√RoHS

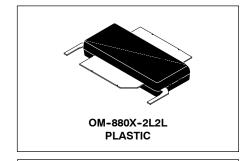
RF Power LDMOS Transistor

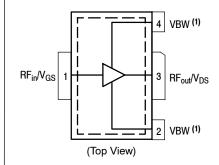
N-Channel Enhancement-Mode Lateral MOSFET

This 56 W RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 1805 to 1880 MHz.

1800 MHz

Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 1500 mA, P_{out} = 56 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
1805 MHz	18.1	33.1	6.9	-34.7	-15
1840 MHz	18.5	33.5	7.0	-35.1	-23
1880 MHz	18.7	34.4	6.8	-34.4	-12


Features

- · Designed for Wide Instantaneous Bandwidth Applications
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- Able to Withstand Extremely High Output VSWR and Broadband Operating Conditions
- · Optimized for Doherty Applications

A2T18S260W12NR3

1805–1880 MHz, 56 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTOR

Note: Exposed backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

 Device can operate with V_{DD} current supplied through pin 2 and pin 4 as long as the device's average output power is less than 90 watts.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V_{GS}	-6.0, +10	Vdc
Operating Voltage	V_{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +125	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 81°C, 56 W CW, 28 Vdc, I _{DQ} = 1500 mA, 1840 MHz	$R_{\theta JC}$	0.23	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22-C101)	IV

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics			•		•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	5	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics	.			•	•
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 300 μ Adc)	V _{GS(th)}	1.4	1.8	2.2	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _D = 1500 mAdc, Measured in Functional Test)	V _{GS(Q)}	2.1	2.6	2.9	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3 Adc)	V _{DS(on)}	0.05	0.17	0.3	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.nxp.com/RF/calculators.
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

(continued)

Table 5. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests ⁽¹⁾ (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ} = 1500 mA, P _{out} = 56 W Avg., f = 1880 MHz,					
Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz			3.84 MHz		
Channel Bandwidth @ +5 MHz Offset		-			

Power Gain	G _{ps}	17.0	18.7	19.5	dB
Drain Efficiency	η_{D}	31.5	34.4	_	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	6.5	6.8	_	dB
Adjacent Channel Power Ratio	ACPR	_	-34.4	-31.5	dBc
Input Return Loss	IRL	_	-12	-8	dB

Load Mismatch (In Freescale Test Fixture, 50 ohm system) I_{DQ} = 1500 mA, f = 1840 MHz, 12 μ sec(on), 10% Duty Cycle

VSWR 10:1 at 32 Vdc, 295 W Pulsed CW Output Power	No Device Degradation
(3 dB Input Overdrive from 251 W Pulsed CW Rated Power)	

$\hline \textbf{Typical Performance} \text{ (In Freescale Test Fixture, 50 ohm system) } V_{DD} = 28 \text{ Vdc, I}_{DQ} = 1500 \text{ mA}, 1805-1880 \text{ MHz Bandwidth}$

Pout @ 1 dB Compression Point, Pulsed CW	P1dB	_	280	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 1805–1880 MHz frequency range.)	Φ	_	-13	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		90	_	MHz
Gain Flatness in 75 MHz Bandwidth @ P _{out} = 56 W Avg.	G _F	_	0.4	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.011	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	ΔP1dB		0.005	_	dB/°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
A2T18S260W12NR3	R3 Suffix = 250 Units, 56 mm Tape Width, 13-inch Reel	OM-880X-2L2L

^{1.} Part internally matched both on input and output.

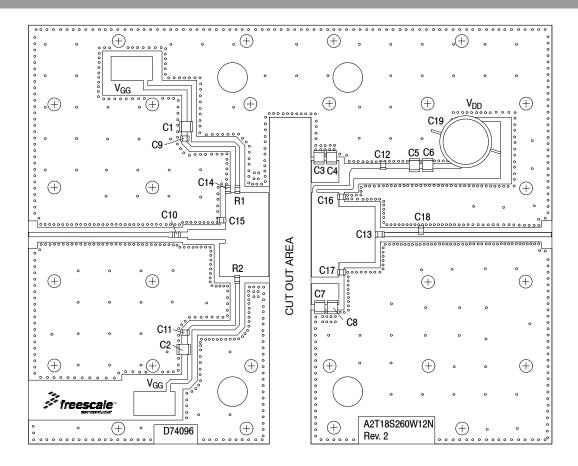


Figure 2. A2T18S260W12NR3 Test Circuit Component Layout

Table 7. A2T18S260W12NR3 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5, C6, C7, C8	4.7 μF Chip Capacitors	C4532X7S2A475M230KB	TDK
C9, C10, C11, C12, C13	15 pF Chip Capacitors	GQM2195C2E150FB12D	Murata
C14, C16, C17	0.9 pF Chip Capacitors	GQM2195C2ER90BB12D	Murata
C15	1 pF Chip Capacitor	GQM2195C2E1R0BB12D	Murata
C18	0.8 pF Chip Capacitor	GQM2195C2ER80BB12D	Murata
C19	470 μF, 63 V Electrolytic Capacitor	MCGPR63V477M13X26-RH	Multicomp
R1, R2	2.2 Ω, 1/4 W Chip Resistors	WCR0805-2R2FI	Welwyn
PCB	Rogers RO4350B, 0.020", $\epsilon_{\rm r} = 3.66$	D74096	MTL

TYPICAL CHARACTERISTICS — 1805-1880 MHz

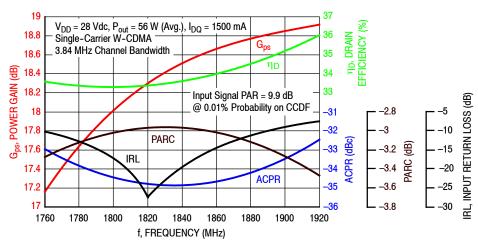


Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ Pout = 56 Watts Avg.

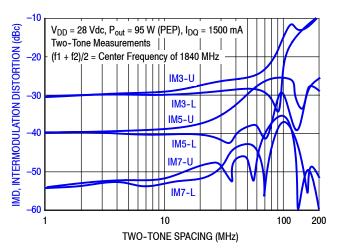


Figure 4. Intermodulation Distortion Products versus Two-Tone Spacing

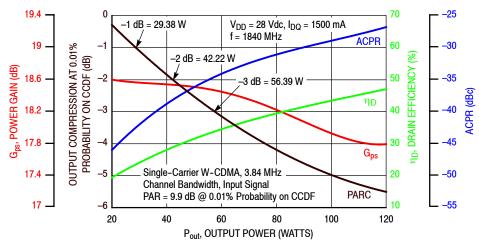


Figure 5. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

A2T18S260W12NR3

TYPICAL CHARACTERISTICS — 1805–1880 MHz

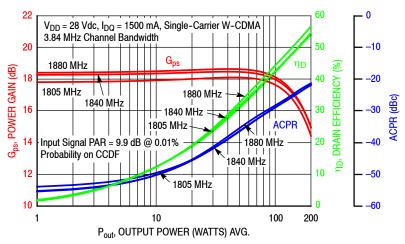


Figure 6. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

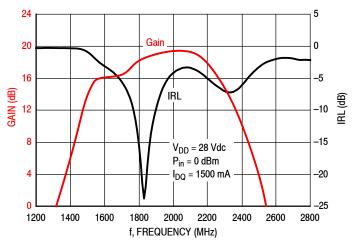


Figure 7. Broadband Frequency Response

Table 8. Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQ} = 1466 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power							
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1800	0.56 – j3.82	0.58 + j3.60	0.46 – j2.94	16.4	55.0	318	53.4	-11		
1840	0.64 - j4.06	0.68 + j3.74	0.45 – j3.06	16.3	55.0	318	53.2	-12		
1880	0.81 – j4.35	0.80 + j3.92	0.46 – j3.17	16.3	54.9	312	52.7	-11		

				wer						
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1800	0.56 – j3.82	0.51 + j3.65	0.45 – j3.02	14.2	55.7	374	54.6	-14		
1840	0.64 - j4.06	0.60 + j3.81	0.45 – j3.11	14.2	55.7	372	55.0	-15		
1880	0.81 – j4.35	0.72 + j4.01	0.47 – j3.24	14.1	55.6	363	53.5	-14		

⁽¹⁾ Load impedance for optimum P1dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

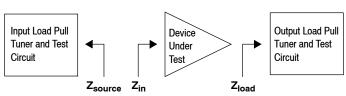
 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 9. Load Pull Performance — Maximum Efficiency Tuning

 V_{DD} = 28 Vdc, I_{DQ} = 1466 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

				Drain Efficie	ain Efficiency					
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1800	0.56 – j3.82	0.59 + j3.68	1.27 – j2.42	19.9	52.6	182	68.9	-18		
1840	0.64 - j4.06	0.69 + j3.83	1.15 – j2.41	19.9	52.4	175	67.8	-20		
1880	0.81 – j4.35	0.80 + j4.08	0.99 – j2.41	20.0	52.2	166	66.2	-21		


				ency						
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1800	0.56 - j3.82	0.52 + j3.69	1.14 – j2.51	17.6	53.7	233	69.1	-23		
1840	0.64 - j4.06	0.62 + j3.88	1.15 – j2.39	17.9	53.0	200	67.2	-26		
1880	0.81 – j4.35	0.73 + j4.10	1.03 – j2.68	17.4	53.6	229	65.8	-23		

⁽¹⁾ Load impedance for optimum P1dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

A2T18S260W12NR3

⁽²⁾ Load impedance for optimum P3dB power.

⁽²⁾ Load impedance for optimum P3dB efficiency.

P1dB - TYPICAL LOAD PULL CONTOURS — 1840 MHz

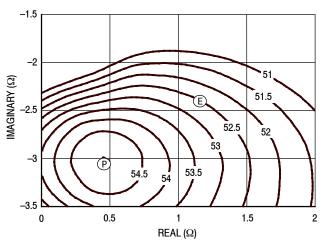
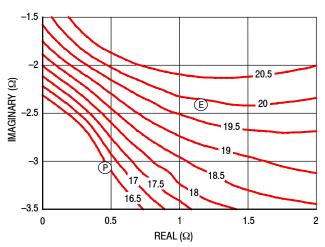



Figure 8. P1dB Load Pull Output Power Contours (dBm)

Figure 9. P1dB Load Pull Efficiency Contours (%)

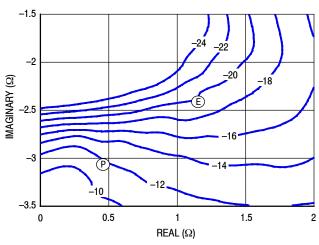
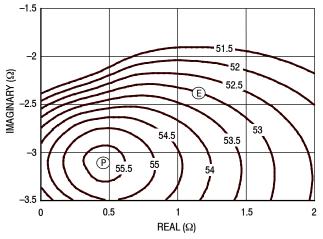


Figure 10. P1dB Load Pull Gain Contours (dB)


Figure 11. P1dB Load Pull AM/PM Contours (°)

NOTE: P = Maximum Output Power

(E) = Maximum Drain Efficiency

Gain
Drain Efficiency
Linearity
Output Power

P3dB - TYPICAL LOAD PULL CONTOURS — 1840 MHz

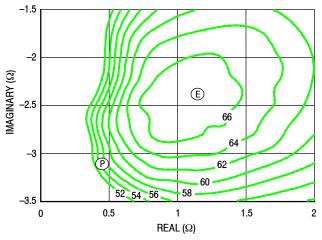
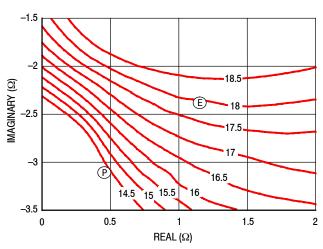



Figure 12. P3dB Load Pull Output Power Contours (dBm)

Figure 13. P3dB Load Pull Efficiency Contours (%)

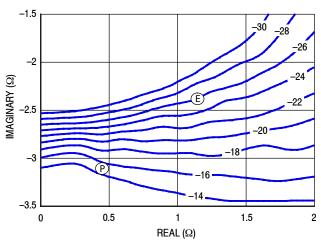
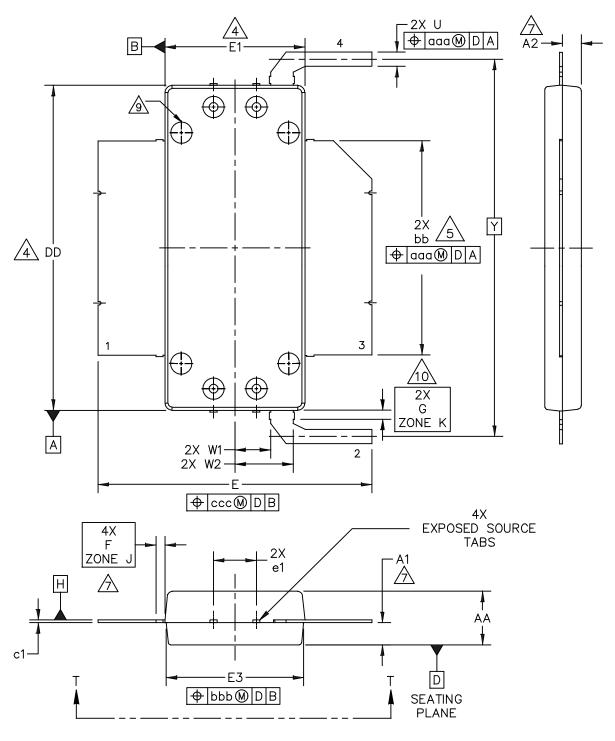
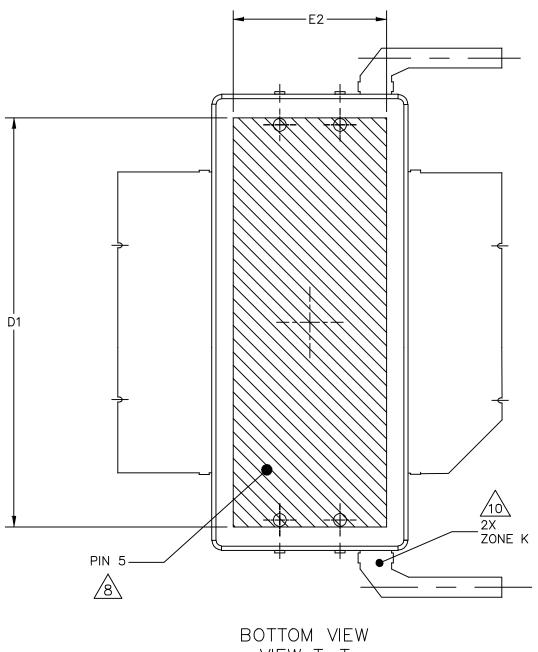


Figure 14. P3dB Load Pull Gain Contours (dB)


Figure 15. P3dB Load Pull AM/PM Contours (°)

NOTE: (P) = Maximum Output Power


(E) = Maximum Drain Efficiency

Gain
Drain Efficiency
Linearity
Output Power

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO	SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00549D	REV: 0
OM-880X-2L	STANDARD: NON-JEDEC			
		07 、	JAN 2014	

BOTTOM VIEW VIEW T-T

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00549D REV: O
OM-880X-2L2L			RD: NON-JEDEC
			07 JAN 2014

NOTES:

- CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS DD AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS DD AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- DIMENSION 66 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE 66 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.
- $\sqrt{7.}$ DIMENSIONS A1 AND A2 APPLIES WITHIN ZONE J ONLY. A1 APPLIES TO PINS 1 AND 3. A2 APPLIES TO PINS 2 AND 4.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1
 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES
 OF EXPOSED AREA OF HEAT SLUG.
- /9. DIMPLED HOLE REPRESENTS INPUT SIDE.
 10. ZONE K REPRESENTS NON-SOLDERABLE REGION WHERE MOLD FLASH AND RESIN BLEED ARE PERMITTED ON BOTH SIDES OF THE LEADS.

	IN	CH	МІІ	LIMETER		INCH		MILLIM	IETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	.148	.152	3.76	3.86	W1	.095	.105	2.41	2.67	
A1	.059	.065	1.50	1.65	W2	.158	.168	4.01	4.27	
A2	.056	.068	1.42	1.73	U	.037	.043	0.94	1.09	
DD	.908	.912	23.06	23.16	Υ	1.4	056 BSC	26.8	2 BSC	
D1	.816		20.73	5	bb	.597	.603	15.16	15.32	
Е	.762	.770	19.35	19.56	c1	.007	.011	0.18	0.28	
E1	.390	.394	9.91	10.01	e1	.116	.124	2.95	3.15	
E2	.306		7.77							
E3	.383	.387	9.73	9.83	aaa		.004 0.10		.10	
F	.025	BSC	0	.64 BSC	bbb		.006	0.15		
G	.030	BSC	0	.76 BSC	ccc		.010	0.25		
0	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL OL						PRINT VER	SION NOT T	O SCALE	
TITLE:	;					DOCUME	NT NO: 98ASA	00549D	REV: 0	
	OM-880X-2L2L						STANDARD: NON-JEDEC			
							07	JAN 2014		

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- · RF High Power Model
- s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Feb. 2016	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2016 Freescale Semiconductor, Inc.

