74LVC4245A-Q100

Octal dual supply translating transceiver; 3-state

Rev. 3 — 12 April 2021

Product data sheet

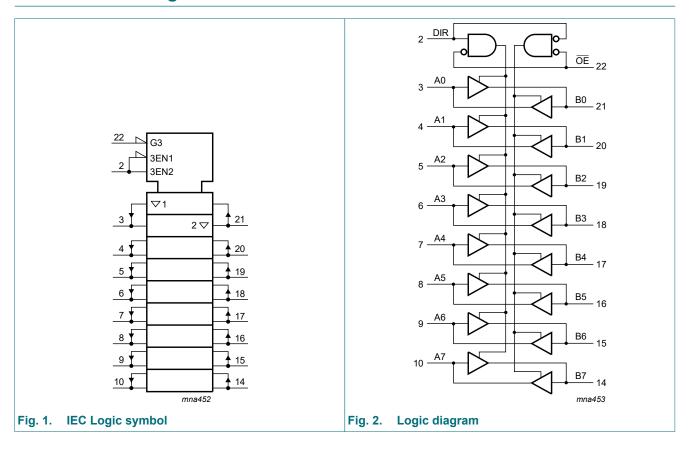
1. General description

The 74LVC4245A-Q100 is an octal dual supply translating transceiver featuring 3-state bus compatible outputs in both send and receive directions. It is designed to interface between a 3 V and 5 V bus in a mixed 3 V and 5 V supply environment. The device features an output enable input (\overline{OE}) and a send/receive input (\overline{DIR}) for direction control. A HIGH on \overline{OE} causes the outputs to assume a high-impedence OFF-state, effectively isolating the buses. In suspend mode, when either supply is zero, there is no current path between supplies. $V_{CCA} \ge V_{CCB}$, except in suspend mode. Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

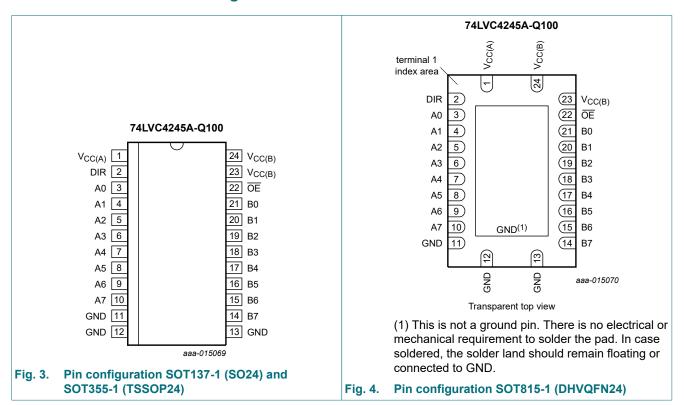
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- 5 V tolerant inputs/outputs, for interfacing with 5 V logic
- Wide supply voltage range:
 - 3 V bus (V_{CC(B)}): 1.5 V to 3.6 V
 - 5 V bus (V_{CC(A)}): 1.5 V to 5.5 V
- CMOS low-power consumption
- TTL interface capability at 3.3 V
- Overvoltage tolerant control inputs to 5.5 V
- High-impedance when V_{CC(A)} = 0 V
- · Complies with JEDEC standard no. JESD8B/JESD36
- Latch-up performance meets requirements of JESD78 Class 1
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114-A exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options
- DHVQFN package with Side-Wettable Flanks enabling Automatic Optical Inspection (AOI) of solder joints



3. Ordering information

Table 1. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74LVC4245AD-Q100	-40 °C to +125 °C	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1					
74LVC4245APW-Q100	-40 °C to +125 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1					
74LVC4245ABQ-Q100	-40 °C to +125 °C	DHVQFN24	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body 3.5 × 5.5 × 0.85 mm	SOT815-1					


4. Functional diagram

Product data sheet

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description	
V _{CC(A)}	1	supply voltage (5 V bus)	
$V_{CC(B)}$	23, 24	supply voltage (3 V bus)	
GND	11, 12, 13	ground (0 V)	
DIR	2	direction control	
A0, A1, A2, A3, A4, A5, A6, A7	3, 4, 5, 6, 7, 8, 9, 10	data input or output	
B0, B1, B2, B3, B4, B5, B6, B7	21, 20, 19, 18, 17, 16, 15, 14	data input or output	
ŌĒ	22	output enable input (active LOW)	

6. Functional description

Table 3. Functional table

 $H = HIGH \text{ voltage level}; L = LOW \text{ voltage level}; X = don't care; Z = high-impedance OFF-state.}$

Input		Input/output		
ŌE DIR		An	Bn	
L	L	A = B	input	
L	Н	input	B = A	
Н	X	Z	Z	

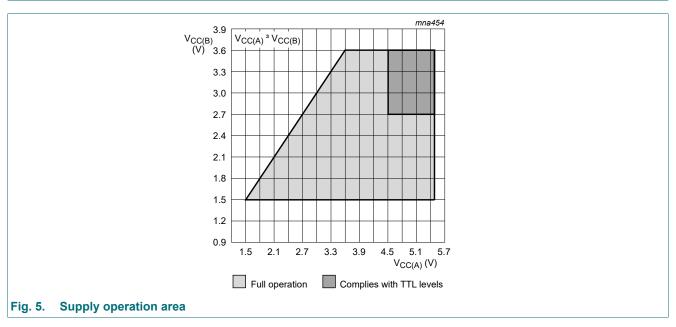
7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		-0.5	+6.5	V
V _{CC(B)}	supply voltage B		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage	[1]	-0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CCO}$ or $V_O < 0 V$ [2]	-	±50	mA
Vo	output voltage	output HIGH or LOW state [1]	-0.5	V _{CC} + 0.5	V
		output 3-state [1]	-0.5	+6.5	V
Io	output current	$V_O = 0 V \text{ to } V_{CCO}$ [2]	-	±50	mA
I _{CC}	supply current		-	100	mA
I_{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C to } +125 ^{\circ}\text{C}$ [3]	-	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.


^[2] V_{CCO} is the supply voltage associated with the output.

^[3] For SOT137-1 (SO24) package: P_{tot} derates linearly with 16.2 mW/K above 119 °C. For SOT355-1 (TSSOP24) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT815-1 (DHVQFN24) package: P_{tot} derates linearly with 15.0 mW/K above 117 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC(A)}	supply voltage A	$V_{CC(A)} \ge V_{CC(B)}$; see <u>Fig. 5</u> for maximum speed performance	1.5	-	5.5	V
V _{CC(B)}	supply voltage B	$V_{CC(A)} \ge V_{CC(B)}$; see <u>Fig. 5</u> for low-voltage applications	1.5	-	3.6	V
VI	input voltage	for control inputs	0	-	5.5	V
Vo	output voltage	output HIGH or LOW state	0	-	V _{CC}	V
		output 3-state	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC(B)} = 2.7 V to 3.0 V	-	-	20	ns/V
		V _{CC(B)} = 3.0 V to 3.6 V	-	-	10	ns/V
		V _{CC(A)} = 3.0 V to 4.5 V	-	-	20	ns/V
		V _{CC(A)} = 4.5 V to 5.5 V	-	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit			
T _{amb} = -40 °C to +85 °C									
V_{IH}	/ _{IH} HIGH-level input voltage	V _{CC(B)} = 2.7 V to 3.6 V	2.0	-	-	V			
		V _{CC(A)} = 4.5 V to 5.5 V	2.0	-	-	V			
V_{IL}	LOW-level input	$V_{CC(B)} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.8	V			
	voltage	V _{CC(A)} = 4.5 V to 5.5 V	-	-	0.8	V			

Downloaded from Arrow.com.

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
V _{OH}	HIGH-level output	$V_{I} = V_{IH}$ or V_{IL}				
	voltage	$V_{CC(B)}$ = 2.7 V to 3.6 V; I_O = -100 μ A	V _{CC(B)} - 0.2	V _{CC(B)}	-	V
		$V_{CC(B)} = 2.7 \text{ V}; I_{O} = -12 \text{ mA}$	V _{CC(B)} - 0.5	-	-	V
		$V_{CC(B)} = 3.0 \text{ V; } I_O = -24 \text{ mA}$	V _{CC(B)} - 0.8	-	-	V
		$V_{CC(A)} = 4.5 \text{ V to } 5.5 \text{ V; I}_{O} = -100 \mu\text{A}$	V _{CC(A)} - 0.2	V _{CC(A)}	-	V
		V _{CC(A)} = 4.5 V; I _O = -12 mA	V _{CC(A)} - 0.5	-	-	V
		$V_{CC(A)} = 4.5 \text{ V}; I_O = -24 \text{ mA}$	V _{CC(A)} - 0.8	-	-	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}				
'	voltage	$V_{CC(B)}$ = 2.7 V to 3.6 V; I_O = 100 μA	-	-	0.20	V
		V _{CC(B)} = 2.7 V; I _O = 12 mA	-	-	0.40	V
		V _{CC(B)} = 3.0 V; I _O = 24 mA	-	-	0.55	V
		$V_{CC(A)} = 4.5 \text{ V to } 5.5 \text{ V; } I_O = 100 \mu\text{A}$	-	-	0.20	V
		V _{CC(A)} = 4.5 V; I _O = 12 mA	-	-	0.40	V
		V _{CC(A)} = 4.5 V; I _O = 24 mA	-	-	0.55	V
l _l	input leakage current	V _I = 5.5 V or GND	-	±0.1	±5	μA
I _{OZ} OFF-state output		$V_I = V_{IH} \text{ or } V_{IL}$ [2]]			
	current	$V_{CC(B)} = 3.6 \text{ V}; V_O = V_{CC(B)} \text{ or GND}$	-	±0.1	±5	μΑ
		$V_{CC(A)} = 5.5 \text{ V}; V_O = V_{CC(A)} \text{ or GND}$	-	±0.1	±5	μΑ
I _{CC}	supply current	I _O = 0 A				
		$V_{CC(B)}$ = 3.6 V; other inputs at $V_{CC(B)}$ or GND	-	0.1	10	μA
		$V_{CC(A)} = 5.5 \text{ V};$ other inputs at $V_{CC(A)}$ or GND	-	0.1	10	μΑ
ΔI _{CC}	additional supply	per pin; I _O = 0 A				
	current	$V_{CC(B)}$ = 2.7 V to 3.6 V; V_I = $V_{CC(B)}$ - 0.6 V; other inputs at $V_{CC(B)}$ or GND	-	5	500	μA
		$V_{CC(A)}$ = 4.5 V to 5.5 V; V_I = $V_{CC(A)}$ - 0.6 V; other inputs at $V_{CC(A)}$ or GND	-	5	500	μA
Cı	input capacitance		-	4.0	-	pF
C _{I/O}	input/output capacitance	An and Bn	-	5.0	-	pF
T _{amb} = -4	40 °C to +125 °C					
V _{IH}	HIGH-level input	V _{CC(B)} = 2.7 V to 3.6 V	2.0	-	-	V
	voltage	V _{CC(A)} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input	V _{CC(B)} = 2.7 V to 3.6 V	-	-	0.8	V
	voltage	V _{CC(A)} = 4.5 V to 5.5 V	-	-	8.0	V
V _{OH}	HIGH-level output	$V_{I} = V_{IH}$ or V_{IL}				
	voltage	V _{CC(B)} = 2.7 V to 3.6 V; I _O = -100 μA	V _{CC(B)} - 0.3	-	-	V
		V _{CC(B)} = 2.7 V; I _O = -12 mA	V _{CC(B)} - 0.65	-	-	V
		V _{CC(B)} = 3.0 V; I _O = -24 mA	V _{CC(B)} - 1.0	-	-	V
		$V_{CC(A)} = 4.5 \text{ V to } 5.5 \text{ V; } I_O = -100 \mu\text{A}$	V _{CC(A)} - 0.3	-	-	V
		V _{CC(A)} = 4.5 V; I _O = -12 mA	V _{CC(A)} - 0.65	-	-	V
		$V_{CC(A)} = 4.5 \text{ V; I}_{O} = -24 \text{ mA}$	V _{CC(A)} - 1.0	-	-	V

Product data sheet

Downloaded from Arrow.com.

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
V_{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}				
	voltage	V _{CC(B)} = 2.7 V to 3.6 V; I _O = 100 μA	-	-	0.30	V
		V _{CC(B)} = 2.7 V; I _O = 12 mA	-	-	0.60	V
		V _{CC(B)} = 3.0 V; I _O = 24 mA	-	-	0.80	V
		$V_{CC(A)} = 4.5 \text{ V to } 5.5 \text{ V; I}_{O} = 100 \mu\text{A}$	-	-	0.30	V
		V _{CC(A)} = 4.5 V; I _O = 12 mA	-	-	0.60	V
		V _{CC(A)} = 4.5 V; I _O = 24 mA	-	-	0.80	V
l _l	input leakage current	V _I = 5.5 V or GND	-	-	±20	μA
l _{oz}	OFF-state output current	$V_I = V_{IH} \text{ or } V_{IL}$ [2]				
		$V_{CC(B)} = 3.6 \text{ V}; V_O = V_{CC(B)} \text{ or GND}$	-	-	±20	μA
		$V_{CC(A)} = 5.5 \text{ V}; V_O = V_{CC(A)} \text{ or GND}$	-	-	±20	μA
I _{CC}	supply current	I _O = 0 A				
		$V_{CC(B)} = 3.6 \text{ V};$ other inputs at $V_{CC(B)}$ or GND	-	-	40	μA
		$V_{CC(A)} = 5.5 \text{ V};$ other inputs at $V_{CC(A)}$ or GND	-	-	40	μA
ΔI_{CC}	additional supply	per pin; I _O = 0 A				
	current	$V_{CC(B)}$ = 2.7 V to 3.6 V; V_I = $V_{CC(B)}$ - 0.6 V; other inputs at $V_{CC(B)}$ or GND	-	-	5000	μΑ
		$V_{CC(A)}$ = 4.5 V to 5.5 V; V_I = $V_{CC(A)}$ - 0.6 V; other inputs at $V_{CC(A)}$ or GND	-	-	5000	μΑ

All typical values are measured at $V_{CC(A)}$ = 5.0 V, $V_{CC(B)}$ = 3.3 V and T_{amb} = 25 °C. For transceivers, the parameter I_{OZ} includes the input leakage current.

10. Dynamic characteristics

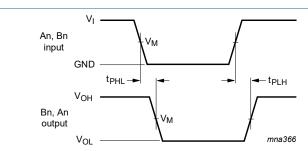
Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). $V_{CC(A)} = 4.5 \text{ V}$ to 5.5 V; $t_r = t_f \le 2.5 \text{ ns}$. For test circuit see Fig. 8.

Symbol	Parameter	Conditions	onditions V _{CC(B)}		-40 °C to +85 °C		-40 °C to	+125 °C	Unit
				Min	Typ [1]	Max	Min	Max	
t _{PHL}	HIGH to LOW	An to Bn; see Fig. 6	2.7 V	1.0	3.6	6.3	1.0	8.0	ns
	propagation delay		3.0 V to 3.6 V	1.0	3.3	6.3	1.0	8.0	ns
dolay	Bn to An; see Fig. 6	2.7 V	1.0	3.4	6.1	1.0	8.0	ns	
			3.0 V to 3.6 V	1.0	3.4	6.1	1.0	8.0	ns
t _{PLH}	LOW to HIGH	An to Bn; see Fig. 6	2.7 V	1.0	3.3	6.7	1.0	8.5	ns
	propagation delay		3.0 V to 3.6 V	1.0	2.8	6.5	1.0	8.5	ns
13.27	Bn to An; see Fig. 6	2.7 V	1.0	3.0	5.0	1.0	6.5	ns	
			3.0 V to 3.6 V	1.0	3.0	5.0	1.0	6.5	ns

Symbol	Parameter	Conditions	V _{CC(B)}	-40 °C to +85 °C			-40 °C to	Unit	
				Min	Typ [1]	Max	Min	Max	1
t _{PZL}	OFF-state	OE to An; see Fig. 7	2.7 V	1.0	4.5	9.0	1.0	11.5	ns
	to LOW propagation		3.0 V to 3.6 V	1.0	4.5	9.0	1.0	11.5	ns
	delay	OE to Bn; see Fig. 7	2.7 V	1.0	4.4	8.7	1.0	11.0	ns
			3.0 V to 3.6 V	1.0	3.8	8.1	1.0	10.5	ns
t _{PZH}	OFF-state	OE to An; see Fig. 7	2.7 V	1.0	4.5	8.1	1.0	10.5	ns
	to HIGH propagation		3.0 V to 3.6 V	1.0	4.5	8.1	1.0	10.5	ns
	delay		2.7 V	1.0	4.3	8.7	1.0	11.0	ns
			3.0 V to 3.6 V	1.0	3.2	8.1	1.0	10.5	ns
t _{PLZ}	LOW to	OE to An; see Fig. 7	2.7 V	1.0	2.9	7.0	1.0	9.0	ns
	OFF-state propagation		3.0 V to 3.6 V	1.0	2.9	7.0	1.0	9.0	ns
	delay	OE to Bn; see Fig. 7	2.7 V	1.0	3.9	7.7	1.0	10.0	ns
			3.0 V to 3.6 V	1.0	3.5	7.7	1.0	10.0	ns
t _{PHZ}	HIGH to	OE to An; see Fig. 7	2.7 V	1.0	2.8	5.8	1.0	7.5	ns
	OFF-state propagation		3.0 V to 3.6 V	1.0	2.8	5.8	1.0	7.5	ns
	delay	OE to Bn; see Fig. 7	2.7 V	1.0	3.3	7.8	1.0	10.0	ns
			3.0 V to 3.6 V	1.0	2.9	7.8	1.0	10.0	ns
t _{sk(o)}	output skew time		[2]	-	-	1.0	-	1.5	ns
C _{PD}	power dissipation capacitance	5 V bus: Bn to An; $V_I = GND$ to $V_{CC(A)}$; $V_{CC(A)} = 5.0 \text{ V}$	[3]						
		outputs enabled	-	-	17	-	-	-	pF
		outputs disabled	-	-	5	-	-	-	pF
		3 V bus: An to Bn; $V_I = GND$ to $V_{CC(B)}$; $V_{CC(B)} = 3.3 \text{ V}$	[3]						
		outputs enabled	-	-	17	-	-	-	pF
		outputs disabled	-	-	5	-	-	-	pF
	1	The state of the s	1		1		The second secon	1	1

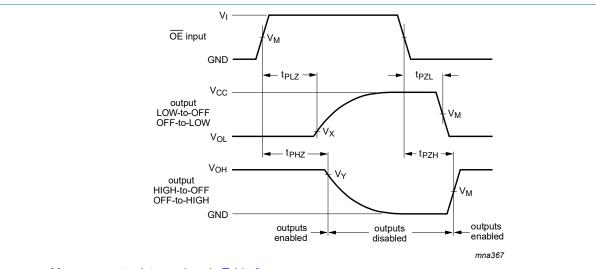
Typical values are measured at T_{amb} = 25 °C, $V_{CC(A)}$ = 5.0 V, and $V_{CC(B)}$ = 2.7 V and 3.3 V respectively. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:


 f_i = input frequency in MHz; f_o = output frequency in MHz

C_L = output load capacitance in pF

V_{CC} = supply voltage in Volts

N = number of inputs switching $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of the outputs}$


10.1. Waveforms and test circuit

Measurement point are given in Table 8.

V_{OL} and V_{OH} are typical output voltage drops that occur with the output load.

Fig. 6. Input (An, Bn) to output (Bn, An) propagation delays

Measurement point are given in Table 8.

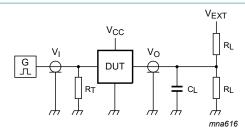

 V_{OL} and V_{OH} are typical output voltage drops that occur with the output load.

Fig. 7. 3-state enable and disable times

Table 8. Measurement points

Supply voltage		Input		Output		
V _{CC(A)}	V _{CC(B)}	V _M [1]	V _I [1]	V _M [2]	V _X	V _Y
≤ 2.7 V	≤ 2.7 V	0.5 V _{CCI}	V _{CCI}	0.5 V _{CCO}	-	-
-	2.7 V to 3.6 V	1.5 V	2.7 V	1.5 V	-	-
≥ 4.5 V	-	0.5 V _{CCI}	3.0 V	0.5 V _{CCO}	-	-
-	≥ 2.7 V	-	V _{CCI}	-	V _{OL} + 0.3 V	V _{OH} - 0.3 V

- [1] V_{CCI} is the supply voltage associated with the data input port.
- V_{CCO} is the supply voltage associated with the data output port.

Test data is given in <u>Table 9</u>. Definitions for test circuit:

R_L = Load resistance.

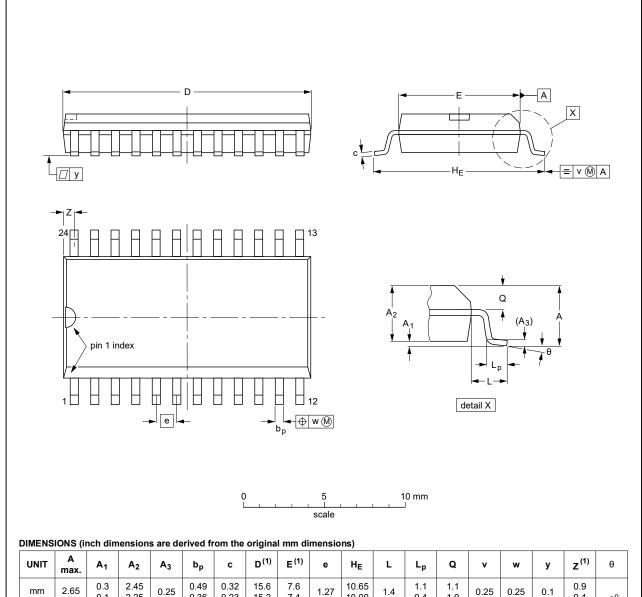
 $\ensuremath{\text{C}_{\text{L}}}$ = Load capacitance including jig and probe capacitance.

 R_{T} = Termination resistance should be equal to output impedance Z_{o} of the pulse generator.

Fig. 8. Test circuit for measuring switching times

Table 9. Test data

Supply voltage		Input	Load		V _{EXT}		
V _{CC(A)}	V _{CC(B)}	V _I [1]	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [2]
< 2.7 V	< 2.7 V	V _{CCI}	50 pF	500 Ω	open	GND	2 × V _{CCO}
-	2.7 V to 3.6 V	2.7 V	50 pF	500 Ω	open	GND	2 × V _{CCO}
4.5 V to 5.5 V	-	3.0 V	50 pF	500 Ω	open	GND	2 × V _{CCO}


- [1] V_{CCI} is the supply voltage associated with the data input port.
- [2] V_{CCO} is the supply voltage associated with the output port.

Product data sheet

11. Package outline

SO24: plastic small outline package; 24 leads; body width 7.5 mm

SOT137-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	15.6 15.2	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.61 0.60	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT137-1	075E05	MS-013				99-12-27 03-02-19

Package outline SOT137-1 (SO24)

Product data sheet

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

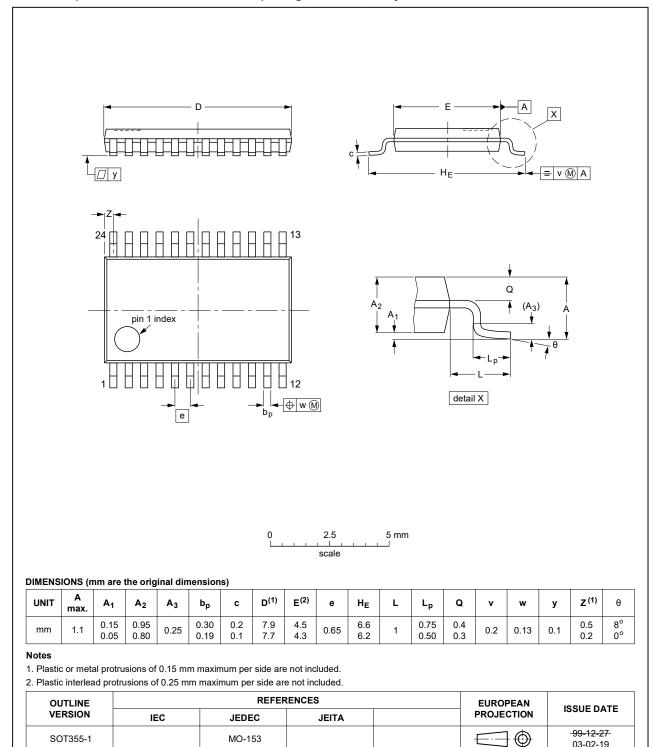


Fig. 10. Package outline SOT355-1 (TSSOP24)

Product data sheet

12 / 16

03-02-19

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body 3.5 x 5.5 x 0.85 mm SOT815-1 В detail X terminal 1 index area С e₁ terminal 1 index area // y₁ C → е 11 E_h 24 13 23 5 mm scale **DIMENSIONS** (mm are the original dimensions)

UNIT	A ⁽¹⁾ max.	A ₁	b	С	D ⁽¹⁾	D _h	E ⁽¹⁾	E _h	е	e ₁	e ₂	L	v	w	у	У1
mm	1	0.05 0.00	0.30 0.18	0.2	5.6 5.4	4.25 3.95	3.6 3.4	2.25 1.95	0.5	4.5	1.5	0.5 0.3	0.1	0.05	0.05	0.1

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION		
SOT815-1					03-04-29	

Fig. 11. Package outline SOT815-1 (DHVQFN24)

Product data sheet

12. Abbreviations

Table 10. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes					
74LVC4245A_Q100 v.3	20210412	Product data sheet	-	74LVC4245A_Q100 v.2					
Modifications:	• Section 9: Δ	Al _{CC} conditions have chang	ed.						
74LVC4245A_Q100 v.2	20200922	Product data sheet	-	74LVC4245A_Q100 v.1					
Modifications:	guidelines o Legal texts I Section 1 ar Table 4: Der	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Section 1 and Section 2 updated. Table 4: Derating values for P_{tot} total power dissipation updated. Measurement points related to Fig. 6 and Fig. 7 are given in Table 8. 							
74LVC4245A_Q100 v.1	20141020	Product data sheet	-	-					

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

Octal dual supply translating transceiver; 3-state

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVC4245A_Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2021. All rights reserved

Contents

1
1
2
2
3
3
3
4
4
5
5
7
9
11
14
14
15

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 12 April 2021

[©] Nexperia B.V. 2021. All rights reserved