74HC2G34-Q100; 74HCT2G34-Q100

Dual buffer gate

Rev. 3 — 3 February 2022

Product data sheet

1. General description

The 74HC2G34-Q100; 74HCT2G34-Q100 is a dual buffer. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

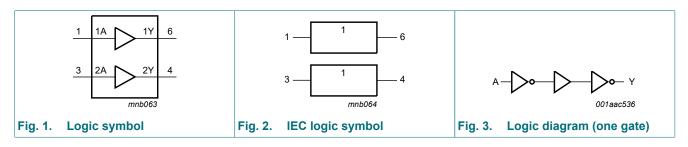
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)

 Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 2.0 V to 6.0 V
- High noise immunity
- CMOS low power dissipation
- · Balanced propagation delays
- Unlimited input rise and fall times
- Input levels:
 - For 74HC2G34-Q100: CMOS level
 - For 74HCT2G34-Q100: TTL level
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
 - Complies with JEDEC standards
 - JESD8C (2.7 V to 3.6 V)
 - JESD7A (2.0 V to 6.0 V)
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)

3. Ordering information

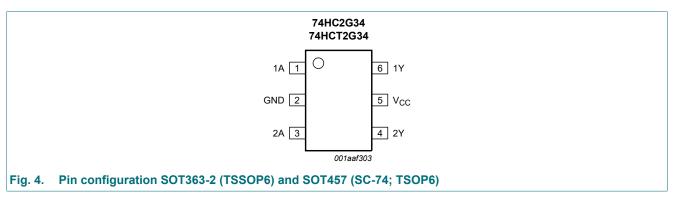
Table 1. Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74HC2G34GW-Q100	-40 °C to +125 °C	TSSOP6	plastic thin shrink small outline package; 6 leads;	SOT363-2				
74HCT2G34GW-Q100			body width 1.25 mm					
74HC2G34GV-Q100	-40 °C to +125 °C	SC-74;	plastic surface-mounted package; 6 leads	SOT457				
74HCT2G34GV-Q100		TSOP6						


ne<mark>x</mark>peria

4. Marking

Table 2. Marking							
Type number	Marking code[1]						
74HC2G34GW-Q100	PA						
74HCT2G34GW-Q100	UA						
74HC2G34GV-Q100	P34						
74HCT2G34GV-Q100	U34						


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 3. Pin description							
Symbol	Pin	Description					
1A	1	data input					
GND	2	ground (0 V)					
2A	3	data input					
2Y	4	data output					
V _{CC}	5	supply voltage					
1Y	6	data output					

7. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level.

Input	Output
nA	nY
L	L
Н	Н

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5 \text{ V or } V_{\rm I} > V_{\rm CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _{OK}	output clamping current	$V_{\rm O} < -0.5 \text{ V or } V_{\rm O} > V_{\rm CC} + 0.5 \text{ V}$ [1]	-	±20	mA
lo	output current	$V_{\rm O} = -0.5 \text{ V to } V_{\rm CC} + 0.5 \text{ V}$ [1]	-	±25	mA
I _{CC}	supply current	[1]	-	+50	mA
I _{GND}	ground current	[1]	-	-50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	[2]	-	250	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SOT363-2 (TSSOP6) package: P_{tot} derates linearly with 3.7 mW/K above 83 °C.

For SOT457 (SC-74; TSOP6) package: P_{tot} derates linearly with 4.1 mW/K above 89 °C.

9. Recommended operating conditions

Table 6. Recommended operating conditions

	Parameter	Conditions	Min	Тур	Max	Unit
•		oonationo		• 7 P	Шах	
74HC2G	34-Q100					
V _{CC}	supply voltage		2.0	5.0	6.0	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
t _r	rise time	except for Schmitt trigger inputs				
		V _{CC} = 2.0 V	-	-	1000	ns
		V _{CC} = 4.5 V	-	-	500	ns
		V _{CC} = 6.0 V	-	-	400	ns
t _f	fall time	except for Schmitt trigger inputs				
		V _{CC} = 2.0 V	-	-	1000	ns
		V _{CC} = 4.5 V	-	-	500	ns
		V _{CC} = 6.0 V	-	-	400	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
74HCT2	G34-Q100			•		
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
t _r	rise time	except for Schmitt trigger inputs				
		V _{CC} = 4.5 V	-	-	500	ns
t _f	fall time	except for Schmitt trigger inputs				
		V _{CC} = 4.5 V	-	-	500	ns

10. Static characteristics

Table 7. Static characteristics for 74HC2G34-Q100

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	25 °C				1	_
	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	V
V _{IL} I	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				_
		I _O = -20 μA; V _{CC} = 2.0 V	1.9	2.0	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0	-	V
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	4.18	4.32	-	V
		I _O = -5.2 mA; V _{CC} = 6.0 V	5.68	5.81	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 20 µA; V_{CC} = 2.0 V	-	0	0.1	V
		I_{O} = 20 µA; V_{CC} = 4.5 V	-	0	0.1	V
		I_{O} = 20 µA; V_{CC} = 6.0 V	-	0	0.1	V
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	V
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	0.16	0.26	V
lı	input leakage current	V_{I} = GND or V_{CC} ; V_{CC} = 6.0 V	-	-	±0.1	μA
I _{CC}	supply current	$V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$ $V_{CC} = 6.0 \text{ V}$	-	-	1.0	μA
Cı	input capacitance		-	1.5	-	pF

Symbo	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} =	-40 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-			V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I _O = -20 μA; V _{CC} = 2.0 V	1.9	-	-	V
		I_{O} = -20 µA; V_{CC} = 4.5 V	4.4	-	-	V
		I_{O} = -20 µA; V_{CC} = 6.0 V	5.9	-	-	V
		I _O = -4.0 mA; V _{CC} = 4.5 V	4.13	-	-	V
		I _O = -5.2 mA; V _{CC} = 6.0 V	5.63	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = 20 \ \mu A; V_{CC} = 2.0 \ V$	-	-	0.1	V
		I _O = 20 μA; V _{CC} = 4.5 V	-	-	0.1	V
		I _O = 20 μA; V _{CC} = 6.0 V	-	-	0.1	V
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	-	0.33	V
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	-	0.33	V
l _l	input leakage current	$V_{I} = GND \text{ or } V_{CC}; V_{CC} = 6.0 \text{ V}$	-	±1.0	μA	
I _{CC}	supply current	V_1 = GND or V_{CC} ; I_0 = 0 A; V_{CC} = 6.0 V	-	-	10.0	μA
T _{amb} =	-40 °C to +125 °C				1	
VIH	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
VIL	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		$\begin{split} \hline I_{O} = 5.2 \text{ mA}; \ V_{CC} = 6.0 \text{ V} & - & - & - \\ \hline \text{put leakage current} & V_{I} = \text{GND or } V_{CC}; \ V_{CC} = 6.0 \text{ V} & - & - & - \\ \hline \text{upply current} & V_{I} = \text{GND or } V_{CC}; \ I_{O} = 0 \text{ A}; & - & - & - \\ \hline V_{CC} = 6.0 \text{ V} & 1.5 & - & - \\ \hline V_{CC} = 4.5 \text{ V} & 3.15 & - & - \\ \hline V_{CC} = 4.5 \text{ V} & 3.15 & - & - \\ \hline V_{CC} = 4.5 \text{ V} & 4.2 & - & - \\ \hline V_{CC} = 4.5 \text{ V} & - & - & - \\ \hline V_{CC} = 6.0 \text{ V} & - & - & - \\ \hline V_{CC} = 6.0 \text{ V} & - & - & - \\ \hline V_{CC} = 6.0 \text{ V} & - & - & - \\ \hline V_{CC} = 6.0 \text{ V} & - & - & - \\ \hline V_{CC} = 6.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text{ V} & - & - & - \\ \hline V_{CC} = 0.0 \text$	-	1.8	V	
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	$\begin{array}{ c c c c c c } \mbox{HiGH-level input voltage} & V_{CC} = 2.0 \ V & 1.5 \\ \hline V_{CC} = 4.5 \ V & 3.15 \\ \hline V_{CC} = 6.0 \ V & 4.2 \\ \hline V_{CC} = 6.0 \ V & - \\ \hline V_{CC} = 6.0 \ V & - \\ \hline V_{CC} = 4.5 \ V & - \\ \hline V_{CC} = 6.0 \ V & - \\ \hline V_{CC} = 6.0 \ V & - \\ \hline V_{CC} = 6.0 \ V & - \\ \hline V_{CC} = 6.0 \ V & - \\ \hline V_{CC} = 6.0 \ V & - \\ \hline \end{array} \\ \begin{array}{c} \mbox{HiGH-level output voltage} & V_{I} = V_{IH} \ or \ V_{IL} & \\ \hline l_0 = -20 \ \mu A; \ V_{CC} = 2.0 \ V & 1.9 \\ \hline l_0 = -20 \ \mu A; \ V_{CC} = 4.5 \ V & 4.4 \\ \hline l_0 = -20 \ \mu A; \ V_{CC} = 6.0 \ V & 5.9 \\ \hline l_0 = -4.0 \ m A; \ V_{CC} = 6.0 \ V & 5.9 \\ \hline l_0 = -4.0 \ m A; \ V_{CC} = 6.0 \ V & 5.63 \\ \hline \end{array} \\ \begin{array}{c} \mbox{LOW-level output voltage} & V_{I} = V_{IH} \ or \ V_{IL} & \\ \hline l_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V & - \\ \hline l_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V & - \\ \hline l_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V & - \\ \hline l_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V & - \\ \hline l_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V & - \\ \hline l_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V & - \\ \hline \end{array} \\ \begin{array}{c} \mbox{Input leakage current} & V_{I} = \ GND \ or \ V_{CC}; \ l_0 = 0 \ A; \\ V_{CC} = 6.0 \ V & - \\ \hline \ l_0 = 4.0 \ m A; \ V_{CC} = 6.0 \ V & - \\ \hline \ l_0 = 5.2 \ m A; \ V_{CC} = 6.0 \ V & - \\ \hline \ l_0 = 5.2 \ m A; \ V_{CC} = 6.0 \ V & - \\ \hline \ \ l_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V & - \\ \hline \ \ \ l_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V & - \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	-	-	V		
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	-	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	-	-	V
		I _O = -4.0 mA; V _{CC} = 4.5 V	3.7	-	-	V
		I _O = -5.2 mA; V _{CC} = 6.0 V	5.2	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I _O = 20 μA; V _{CC} = 2.0 V	-	-	0.1	V
			-	-	0.1	V
			-	-	0.1	V
			-	-	0.4	V
				-	0.4	V
lı	input leakage current		-	-	±1.0	μA
I _{CC}		$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$	-	-	20.0	μΑ

Table 8. Static characteristics for 74HCT2G34-Q100

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	25 °C		I		1	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
V _{OH}	HIGH-level output voltage	V _I = V _{IH} or V _{IL}			1	
		$I_0 = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	V
		I _O = -4.0 mA; V _{CC} = 4.5 V	4.18	4.32	-	V
V _{OL}	LOW-level output voltage	V _I = V _{IH} or V _{IL}				
		I_{O} = 20 µA; V_{CC} = 4.5 V	-	0	0.1	V
		I_0 = 4.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	V
l _l	input leakage current	V_{I} = GND or V_{CC} ; V_{CC} = 5.5 V	-	-	±0.1	μA
I _{CC}	supply current	V_{I} = GND or V_{CC} ; I_{O} = 0 A; V_{CC} = 5.5 V	-	-	1.0	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 2.1 V;$ $V_{CC} = 4.5 V \text{ to } 5.5 V; I_{O} = 0 \text{ A}$	-	-	300	μA
CI	input capacitance		-	1.5	-	pF
T _{amb} = -	-40 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
V _{OH}	HIGH-level output voltage	V _I = V _{IH} or V _{IL}				
		I_{O} = -20 µA; V_{CC} = 4.5 V	4.4	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	4.13	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 20 µA; V_{CC} = 4.5 V	-	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	-	0.33	V
l _l	input leakage current	V_I = GND or V_{CC} ; V_{CC} = 5.5 V	-	-	±1.0	μA
I _{CC}	supply current	V_{I} = GND or V_{CC} ; I_{O} = 0 A; V_{CC} = 5.5 V	-	-	10.0	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 2.1 V;$ $V_{CC} = 4.5 V \text{ to } 5.5 V; I_{O} = 0 \text{ A}$	-	-	375	μA
T _{amb} = ·	-40 °C to +125 °C					
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = -20 µA; V_{CC} = 4.5 V	4.4	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	3.7	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 20 µA; V_{CC} = 4.5 V	-	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	-	0.4	V
l _l	input leakage current	V_{I} = GND or V_{CC} ; V_{CC} = 5.5 V	-	-	±1.0	μA
I _{CC}	supply current	V_{I} = GND or V_{CC} ; I_{O} = 0 A; V_{CC} = 5.5 V	-	-	20.0	μA
∆l _{CC}	additional supply current	$V_1 = V_{CC} - 2.1 V;$ $V_{CC} = 4.5 V \text{ to } 5.5 V; I_0 = 0 \text{ A}$	-	-	410	μA

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 6.

Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit	
				Min	Тур	Max	Min	Max	Min	Max	
74HC2G	34-Q100	1									
t _{pd}	propagation	nA to nY; see <u>Fig. 5</u>	[1]								
	delay	V _{CC} = 2.0 V; C _L = 50 pF		-	29	75	-	95	-	125	ns
		V _{CC} = 4.5 V; C _L = 50 pF		-	9	15	-	19	-	25	ns
		V _{CC} = 6.0 V; C _L = 50 pF		-	8	13	-	16	-	20	ns
t _t	transition	nY; see <u>Fig. 5</u>	[2]								
	time	V _{CC} = 2.0 V; C _L = 50 pF		-	18	75	-	95	-	125	ns
		V _{CC} = 4.5 V; C _L = 50 pF		-	6	15	-	19	-	25	ns
		V _{CC} = 6.0 V; C _L = 50 pF		-	5	13	-	16	-	20	ns
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	[3]	-	10	-	-	-	-	-	pF
74HCT2	G34-Q100	1			<u> </u>	1	1			1	
t _{pd}	propagation	nA to nY; see <u>Fig. 5</u>	[1]								
-	delay	V _{CC} = 4.5 V; C _L = 50 pF		-	10	18	-	23	-	29	ns
t _t	transition	nY; see <u>Fig. 5</u>	[2]								
	time	V _{CC} = 4.5 V; C _L = 50 pF		-	6	15	-	19	-	25	ns
C _{PD}	power dissipation capacitance	$V_I = GND$ to $V_{CC} - 1.5 V$	[3]	-	9	-	-	-	-	-	pF

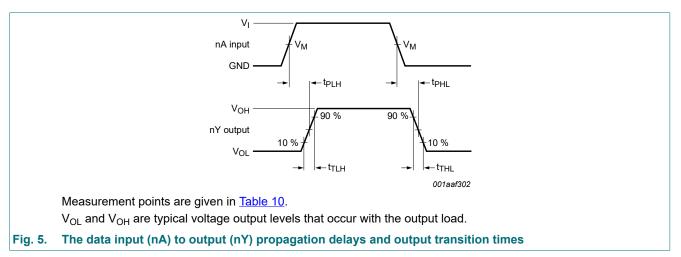
[1] t_{pd} is the same as t_{PLH} and t_{PHL}

[2] t_t is the same as t_{TLH} and t_{THL} [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

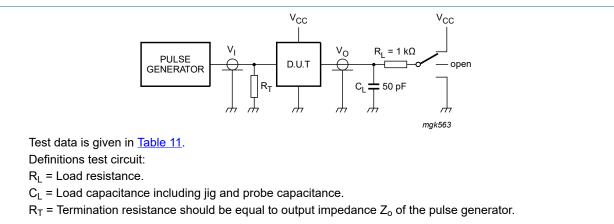
f_i = input frequency in MHz;

 f_o = output frequency in MHz;


C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;


 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

11.1. Waveforms and test circuit

Table 10. Measurement points

Туре	Input	Output		
	V _M	VI	t _r = t _f	V _M
74HC2G34-Q100	0.5V _{CC}	GND to V _{CC}	6.0 ns	0.5V _{CC}
74HCT2G34-Q100	1.3 V	GND to 3.0 V	6.0 ns	1.3 V

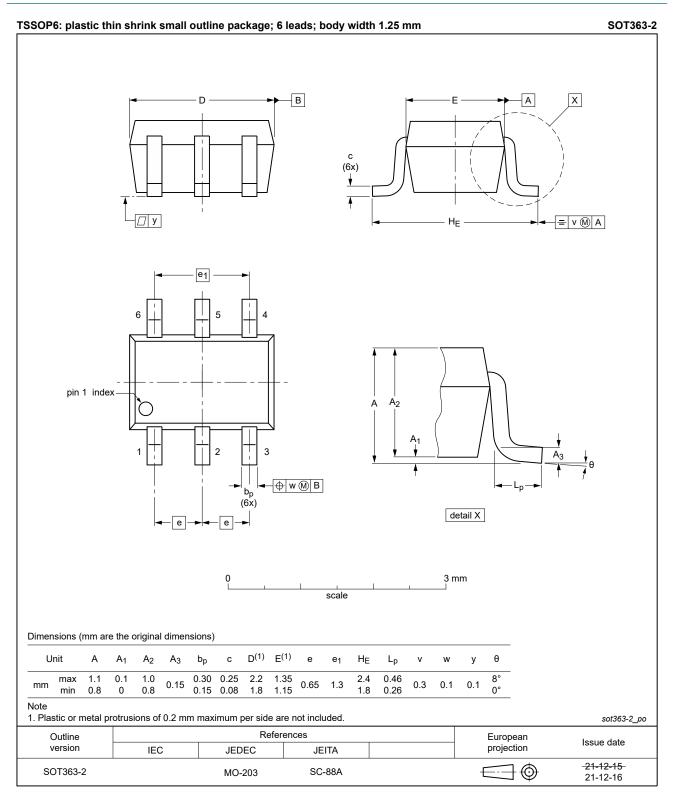

Fig. 6. Test circuit for measuring switching times

Table 11. Test data

Туре	Input		Test
	VI	t _r , t _f	t _{PHL} , t _{PLH}
74HC2G34-Q100	GND to V _{CC}	6 ns	open
74HCT2G34-Q100	GND to 3.0 V	6 ns	open

Product data sheet

12. Package outline

Fig. 7. Package outline SOT363-2 (TSSOP6)

74HC_HCT2G34_Q100

Product data sheet

SOT457

Plastic, surface-mounted package (SC-74; TSOP6); 6 leads

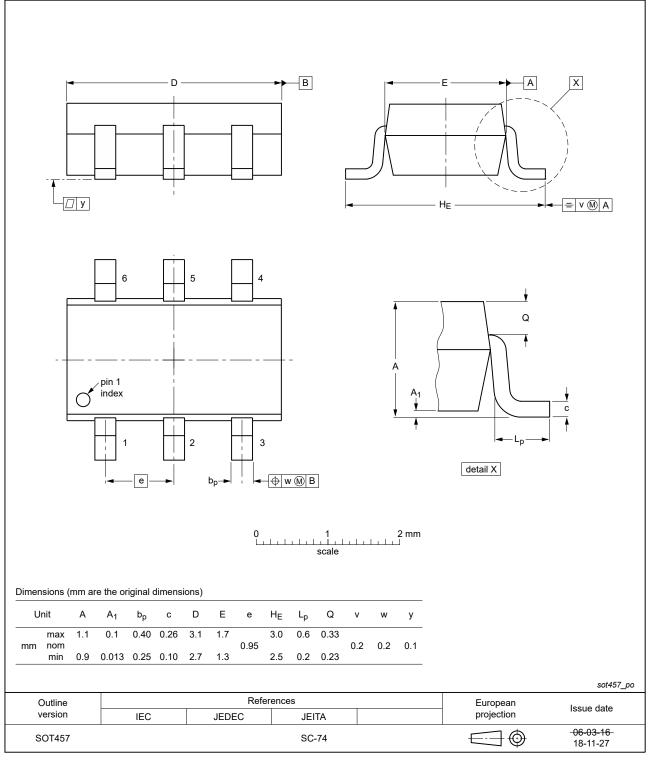


Fig. 8. Package outline SOT457 (SC-74; TSOP6)

Product data sheet

13. Abbreviations

Table 12. Abbreviati	
Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT2G34_Q100 v.3	20220203	Product data sheet	-	74HC_HCT2G34_Q100 v.2
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. <u>Section 2</u> updated. Package SOT363 (SC-88) changed to SOT363-2 (TSSOP6). <u>Section 8</u>: Derating values for P_{tot} total power dissipation updated. <u>Fig. 8</u>: Package outline drawing SOT457 (SC-74; TSOP6) has changed. 			
74HC_HCT2G34_Q100 v.2	20131104	Product data sheet	-	74HC_HCT2G34_Q100 v.1
Modifications:	Added type number 74HC2G34GW and 74HCT2G34GW (SOT363)			
74HC_HCT2G34_Q100 v.1	20130417	Product data sheet	-	-

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

Dual buffer gate

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Marking	2
5. Functional diagram	2
6. Pinning information	2
6.1. Pinning	2
6.2. Pin description	2
7. Functional description	
8. Limiting values	3
9. Recommended operating conditions	3
10. Static characteristics	4
11. Dynamic characteristics	7
11.1. Waveforms and test circuit	8
12. Package outline	
13. Abbreviations	
14. Revision history	11
15. Legal information	
	12

© Nexperia B.V. 2022. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 3 February 2022