18 — Buffered address output (Reserved)			
102	B_A19	BUFFERED ADDRESS 19 — Buffered address output (Reserved)			
103	B_D16	BUFFERED DATA 16 — Buffered data (bidirectional) (Reserved)			
104	B_D17	BUFFERED DATA 17 — Buffered data (bidirectional) (Reserved)			
105	B_D18	BUFFERED DATA 18 — Buffered data (bidirectional) (Reserved)			
106	B_D19	BUFFERED DATA 19 — Buffered data (bidirectional) (Reserved)			
107	B_D20	BUFFERED DATA 20 — Buffered data (bidirectional) (Reserved)			
108	B_D21	BUFFERED DATA 21 — Buffered data (bidirectional) (Reserved)			
109	B_D22	BUFFERED DATA 22 — Buffered data (bidirectional) (Reserved)			
110	B_D23	BUFFERED DATA 23 — Buffered data (bidirectional) (Reserved)			
111	B_D24	BUFFERED DATA 24 — Buffered data (bidirectional) (Reserved)			
112	B_D25	BUFFERED DATA 25 — Buffered data (bidirectional) (Reserved)			
113	B_D26	BUFFERED DATA 26 — Buffered data (bidirectional) (Reserved)			
114	B_D27	BUFFERED DATA 27 — Buffered data (bidirectional) (Reserved)			
115	B_D28	BUFFERED DATA 28 — Buffered data (bidirectional) (Reserved)			
116	B_D29	BUFFERED DATA 29 — Buffered data (bidirectional) (Reserved)			
117	B_D30	BUFFERED DATA 30 — Buffered data (bidirectional) (Reserved)			
118	B_D31	BUFFERED DATA 31 — Buffered data (bidirectional) (Reserved)			
119	RESET_SW	RESET SWITCH Connected to the Reset switch on the Base board			
120	GND	GROUND			

3.3 CPU to Option Card Connectors

The PK1 and PK2 connectors located at the top side of the ADS CPU card are used to connect the board to option cards. The option cards are designed to add new capabilities to the ADS. A number of option cards, such as the PCMCIA Adaptor Card, are available. You may want to develop your own add-on cards. Figure 3-3 shows pin assignments for the PK1 connector and Table 3-3 provides signal descriptions for the connector. Figure 3-4 shows pin assignments for the PK2 connector and Table 3-4 provides signal descriptions for the connector.

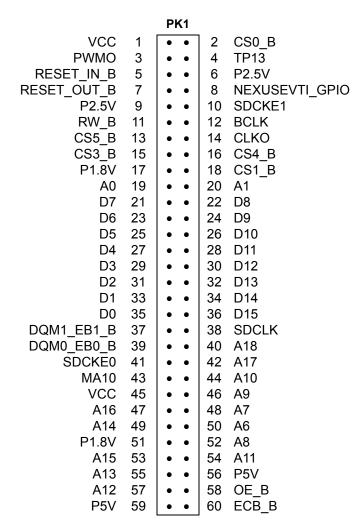


Figure 3-3. CPU to Option Card PK1 Connector Pin Assignments

Table 3-3. CPU to Option Card PK1 Connector Signals

Pin(s)	Signal	Description
1, 45	VCC	+3.0 VDC power
2	CS0_B	CHIP SELECT 0 — Chip select signal, active low output
3	PWMO PC_SPKOUT	PCMCIA SPEAKER OUT — Digital audio output to drive a speaker*
4	TP13	Test point
5	RESET_IN_B	RESET IN — Active low reset signal to the processor
6, 9	P2.5V	+2.5 VDC power
7	RESET_OUT_B	RESET OUT — Active low reset signal from the processor
8	NEXUSEVTI_GPIO	NEXUS EVENT IN — can be general purpose I/O
10	SDCKE1	SDRAM CLOCK ENABLE 1 — Active high outputs to SDRAM
11	RW_B PC_WE	PCMCIA — Output signal used to latch memory write data*
12	BCLK	BURST CLOCK — Output signal to external burst devices; synchronizes burst loading and incrementing
13	CS5_B	CHIP SELECT 5 — Chip select signal, active low output
14	CLKO	CLOCK OUT — Clock out from the processor, NC if R44 not installed
15	CS3_B	CHIP SELECT 3 — Chip select signal, active low output
16	CS4_B	CHIP SELECT 4 — Chip select signal, active low output
17, 51	P1.8v	+1.8 VDC power
18	CS1_B	CHIP SELECT 1 — Chip select signal, active low output
19	A0	ADDRESS BIT 0 — Output line for addressing external devices.
20	A1	ADDRESS BIT 1 — Output line for addressing external devices.
21	D7	DATA BIT 7 — Bidirectional data bit from the processor
22	D8	DATA BIT 8 — Bidirectional data bit from the processor
23	D6	DATA BIT 6 — Bidirectional data bit from the processor
24	D9	DATA BIT 9 — Bidirectional data bit from the processor
25	D5	DATA BIT 5 — Bidirectional data bit from the processor
26	D10	DATA BIT 10 — Bidirectional data bit from the processor
27	D4	DATA BIT 4 — Bidirectional data bit from the processor
28	D11	DATA BIT 11 — Bidirectional data bit from the processor
29	D3	DATA BIT 3 — Bidirectional data bit from the processor
30	D12	DATA BIT 12 — Bidirectional data bit from the processor
31	D2	DATA BIT 2 — Bidirectional data bit from the processor

Table 3-3. CPU to Option Card PK1 Connector Signals

Pin(s)	Signal	Description
32	D13	DATA BIT 13 — Bidirectional data bit from the processor
33	D1	DATA BIT 1 — Bidirectional data bit from the processor
34	D14	DATA BIT 14 — Bidirectional data bit from the processor
35	D0	DATA BIT 0 — Bidirectional data bit from the processor
36	D15	DATA BIT 15 — Bidirectional data bit from the processor
37	DQM1_EB1_B	ENABLE BYTE 1 — D23-D16 for SDRAM, D15-D8 for other memory types
38	SDCLK	SDRAM CLOCK — Main clock signal to SDRAM devices
39	DQM0_EB0_B	ENABLE BYTE 0 — D31-D24 for SDRAM, D7-D0 for other memory types
40	A18	ADDRESS BIT 18 — Output line for addressing external devices
41	SDCKE0	SDRAM CLOCK ENABLE 0 — Active high outputs to SDRAM
42	A17	ADDRESS BIT 17 — Output line for addressing external devices
43	MA10	MULTIPLEXED ADDRESS BIT 10 — Multiplexed address bit to SDRAM
44	A10	ADDRESS BIT 10 — Output line for addressing external devices
46	A9	ADDRESS BIT 9 — Output line for addressing external devices
47	A16	ADDRESS BIT 16 — Output line for addressing external devices
48	A7	ADDRESS BIT 7 — Output line for addressing external devices
49	A14	ADDRESS BIT 14 — Output line for addressing external devices
50	A6	ADDRESS BIT 6 — Output line for addressing external devices
52	A8	ADDRESS BIT 8 — Output line for addressing external devices
53	A15	ADDRESS BIT 15 — Output line for addressing external devices
54	A11	ADDRESS BIT 11 — Output line for addressing external devices
55	A13	ADDRESS BIT 13 — Output line for addressing external devices
56, 59	P5V	Switched +5 VDC power
57	A12	ADDRESS BIT 12 — Output line for addressing external devices
58	OE_B PC_IOWR	PCMCIA IO WRITE— Active low output for I/O writes*
60	ECB_B	END CURRENT BURST — Active low input signal asserted by external burst devices

^{*} The signal name in italics is the function intended for operation with this connector. It is multiplexed inside the i.MX21 processor with the listed signal.

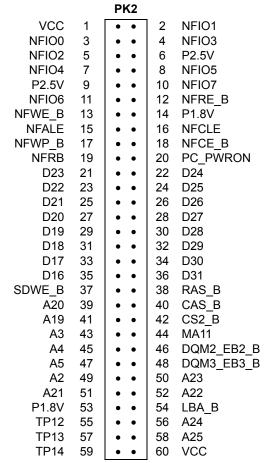


Figure 3-4. CPU to Option Card PK2 Connector Pin Assignments

Table 3-4. CPU to Option Card PK2 Connector Signals

Pin(s)	Signal	Description
1, 60	VCC	+3.0 VDC power
2	NFIO1 PC_VS2	PCMCIA VOLTAGE SENSE 2 — Input signal to select card voltage*
3	NFIO0 PC_BVD1	PCMCIA BATTERY VOLTAGE DETECT 1 — Input signal to report battery status*
4	NFIO3 PC_WP	PCMCIA WRITE PROTECT — Input signal from the PCMCIA card*
5	NFIO2 PC_VS1	PCMCIA VOLTAGE SENSE 1 input signal to select PCMCIA card voltage*
6, 9	P2.5V	+ 2.5 VDC power
7	NFIO4 PC_READY	PCMCIA READY — Input signal to indicate the card is ready for access*
8	NFIO5 PC_WAIT	PCMCIA WAIT — Input signal to extend the current access*
10	NFIO7 PC_CD1	PCMCIA CARD DETECT 1 — Input signal to indicate a card is inserted*
11	NFIO6 PC_CD2	PCMCIA CARD DETECT 2 — Input signal to indicate a card is inserted*
12	NFRE_B PC_RW	PCMCIA READ/WRITE — Data direction control, active low to write*
13	NFWE_B PC_BVD2	PCMCIA BATTERY VOLTAGE DETECT 2 — Input signal to report battery status*
14, 53	P1.8V	+1.8 VDC power
15	NFALE PC_OE	PCMCIA OUTPUT ENABLE — Output used to enable memory read data*
16	NFCLE PC_POE	PCMCIA Buffer OUTPUT ENABLE — Output used tri-state control signals*
17	NFWP_B PC_CE2	PCMCIA CARD ENABLE 2 — Output used to enable odd bytes*
18	NFCE_B PC_CE1	PCMCIA CARD ENABLE 1 — Output used to enable even bytes*
19	NFRB PC_RST	PCMCIA RESET — Output to reset a card's Configuration Option Register*
20	PC_PWRON	PCMCIA input to indicate card power is applied and stable
21	D23	DATA BIT 23 — Bidirectional data bit from the processor
22	D24	DATA BIT 24 — Bidirectional data bit from the processor
23	D22	DATA BIT 22 — Bidirectional data bit from the processor
24	D25	DATA BIT 25 — Bidirectional data bit from the processor
25	D21	DATA BIT 21 — Bidirectional data bit from the processor
26	D26	DATA BIT 26 — Bidirectional data bit from the processor
27	D20	DATA BIT 20 — Bidirectional data bit from the processor
28	D27	DATA BIT 27 — Bidirectional data bit from the processor
29	D19	DATA BIT 19 — Bidirectional data bit from the processor
30	D28	DATA BIT 28 — Bidirectional data bit from the processor
31	D18	DATA BIT 18 — Bidirectional data bit from the processor
		<u> </u>

Table 3-4. CPU to Option Card PK2 Connector Signals (continued)

Pin(s)	Signal	Description
32	D29	DATA BIT 29 — Bidirectional data bit from the processor
33	D17	DATA BIT 17 — Bidirectional data bit from the processor
34	D30	DATA BIT 30 — Bidirectional data bit from the processor
35	D16	DATA BIT 16 — Bidirectional data bit from the processor
36	D31	DATA BIT 31 — Bidirectional data bit from the processor
37	SDWE_B	SDRAM WRITE ENABLE — Write data strobe to SDRAM, active low
38	RAS_B	ROW ADDRESS STROBE — Clocks row address to SDRAM
39	A20	ADDRESS BIT 20 — Output line for addressing external devices
40	CAS_B	COLUMN ADDRESS STROBE — clocks column address to SDRAM
41	A19	ADDRESS BIT 19 — Output line for addressing external devices
42	CS2_B	CHIP SELECT 2 — Chip select signal, active low output
43	A3	ADDRESS BIT 3 — Output line for addressing external devices
44	MA11	MULTIPLEXED ADDRESS BIT 11 — Multiplexed address bit to SDRAM
45	A4	ADDRESS BIT 4 — Output line for addressing external devices
46	DQM2_EB2_B PC_REG	PCMCIA REGISTER SELECT — Output to select Attribute Memory*
47	A5	ADDRESS BIT 5 — Output line for addressing external devices
48	DQM3_EB3_B PC_IORD	PCMCIA I/O READ — Output signals to read I/O*
49	A2	ADDRESS BIT 2 — Output line for addressing external devices
50	A23	ADDRESS BIT 23 — Output line for addressing external devices
51	A21	ADDRESS BIT 21 — Output line for addressing external devices
52	A22	ADDRESS BIT 22 — Output line for addressing external devices
54	LBA_B	LOAD BURST ADDRESS — Active low signal asserted during burst mode accesses
55	TP12	Test point
56	A24	ADDRESS BIT 24 — Output line for addressing external devices
57	TP13	Test point
58	A25	ADDRESS BIT 25 — Output line for addressing external devices
59	TP14	Test point

^{*}The signal name in italics is the function intended for operation with this connector. It is multiplexed inside the i.MX21 processor with the listed signal.

3.4 UART/RS-232 Connectors

This section describes the DB9 RS-232 serial interface connectors on the ADS. Each serial interface is controlled by a UART that is either inside the i.MX21 processor or part of an external device.

3.4.1 UART1 Connector

Connector P1 connects to the UART1 pins of the i.MX21 MCU. UART1 is the primary functionality of the pins. This female DB9 connector is configured for RS-232 DCE operation. Figure 3-5 shows pin assignments and Table 3-5 provides signal descriptions for the connector.

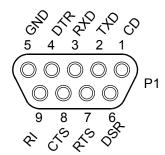


Figure 3-5. Connector P1 (UART1) DCE Pin Assignments

Table 3-5. Connector P1 (UART1) DCE Signal Descriptions

Pin(s)	Signal	Description
1	CD	CARRIER DETECT — RS-232 output signal, pulled active positive
2	TXD	TRANSMITTED DATA — RS-232 serial data output signal
3	RXD	RECEIVED DATA — RS-232 serial data input signal
4	DTR	DATA TERMINAL READY — RS-232 input signal, the logic level signal is available at TP8
5	GND	GROUND
6	DSR	DATA SET READY — RS-232 output signal, pulled active positive
7	RTS	READY TO SEND — RS-232 input signal, active positive
8	CTS	CLEAR TO SEND — RS-232 output signal, active positive
9	RI	RING INDICATOR — RS-232 output signal, forced inactive negative

3.4.2 UART4 Connector

Connector P2 connects to the UART4 pins of the i.MX21 MCU. UART4 is the secondary functionality of these pins. This male DB9 connector is configured for RS-232 DTE operation. Figure 3-6 shows pin assignments and Table 3-6 provides signal descriptions for the connector.

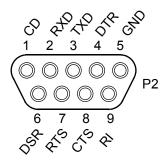


Figure 3-6. Connector P2 (UART4) DTE Pin Assignments

Table 3-6. Connector P2 (UART4) DTE Signal Descriptions

Pin	Signal	Description
1	CD	CARRIER DETECT — RS-232 input signal, can be jumpered to SD2_D2 at J5 or ignored
2	RXD	RECEIVED DATA — RS-232 serial data input signal, connected to USBH1_TXDP when UART4 is enable.
3	TXD	TRANSMITTED DATA — RS-232 serial data output signal, connected to USBH1_TXDM when UART4 is enabled
4	DTR	DATA TERMINAL READY — RS-232 output signal, can be jumpered to SD2_D0 or forced active positive at J3
5	GND	GROUND
6	DSR	DATA SET READY — RS-232 input signal, can be jumpered to SD2_D1 at J4 or ignored, active positive
7	RTS	READY TO SEND — RS-232 output signal, active positive, connected to USBH1_RXDM when UART4 is enabled
8	CTS	CLEAR TO SEND — RS-232 input signal, active positive, connected to USBH1_RXDP when UART4 is enabled
9	RI	RING INDICATOR — RS-232 input signal, active positive, can be jumpered to SD2_D3 at J6 or ignored

3.4.3 External UART Connector

Connector P3 is connected to Port A of U17, an Exar ST16C255 DUART. This female DB9 connector is configured for RS-232 Data Communications Equipment (DCE) operation. Figure 3-7 shows the pin assignments and Table 3-7 provides signal descriptions for the connector.

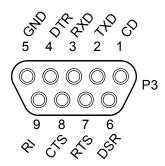


Figure 3-7. Connector P3 (EXT UART) DCE Pin Assignments

Table 3-7. Connector P3 (EXT UART) DCE Signal Descriptions

Pin(s)	Signal	Description
1	CD	CARRIER DETECT — RS-232 output signal, pulled active positive
2	TXD	TRANSMITTED DATA — RS-232 serial data output signal
3	RXD	RECEIVED DATA – RS-232 serial data input signal
4	DTR	DATA TERMINAL READY — RS-232 serial data input signal, the logic level signal is available at TP9
5	GND	GROUND
6	DSR	DATA SET READY — RS-232 output signal, pulled active positive
7	RTS	READY TO SEND — RS-232 input signal, active positive,
8	CTS	CLEAR TO SEND — RS-232 output signal, active positive,
9	RI	RING INDICATOR — RS-232 output signal, forced inactive negative

3.5 Multi-ICE Connector

Connector P20 is the ADS Multi-ICE connector. Figure 3-8 shows pin assignments and Table 3-8 provides signal descriptions for the connector.

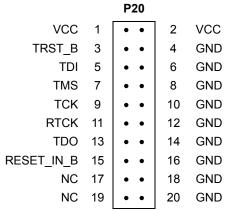


Figure 3-8. Multi-ICE Connector P20 (on the CPU) Pin Assignments

M9328MX21ADSE User's Manual, Rev. A

3-20

Pin(s)	Signal	Description		
1, 2	VCC	+3.0 VDC power		
3	TRST_B	TARGET RESET — Active low output signal that resets the target		
4, 6, 8, 10, 12, 14, 16, 18, 20	GND	GROUND		
5	TDI	TEST DATA INPUT — Serial data output line, sampled on the rising edge of the TCK signal		
7	TMS	TEST MODE SELECT – Output signal that sequences the target's JTAG state machine, sampled on the rising edge of the TCK signal		
9	TCK	TEST CLOCK — Output timing signal, for synchronizing test logic and control register access		
11	RTCK	RETURN CLOCK		
13	TDO	JTAG TEST DATA OUTPUT — Serial data input from the target		
15	RESET_IN_B	RESET IN — Active low reset signal to the processor		
17. 19	NC	NO CONNECTION		

Table 3-8. Multi-ICE Connector P20 (on the CPU) Signal Descriptions

3.6 Ethernet Connector

Connector P9 is the RJ-45 Ethernet connector for the ADS. Figure 3-9 shows pin numbering and Table 3-9 provides signal descriptions for the connector.

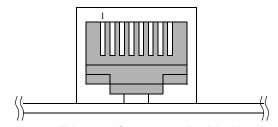


Figure 3-9. Ethernet Connector P9 Pin Numbers

Table 3-9. Ethernet Connector P9 Signal Descriptions

Pin(s)	Signal	Description
1	TPO+	DIFFERENTIAL OUTPUT PLUS
2	TPO-	DIFFERENTIAL OUTPUT MINUS
3	TPI+	DIFFERENTIAL INPUT PLUS
4, 5, 7, 8	NC	NO CONNECTION
6	TPI-	DIFFERENTIAL INPUT MINUS

3.7 USB OTG Connector

Connector P4 is the USB OTG connector. Figure 3-10 shows pin assignments and Table 3-10 provides signal descriptions for the connector.

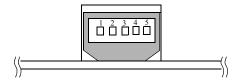


Figure 3-10. USB Connector P4 Pin Assignments

Table 3-10. USB OTG Connector P4 Signal Descriptions

Pin(s)	Signal	Description
1	VBUS	VBUS
2	D-	USB DATA MINUS
3	D+	USB DATA PLUS
4	ID	ID
5	GND	GROUND

3.8 NAND Flash Connector

PM1 and PM2 on the CPU board allow the ADS to interface with a NAND Flash module. Figure 3-12 and Figure 3-12 show pin assignments. Table 3-12 and Table 3-12 provide signal descriptions for the connectors.

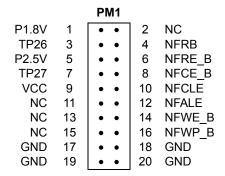


Figure 3-11. NAND Flash Connector PM1 (on the CPU Board) Pin Assignments

Table 3-11. NAND Flash Connector PM1 Signal Descriptions

Pin(s)	Signal	Description
1	P1.8V	+1.8 VDC power
2	NC	Not Connect
3	TP26	Test point
4	NFRB	NAND FLASH READY/BUSY
5	P2.5V	+ 2.5 VDC power
6	NFRE_B	NAND FLASH READ ENABLE
7	TP27	Test point
8	NFCE_B	NAND FLASH CHIP ENABLE
9	VCC	+3 VDC power
10	NFCLE	NAND FLASH COMMAND LATCH ENABLE
11	NC	Not Connect
12	NFALE	NAND FLASH ADDRESS LATCH ENABLE
13	NC	Not Connect
14	NFWE_B	NAND FLASH WRITE ENABLE
15	NC	Not Connect
16	NFWP_B	NAND FLASH WRITE PROTECT
17	GND	GOUND
18	GND	GOUND
19	GND	GOUND
20	GND	GOUND
23	NFIO4	NAND FLASH I/O BIT 4 — Bidirectional data transfer signal
24	A14 NFIO9	NAND FLASH I/O BIT 9 — Bidirectional data transfer signal*
25	NFIO5	NAND FLASH I/O BIT 5 — Bidirectional data transfer signal
26	A13 NFIO8	NAND FLASH I/O BIT 8 — Bidirectional data transfer signal*
27	NFIO6	NAND FLASH I/O BIT 6 — Bidirectional data transfer signal
28, 30	GND	GROUND
29	NFIO7	NAND FLASH I/O BIT 7 — Bidirectional data transfer signal

^{*}The signal name in italics is the function intended for operation with this connector. It is multiplexed in the i.MX21 processor with the listed signal.

		PM2		
NC	1	• •	2	NC
NFIO0	3	• •	4	A25
NFIO1	5	• •	6	A24
NFIO2	7	• •	8	A23
NFIO3	9	• •	10	A22
NFIO4	11	• •	12	A21
NFIO5	13	• •	14	A15
NFIO6	15	• •	16	A14
NFIO7	17	• •	18	A13
GND	19	• •	20	GND

Figure 3-12. NAND Flash Connector PM2 (on the CPU) Pin Assignments

M9328MX21ADSE User's Manual, Rev. A

Table 3-12. NAND Flash Connector PM2 Signal Descriptions

Pin(s)	Signal	Description
1	NC	No Connect
2	NC	No Connect
3	NFIO0	NAND FLASH I/O BIT 0 — Bidirectional data transfer signal
4	A25 NFIO15	NAND FLASH I/O BIT 15 — Bidirectional data transfer signal*
5	NFIO1	NAND FLASH I/O BIT 1— Bidirectional data transfer signal
6	A24 NFIO14	NAND FLASH I/O BIT 14 — Bidirectional data transfer signal*
7	NFIO2	NAND FLASH I/O BIT 2— Bidirectional data transfer signal
8	A23 NFIO13	NAND FLASH I/O BIT 13 — Bidirectional data transfer signal*
9	NFIO3	NAND FLASH I/O BIT 3— Bidirectional data transfer signal
10	A22 NFIO12	NAND FLASH I/O BIT 12 — Bidirectional data transfer signal*
11	NFIO4	NAND FLASH I/O BIT 4— Bidirectional data transfer signal
12	A21 NFIO11	NAND FLASH I/O BIT 11 — Bidirectional data transfer signal*
13	NFIO5	NAND FLASH I/O BIT 5— Bidirectional data transfer signal
14	A15 NFIO10	NAND FLASH I/O BIT 10 — Bidirectional data transfer signal*
15	NFIO6	NAND FLASH I/O BIT 6— Bidirectional data transfer signal
16	A14 NFIO9	NAND FLASH I/O BIT 9— Bidirectional data transfer signal*
17	NFIO7	NAND FLASH I/O BIT 7— Bidirectional data transfer signal
18	A13 NFIO8	NAND FLASH I/O BIT 8— Bidirectional data transfer signal*
19	GND	GOUND
20	GND	GOUND

^{*}The signal name in italics is the function intended for operation with this connector. It is multiplexed in the i.MX21 processor with the listed signal.

3.9 External Keypad Connector

Connector P5 is the ADS External Keypad connector. Figure 3-13 shows pin assignments and Table 3-13 provides signal descriptions for the connector.

		P5		
VCC	1	• •	2	NC
UART2_RXD	3	• •	4	UART2_RTS
UART2_TXD	5	• •	6	UART2_CTS
KP_COL5	7	• •	8	KP_ROW5
KP_COL4	9	• •	10	KP_ROW4
KP_COL3	11	• •	12	KP_ROW3
KP_COL2	13	• •	14	KP_ROW2
KP_COL1	15	• •	16	KP_ROW1
KP_COL0	17	• •	18	KP_ROW0
NC	19	• •	20	GND

Figure 3-13. External Keypad Connector P5 Pin Assignments

Table 3-13. External Keypad Connector P5 Signal Descriptions

Pin(s)	Signal	Description
1	VCC	+3 volt power
2, 19	NC	NO CONNECTION
3	UART2_RXD KEY_COL7	KEYPAD COLUMN 7 — Bidirectional signal used to scan a keypad
4	UART2_RTS KEY_ROW6	KEYPAD ROW 6 — Bidirectional signal used to scan a keypad
5	UART2_TXD KEY_COL6	KEYPAD COLUMN 6 — Bidirectional signal used to scan a keypad
6	UART2_CTS KEY_ROW7	KEYPAD ROW 7 — Bidirectional signal used to scan a keypad
7	KP_COL5	KEYPAD COLUMN 5 — Bidirectional signal used to scan a keypad
8	KP_ROW5	KEYPAD ROW 5 — Bidirectional signal used to scan a keypad
9	KP_COL4	KEYPAD COLUMN 4 — Bidirectional signal used to scan a keypad
10	KP_ROW4	KEYPAD ROW 4 — Bidirectional signal used to scan a keypad
11	KP_COL3	KEYPAD COLUMN 3 — Bidirectional signal used to scan a keypad
12	KP_ROW3	KEYPAD ROW 3 — Bidirectional signal used to scan a keypad
13	KP_COL2	KEYPAD COLUMN 2 — Bidirectional signal used to scan a keypad
14	KP_ROW2	KEYPAD ROW 2 — Bidirectional signal used to scan a keypad
15	KP_COL1	KEYPAD COLUMN 1 — Bidirectional signal used to scan a keypad
16	KP_ROW1	KEYPAD ROW 1 — Bidirectional signal used to scan a keypad
17	KP_COL0	KEYPAD COLUMN 0 — Bidirectional signal used to scan a keypad
18	KP_ROW0	KEYPAD ROW 0 — Bidirectional signal used to scan a keypad
20	GND	GROUND

^{*} The signal name in italics is the function intended for operation with this connector. It is multiplexed in the i.MX21 processor with the listed signal.

3.10 LCD Panel Connector

Connector P7 is the ADS LCD panel connector. Figure 3-14 shows pin assignments and Table 3-14 provides signal descriptions the connector.

		P 7		
VCC	1	• •	2	GND
OE_ACD	3	• •	4	FLM_VSYNC_SPS
LP_HYSYNC	5	• •	6	LSCLK
LD5_B5	7	• •	8	LD4_B4
LD3_B3	9	• •	10	LD2_B2
LD11_G5	11	• •	12	LD10_G4
LD9_G3	13	• •	14	LD8_G2
LD17_R5	15	• •	16	LD16_R4
LD15_R3	17	• •	18	LD14_R2
CONTRAST	19	• •	20	LCDON
SPL_SPR	21	• •	22	REV
PS	23	• •	24	CLS
LD1_B1	25	• •	26	LD0_B0
LD7_G1	27	• •	28	LD6_G0
LD13_R1	29	• •	30	LD12_R0
TOP	31	• •	32	BOTTOM
LEFT	33	• •	34	RIGHT

Figure 3-14. LCD Panel Connector P7 Pin Assignments

Table 3-14. LCD Panel Connector P8 Signal Descriptions

Pin(s)	Signal	Description
1	VCC	+3 volt power
2	GND	GROUND
3	OE_ACD	OUTPUT ENABLE / ALTERNATE CRYSTAL DIRECTION
4	FLM_VSYNC_SPS	FIRST LINE MARKER / VERTICAL SYNCHRONIZATION
5	LP_HSYNC	LINE PULSE / HORIZONTAL SYNCHRONIZATION
6	LSCLK	LCD SHIFT CLOCK — Output to LCD
7	LD5_B5	LCD DATA 5 / BLUE BIT 5 — Output data to LCD
8	LD4_B4	LCD DATA 4 / BLUE BIT 4 — Output data to LCD
9	LD3_B3	LCD DATA 3 / BLUE BIT 3 — Output data to LCD
10	LD2_B2	LCD DATA 2 / BLUE BIT 2 — Output data to LCD
11	LD11_G5	LCD DATA 11 / GREEN BIT 5 — Output data to LCD
12	LD10_G4	LCD DATA 10 / GREEN BIT 4 — Output data to LCD
13	LD9_G3	LCD DATA 9 / GREEN BIT 3 — Output data to LCD
14	LD8_G2	LCD DATA 8 / GREEN BIT 2 — Output data to LCD
15	LD17_R5	LCD DATA 17 / RED BIT 5 — Output data to LCD
16	LD16_R4	LCD DATA 16 / RED BIT 4 — Output data to LCD
17	LD15_R3	LCD DATA 15 / RED BIT 3 — Output data to LCD

	Table of 141 2001 and Commedical to digital Decempation (Continuou)								
Pin(s)	Signal	Description							
18	LD14_R2	LCD DATA 14 / RED BIT 2 — Output data to LCD							
19	CONTRAST	LCD bias voltage used as contrast control							
20	LCDON	LCD enable — Active High, Enables the Sharp LCD							
21	SPL_SPR	SAMPLING LEFT to RIGHT— Horizontal scan direction							
22	REV	Signal for common electrode driving signal preparation (Sharp panel dedicated signal)							
23	PS	Control signal output for source driver (Sharp panel dedicated signal)							
24	CLS	Start signal output for gate driver. This signal is inverted version of PS (Sharp panel dedicated signal)							
25	LD1_B1	LCD DATA 1 / BLUE BIT 1 — Output data to LCD							
26	LD0_B0	LCD DATA 0 / BLUE BIT 0 — Output data to LCD							
27	LD7_G1	LCD DATA 7 / GREEN BIT 1 — Output data to LCD							
28	LD6_G0	LCD DATA 6 / GREEN BIT 0 — Output data to LCD							
29	LD13_R1	LCD DATA 13 / RED BIT 1 — Output data to LCD							
30	LD12_R0	LCD DATA 12 / RED BIT 0 — Output data to LCD							
31	TOP	Negative pen-Y analog input							
32	BOTTOM	Positive pen-Y analog input							
33	LEFT	Negative pen-X analog input							

Table 3-14. LCD Panel Connector P8 Signal Descriptions (continued)

3.11 TV Encoder Connector

RIGHT

34

Connector P13 is the TV encoder connector. Figure 3-15 gives the pin assignments and Table 3-15 gives the signal descriptions for this connector.

Positive pen-X analog input

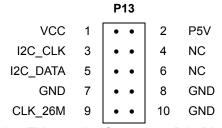


Figure 3-15. TV encoder Connector P13 Pin Assignments

Table 3-15. TV encoder Connector P13 Signal Descriptions

Pin(s)	Signal	Description
1	VCC	+3 VDC power
2	P5V	+5 VDC power
3	I2C_CLK	I SQUARED C CLOCK — Serial clock, bidirectional
4,6	NC	NO CONNECTION
5	I2C_DATA	I SQUARED C DATA — Serial data, bidirectional
7, 8, 10	GND	GROUND
9	CLK_26M	26M Clock signal from TV encoder card

M9328MX21ADSE User's Manual, Rev. A
Freescale Semiconductor
3-27

Downloaded from Arrow.com.

3.12 SD/MMC Connector

Connector P6 is the ADS SD/MMC connector. Figure 3-16 gives the pin assignments and Table 3-16 gives the signal descriptions for this connector.

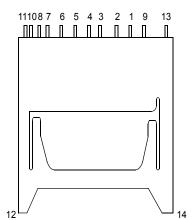


Figure 3-16. SD/MMC Connector P6 Pin Assignments

Table 3-16. SD/MMC Connector P6 Signal Descriptions

		Description										
Pin(s)	Signal	MMC Card	SD Card									
		WINC Caru	1-Bit Mode	4-Bit Mode								
1	SD1_DAT3	Reserved	Not Used	Data Line DAT3								
2	SD1_CMD		Command / Response									
3, 6, 11	GND		GROUND									
4	VCC	+3 VDC power										
5	SD1_CLK		Clock									
7	SD1_DAT0		Data Line DAT0									
8	SD1_DAT1	Not Used	Interrupt (IRQ)	Data Line DAT1 or Interrupt (IRQ)								
9	SD1_DAT2	Not Used ReadWait (RW) Data Line DAT: Read Wait (R										
10	CSPI1_RDY	Card	Detect, configured as G	PIO, PB20								
12	SD_WP	Write Pro	otect Detect, connects to	I/O input bit 0								
13, 14	NC		No Connection									

3.13 Extension and Image Sensor Connectors

Connectors PE1, PE2 and PE3 are 16 x 3-pin DIN type connectors. PE1 is a connector for the Image Sensor module included with the ADS. PE2 and PE3 are Extension connectors that provide most of the MC9328MX21 signals other than data bus, address bus, EIM control signals, and SDRAM control signals.

Figure 3-17 shows the pin numbering for the PE1, PE2, and PE3 connectors. Table 3-17 through Table 3-19 provide signal descriptions. Table 3-17 covers PE1, Table 3-18 covers PE2 and Table 3-19 covers PE3.

	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
С	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
В	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Α	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Figure 3-17. Connectors PE1, PE2, and PE3 Pin Numbering

Table 3-17. Image Sensor Connector PE1 Signal Description

Pin(s)	Signal	Description
A1,B1,C1	GND	GROUND
A2	CSI_D0	CMOS SENSOR INTERFACE DATA 0— Image Sensor input data
A3	CSI_D2	CMOS SENSOR INTERFACE DATA 2— Image Sensor input data
A4	CSI_D4	CMOS SENSOR INTERFACE DATA 4— Image Sensor input data
A5	CSI_D6	CMOS SENSOR INTERFACE DATA 6— Image Sensor input data
A6	CSI_PIXCLK	CMOS SENSOR INTERFACE PIXAL CLOCK — Data latch strobe
A7	CSI_VSYNC	CMOS SENSOR INTERFACE VERTICAL SYNC — Control input
A8	I2C_CLK	I SQUARED C CLOCK — Serial clock, bidirectional
A9	CSPI2_SS1	SLAVE SELECT 1 — CSPI signal (bidirectional)
A10	CSPI2_SS2	SLAVE SELECT 2 — CSPI signal (bidirectional)
A11-A15	NC	NO CONNECTION
A16,B16,C16	VCC	+3 VDC power
B2-B15	NC	NO CONNECTION
C2	CSI_D1	CMOS SENSOR INTERFACE DATA 1— Image Sensor input data
C3	CSI_D3	CMOS SENSOR INTERFACE DATA 3— Image Sensor input data
C4	CSI_D5	CMOS SENSOR INTERFACE DATA 5— Image Sensor input data
C5	CSI_D7	CMOS SENSOR INTERFACE DATA 7— Image Sensor input data
C6	CSI_HSYNC	CMOS SENSOR INTERFACE HORIZONTAL SYNC— Control input
C7	CSI_MCLK	CMOS SENSOR INTERFACE MASTER CLOCK — Clock output to the sensor card
C8	I2C_DAT	I SQUARED C DATA — Serial data, bidirectional
C9	NC	NO CONNECTION
C10	CSI_CTL0	CMOS SENSOR CONTORL 0 — Control output from MM I/O
C11	CSI_CTL1	CMOS SENSOR CONTORL 1 — Control output from MM I/O
C12	CSI_CTL2	CMOS SENSOR CONTORL 2 — Control output from MM I/O
C13-C15	NC	NO CONNECTION

Table 3-18. Extension Connector PE2 Signal Description

Pin(s)	Signal	Description
A1	SD1_CLK	SD/MMC CLOCK — Clock output to SD/MMC card
A2	SD1_CMD	SD/MMC COMMAND — Serial command bit to SD/MMC card, bidirectional
A3	SD1_D3	SD/MMC DATA BIT 3 — Serial data bit to SD/MMC card, bidirectional
A4	SD1_D2	SD/MMC DATA BIT 2 — Serial data bit to SD/MMC card, bidirectional
A5	SD1_D1	SD/MMC DATA BIT 1 — Serial data bit to SD/MMC card, bidirectional
A6	SD1_D0	SD/MMC DATA BIT 0 — Serial data bit to SD/MMC card, bidirectional
A7	UART1_RTS	UART1 REQUEST TO SEND — Active low input signal
A8	UART1_CTS	UART1 CLEAR TO SEND — Active low output signal
A9	UART1_RXD	UART1 RECEIVED DATA — Serial input signal
A10	UART1_TXD	UART1 TRANSMITTED DATA — Serial output signal
A11	UART3_RTS	UART3 REQUEST TO SEND — Active low input signal
A12	UART3_CTS	UART3 CLEAR TO SEND — Active low output signal
A13	UART3_RXD	UART3 RECEIVED DATA — Serial input signal
A14	UART3_TXD	UART3 TRANSMITTED DATA — Serial output signal
A15	UART2_RTS	UART2 REQUEST TO SEND — Active low input signal
A16	UART2_CTS	UART2 CLEAR TO SEND — Active low output signal
B1	KP_ROW5	KEYPAD ROW 5 — Bidirectional signal used to scan a keypad
B2	KP_ROW4	KEYPAD ROW 4 — Bidirectional signal used to scan a keypad
В3	KP_ROW3	KEYPAD ROW 3 — Bidirectional signal used to scan a keypad
B4	KP_ROW2	KEYPAD ROW 2 — Bidirectional signal used to scan a keypad
B5	KP_ROW1	KEYPAD ROW 1 — Bidirectional signal used to scan a keypad
В6	KP_ROW0	KEYPAD ROW 0 — Bidirectional signal used to scan a keypad
В7	KP_COL5	KEYPAD COLUMN 5 — Bidirectional signal used to scan a keypad
В8	KP_COL4	KEYPAD COLUMN 4 — Bidirectional signal used to scan a keypad
В9	KP_COL3	KEYPAD COLUMN 3 — Bidirectional signal used to scan a keypad
B10	KP_COL2	KEYPAD COLUMN 2 — Bidirectional signal used to scan a keypad
B11	KP_COL1	KEYPAD COLUMN 1 — Bidirectional signal used to scan a keypad
B12	KP_COL0	KEYPAD COLUMN 0 — Bidirectional signal used to scan a keypad
B13	SAP_RXD	SYCHRONOUS AUDIO PORT RECEIVED DATA — serial data input
B14	SAP_FS	SYCHRONOUS AUDIO PORT FRAME SYNC — Bidirectional, output in master mode, input in slave mode

Table 3-18. Extension Connector PE2 Signal Description (continued)

Pin(s)	Signal	Description
B15	UART2_RXD	UART2 RECEIVED DATA — Serial input signal
B16	UART2_TXD	UART2 TRANSMITTED DATA — Serial output signal
C1	GND	GROUND
C2	CSPI1_MOSI	MASTER OUT / SLAVE IN — CSPI data signal (bidirectional)
C3	CSPI1_MISO	MASTER IN / SLAVE OUT — CSPI data signal (bidirectional)
C4	CSPI1_SCLK	SERIAL CLOCK — Bidirectional
C5	CSPI1_SS0	SLAVE SELECT 0 — CSPI signal (bidirectional)
C6	CSPI1_SS1	SLAVE SELECT 1 — CSPI signal (bidirectional)
C7	CSPI1_SS2	SLAVE SELECT 2 — CSPI signal (bidirectional)
C8	CSPI1_RDY	READY — CSPI serial burst trigger, active low input
C9	SSI1_CLK	SYCHRONOUS SERIAL INTERFACE TRANSMITTER CLOCK — Bidirectional, output in master mode and input in slave mode
C10	SSI1_TXD	SYCHRONOUS SERIAL INTERFACE TRANSMITTED DATA — Serial output signal
C11	SSI1_RXD	SYCHRONOUS SERIAL INTERFACE RECEIVED DATA — Serial input signal
C12	SSI1_FS	SYCHRONOUS SERIAL INTERFACE FRAME SYNC
C13	SAP_CLK	SYCHRONOUS AUDIO PORT CLOCK — Serial transmit clock, bidirectional, output in master mode, input in slave mode
C14	SAP_TXD	SYCHRONOUS AUDIO PORT TRANMITTED DATA — Serial data output
C15	B_NEXUSEVTI	BUFFERED NEXUS EVENT IN
C16	VCC	+ 3 VDC power

Table 3-19. Extension Connector PE3 Signal Description

Pin(s)	Signal	Description
A1	CSPI2_MOSI	MASTER OUT / SLAVE IN — CSPI data signal (bidirectional)
A2	CSPI2_MISO	MASTER IN / SLAVE OUT — CSPI data signal (bidirectional)
A3	CSPI2_SCLK	SERIAL CLOCK — Bidirectional
A4	CSPI2_SS0	SLAVE SELECT 0 — CSPI signal (bidirectional)
A5	CSPI2_SS1	SLAVE SELECT 1 — CSPI signal (bidirectional)
A6	CSPI2_SS2	SLAVE SELECT 2 — CSPI signal (bidirectional)
A7	I2C_CLK	I SQUARED C CLOCK — Serial clock, bidirectional
A8	I2C_DATA	I SQUARED C DATA — Serial data, bidirectional
A9	SSI3_CLK	SYCHRONOUS SERIAL INTERFACE TRANSMITTER CLOCK — Bidirectional, output in master mode and input in slave mode
A10	SSI3_TXD	SYCHRONOUS SERIAL INTERFACE TRANSMITTED DATA — Serial output signal
A11	SSI3_RXD	SYCHRONOUS SERIAL INTERFACE RECEIVED DATA — Serial input signal
A12	SSI3_FS	SYCHRONOUS SERIAL INTERFACE FRAME SYNC
A13	SSI2_CLK	SYCHRONOUS SERIAL INTERFACE TRANSMITTER CLOCK — Bidirectional, output in master mode and input in slave mode
A14	SSI2_TXD	SYCHRONOUS SERIAL INTERFACE TRANSMITTED DATA — Serial output signal
A15	SSI2_RXD	SYCHRONOUS SERIAL INTERFACE RECEIVED DATA — Serial input signal
A16	SSI2_FS	SYCHRONOUS SERIAL INTERFACE FRAME SYNC
B1	USBG_RXDP	USB OTG RECEIVED DATA PLUS input
B2	USBG_RXDM	USB OTG RECEIVED DATA MINUS input
В3	USBG_TXDP	USB OTG TRANSMITTED DATA PLUS output
B4	USBG_TXDM	USB TRANSMITTED DATA MINUS output
B5	USBG_OE_B	USB OTG OUTPUT ENABLE
В6	USBG_FS	USB OTG FULL SPEED
В7	USBG_ON_B	USB OTG transceiver ON
B8	USBG_SCL	USB OTG SERIAL CLOCK
В9	USBG_SDA	USB OTG SERIAL DATA
B10	USBH1_RXDM	USB RECEIVED DATA MINUS input
B11	USBH1_RXDP	USB RECEIVED DATA PLUS input.
B12	USBH1_TXDM	USB TRANSMITTED DATA MINUS output
B13	USBH1_TXDP	USB TRANSMITTED DATA PLUS output

Table 3-19. Extension Connector PE3 Signal Description (continued)

Pin(s)	Signal	Description
B14	USBH1_FS	USB FULL SPEED
B15	USBH1_OE_B	USB OUTPUT ENABLE
B16	USBH_ON_B	USB transceiver ON
C1	GND	GROUND
C2	TIN	TIMER INPUT CAPTURE — Timer input
C3	TOUT	TIMER OUTPUT COMPARE — Timer output
C4	SD2_CLK	SD/MMC CLOCK — Clock output to SD/MMC card
C5	SD2_CMD	SD/MMC COMMAND — Serial command bit to SD/MMC card, bidirectional
C6	SD2_D3	SD/MMC DATA BIT 3 — Serial data bit to SD/MMC card, bidirectional
C7	SD2_D2	SD/MMC DATA BIT 2 — Serial data bit to SD/MMC card, bidirectional
C8	SD2_D1	SD/MMC DATA BIT 1 — Serial data bit to SD/MMC card, bidirectional
C9	SD2_D0	SD/MMC DATA BIT 0 — Serial data bit to SD/MMC card, bidirectional
C10	PWMO	PULSE WIDTH MODULATOR OUTPUT
C11	RESET_OUT_B	RESET OUT — Active low reset signal from the processor
C12	RTCK_GPIO	RETURN CLOCK — JTAG signal, can be general purpose I/O
C13	USB_OC_B	USB OVER CURRENT input active low
C14	USB_PWR	USB POWER
C15	USB_BYP_B	USB BY PASS input active low
C16	VCC	+3 VDC power

3.14 Disposal Information

This symbol means this product may be subject to special disposal requirment.

For product disposal information, please refer to http://www.freescale.com/productdisposal.

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

