Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

DATA SHEET

CBTD16211
 24-bit level shifting bus exchange switch with 12-bit output enables

24-bit level shifting bus exchange switch with 12-bit output enables

FEATURES

- 5Ω switch connection between two ports
- TTL compatible control input levels
- Designed to be used in level shifting applications
- Package options include shrink small outline (SSOP) and thin shrink small outline (TSSOP)
- ESD protection exceeds 1000 V CDM per JESD22-C101
- Latch-up testing is done to JESDEC Standard JESD78 which exceeds 100 mA

DESCRIPTION

The CBTD16211 provides 24 bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay

A diode to V_{CC} is integrated in the circuit to allow for level shifting between 5 V inputs and 3.3 V outputs.

The device is organized as a dual 12-bit bus switch with separate output-enable (OE) inputs. It can be used as two 10 -bit bus switches or as one 20 -bit bus switch. When OE is low, the associated 10 -bit bus switch is on, and port A is connected to port B . When $\overline{\mathrm{OE}}$ is high, the switch is open, and a high-impedance state exists between the ports.

The CBTD16211 is characterized for operation from -40 to $+85^{\circ} \mathrm{C}$.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$	TYPICAL	UNIT
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay An to Yn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0.25	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4.3	pF
Cout	Output capacitance	Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	6.9	pF
I_{CC}	Total supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	3.0	$\mu \mathrm{A}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DWG NUMBER
56 -Pin Plastic SSOP Type III	-40 to $+85^{\circ} \mathrm{C}$	CBTD16211DL	SOT371-1
56 -Pin Plastic TSSOP Type II	-40 to $+85^{\circ} \mathrm{C}$	CBTD16211DGG	SOT364-1

FUNCTION TABLE

INPUTS		OUTPUTS	
10E	20E	1A, 1B	2A, 2B
L	L	$1 \mathrm{~A}=1 \mathrm{~B}$	$2 \mathrm{~A}=2 \mathrm{~B}$
L	H	$1 \mathrm{~A}=1 \mathrm{~B}$	Z
H	L	Z	$2 \mathrm{~A}=2 \mathrm{~B}$
H	H	z	Z

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
$Z=$ High impedance "off" state

LOGIC SYMBOL

24-bit level shifting bus exchange switch with 12-bit output enables

PIN CONFIGURATION

	-
NC 1	5610 E
$1 \mathrm{~A}_{1} 2$	55 20E
1 A 23	54181
1 143 4	53182
1 A 45	52183
1 A 56	51184
1 A 67	50185
GND 8	49 GND
$1 \mathrm{AFP}_{9} 9$	48186
1 AB 8	47187
1 199 11	46188
1 A 1012	45189
$1 \mathrm{Al1} 13$	(44) 1810
1 A 124	431811
$2 \mathrm{~A} 1{ }^{15}$	42 1812
2A2 16	41231
$\mathrm{v}_{\text {cc }} 17$	40282
2Аз 18	39283
GND 19	38 GND
2A4 20	37284
$2 \mathrm{A5} 21$	36285
$2 \mathrm{Ag} \quad 22$	35286
$2 \mathrm{~A} 7{ }^{23}$	34287
$2 \mathrm{AB} \times 24$	33 288
$2 \mathrm{A9} 25$	32289
2 A 1026	31 2810
$2 A 1127$	30) 2811
$2 \mathrm{A12} 28$	292812
	SA00509

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	NC	No internal connection
56,55	$1 \mathrm{OE}, 2 \overline{\mathrm{OE}}$	Output enables
$2,3,4,5,6,7,9,10$, $11,12,13,14$	$1 \mathrm{~A} 1-1 \mathrm{~A} 12$	Inputs
$54,53,52,51,50,48$, $47,46,45,44,43,42$	$1 \mathrm{~B} 1-1 \mathrm{~B} 12$	Outputs
$15,16,18,20,21,22$, $23,24,25,26,27,28$	$2 \mathrm{~A} 1-2 \mathrm{~A} 12$	Inputs
$41,40,39,37,36,35$, $34,33,32,31,30,29$	$2 \mathrm{~B} 1-2 \mathrm{~B} 12$	Outputs
$8,19,38,49$	GND	Ground (0 V)
17	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage

24-bit level shifting bus exchange switch with 12-bit output enables

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +7.0	
$\mathrm{I}_{\text {IK }}$	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-50	V
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage 3		-0.5 to +7.0	
$\mathrm{~V}_{\text {OUT }}$	DC output voltage 3	output in Off or High state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	DC output current	output in Low state	V	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		128	mA

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150{ }^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS	
		UNIT		
V_{CC}	DC supply voltage	4.5	5.5	
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0	V	
$\mathrm{~V}_{\mathrm{IL}}$	Low-level Input voltage	-	V	
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	0.8	

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			$\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$			
			Min	Typ ${ }^{1}$	Max	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$	-	-	-1.2	V
V_{OH}	Output high pass voltage	See Figure 1	-	-		V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V	-	-	± 1	
I_{Cc}	Quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & 1 \mathrm{OE}=2 \mathrm{OE}=\mathrm{GND} \end{aligned}$	-	-	1.5	mA
$\Delta^{\text {l }} \mathrm{CC}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, one input at 3.4 V , other inputs at V_{CC} or GND	-	-	2.5	mA
C_{1}	Control pins	$\mathrm{V}_{1}=3 \mathrm{~V}$ or 0	-	4.5	-	pF
$\mathrm{C}_{\text {I(OFF) }}$	Port OFF capacitance	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or $0, \overline{O E}=\mathrm{V}_{C C}$	-	8	-	pF
ron^{3}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=64 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=30 \mathrm{~mA}$	-	5	7	
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V} ; \mathrm{V}_{1}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=-15 \mathrm{~mA}$	-	35	50	

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
3. Measured by the voltage drop between the A and the B terminals at the indicated current through the switch.

On-state resistance is determined by the lowest voltage of the two (A or B) terminals.

24-bit level shifting bus exchange switch with 12-bit output enables

AC CHARACTERISTICS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$		UNIT
				Min	Max	
t_{pd}	Propagation delay ${ }^{1}$	A or B	B or A	-	0.25	ns
$t_{\text {en }}$	Output enable time to High and Low level	OE	A or B	1.5	8.5	ns
$\mathrm{t}_{\text {dis }}$	Output disable time from High and Low level	OE	A or B	1.5	7	ns

NOTE:

1. This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF , when driven by an ideal voltage source (zero output impedance).

24-bit level shifting bus exchange switch with 12-bit output enables

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to 3.0 V

Waveform 1. Input (An) to Output (Yn) Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times

TEST CIRCUIT AND WAVEFORMS

TEST	S1
$\mathrm{t}_{\text {pd }}$	open
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	7 V
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	open

DEFINITIONS
$C_{L}=\quad$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

24-bit level shifting bus exchange switch with 12-bit output enables

TYPICAL CHARACTERISTICS
(
Figure 1. V_{OH} values $\left(\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{CC}}\right)$

24-bit level shifting bus exchange switch

 with 12-bit output enables

DIMENSIONS ($\mathbf{m m}$ are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.8	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 2.35 \\ & 2.20 \end{aligned}$	0.25	$\begin{aligned} & \hline 0.3 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 18.55 \\ & 18.30 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 74 \end{aligned}$	0.635	$\begin{aligned} & 10.4 \\ & 10.1 \end{aligned}$	1.4	$\begin{aligned} & 1.0 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$	0.25	0.18	0.1	0.85 0.40	8^{0} 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
		MO-118			$-95-02-04$	

24-bit level shifting bus exchange switch

 with 12-bit output enables

DIMENSIONS (mm are the original dimensions).

| UNIT | \mathbf{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| max. | | $\mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{2}} \quad \mathbf{A}_{\mathbf{3}} \quad \mathbf{b}_{\mathbf{p}} \quad \mathbf{c}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES					EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ				
		MO-153				-	$-95-02-10$ $99-12-27$

24-bit level shifting bus exchange switch with 12-bit output enables

Data sheet status

Data sheet status ${ }^{[1]}$	Product status ${ }^{[2]}$	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued datasheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381
© Copyright Philips Electronics North America Corporation 2001
All rights reserved. Printed in U.S.A.
Date of release: 06-01
979375008482

Let's make things beter.

PHILIPS

