16-bit dual supply translating transceiver; 3-state

Rev. 4 — 27 July 2021

1. General description

The 74ALVC164245-Q100 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

The 74ALVC164245-Q100 is a 16-bit (dual octal) dual supply translating transceiver featuring non-inverting 3-state bus compatible outputs in both send and receive directions. It is designed to interface between a 3 V and 5 V bus in a mixed 3 V and 5 V supply environment.

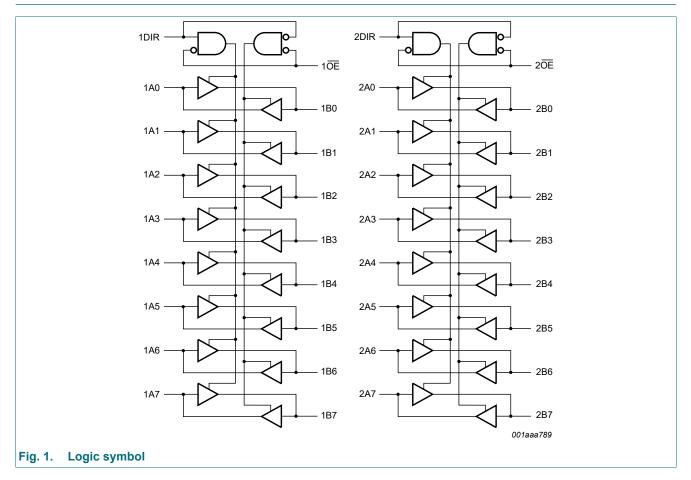
This device can be used as two 8-bit transceivers or one 16-bit transceiver.

The direction control inputs (1DIR and 2DIR) determine the direction of the data flow. nDIR (active HIGH) enables data from nAn ports to nBn ports. nDIR (active LOW) enables data from nBn ports to nAn ports. The output enable inputs (1OE and 2OE), when HIGH, disable both nAn and nBn ports by placing them in a high-impedance OFF-state. Pins nAn, n\overline{OE} and nDIR are referenced to V_{CC(A)} and pins nBn are referenced to V_{CC(B)}.

In suspend mode, when one of the supply voltages is zero, there will be no current flow from the non-zero supply towards the zero supply. The nAn outputs must be set 3-state and the voltage on the A-bus must be smaller than V_{diode} (typical 0.7 V). V_{CC(B)} ≥ V_{CC(A)} (except in suspend mode).

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits


- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range:
 - 3 V port (V_{CC(A)}): 1.5 V to 3.6 V
 - 5 V port (V_{CC(B)}): 1.5 V to 5.5 V
- CMOS low power consumption
- Overvoltage tolerant inputs to 5.5 V
- Direct interface with TTL levels
- I_{OFF} circuitry provides partial Power-down mode operation
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Control inputs voltage range from 2.7 V to 5.5 V
- High-impedance outputs when $V_{CC(A)}$ or $V_{CC(B)} = 0 V$
- Complies with JEDEC standards:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8C (2.7 V to 3.6 V)
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)

nexperia

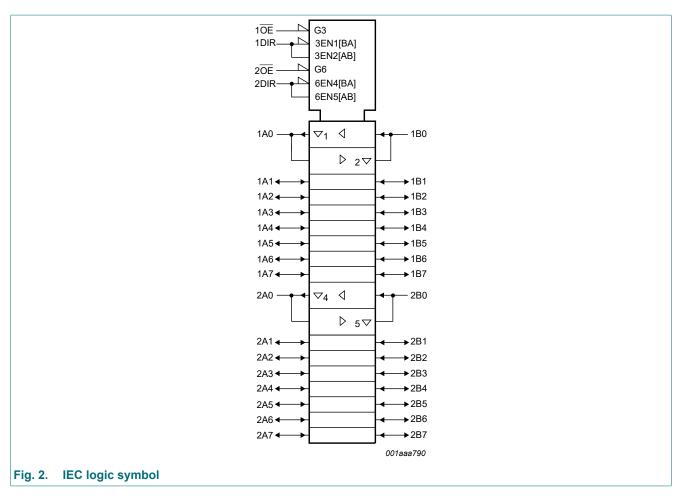

3. Ordering information

Table 1. Ordering information								
Type number								
	Temperature range	Name	Description	Version				
74ALVC164245DGG-Q100	-40 °C to +125 °C	TSSOP48	plastic thin shrink small outline package; 48 leads; body width 6.1 mm	SOT362-1				

4. Functional diagram

16-bit dual supply translating transceiver; 3-state

5. Pinning information

5.1. Pinning

48 1<u>OE</u> 1DIR 1 1B0 2 47 1A0 1B1 3 46 1A1 GND 4 45 GND 1B2 5 44 1A2 1B3 6 43 1A3 V_{CC(B)} 7 42 V_{CC(A)} 41 1A4 1B4 8 40 1A5 1B5 9 GND 10 39 GND 38 1A6 1B6 11 1B7 12 37 1A7 74ALVC164245 2B0 13 36 2A0 35 2A1 2B1 14 34 GND GND 15 33 2A2 2B2 16 2B3 17 32 2A3 31 V_{CC(A)} V_{CC(B)} 18 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6 2B7 23 26 2A7 2DIR 24 25 20E 001aab037 Pin configuration SOT362-1 (TSSOP48) Fig. 3.

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
1DIR, 2DIR	1, 24	direction control input
1B0, 1B1, 1B2, 1B3, 1B4, 1B5, 1B6, 1B7	2, 3, 5, 6, 8, 9, 11, 12	data input/output
2B0, 2B1, 2B2, 2B3, 2B4, 2B5, 2B6, 2B7	13, 14, 16, 17, 19, 20, 22, 23	data input/output
GND	4, 10, 15, 21, 28, 34, 39, 45	ground (0 V)
V _{CC(B)}	7, 18	supply voltage B (5 V bus)
10E, 20E	48, 25	output enable input (active LOW)
1A0, 1A1, 1A2, 1A3, 1A4, 1A5, 1A6, 1A7	47, 46, 44, 43, 41, 40, 38, 37	data input/output
2A0, 2A1, 2A2, 2A3, 2A4, 2A5, 2A6, 2A7	36, 35, 33, 32, 30, 29, 27, 26	data input/output
V _{CC(A)}	31, 42	supply voltage A (3 V bus)

6. Functional description

Table 3. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

		Outputs			
nOE nDIR		nAn	nBn		
L	L	nAn = nBn	inputs		
L	Н	inputs	nBn = nAn		
Н	Х	Z	Z		

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC(B)}	supply voltage B	$V_{CC(B)} \ge V_{CC(A)}$		-0.5	+6.0	V
V _{CC(A)}	supply voltage A	$V_{CC(B)} \ge V_{CC(A)}$		-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+6.0	V
V _{I/O}	input/output voltage			-0.5	V _{CC} + 0.5	V
I _{OK}	output clamping current	V_{O} > V_{CC} or V_{O} < 0 V		-	±50	mA
Vo	output voltage	output HIGH or LOW	[1]	-0.5	V _{CC} + 0.5	V
		output 3-state	[1]	-0.5	+6.0	V
I _{O(sink/source)}	output sink or source current	$V_{O} = 0 V$ to V_{CC}		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
Tj	junction temperature		[2]	-	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C	[3]	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

[3] For SOT362-1 (TSSOP48) packages: P_{tot} derates linearly with 12.2 mW/K above 109 °C.

Product data sheet

8. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{CC(B)}	supply voltage B	$V_{CC(B)} \ge V_{CC(A)}$				
		maximum speed performance	2.7	-	5.5	V
		low-voltage applications	1.5	-	5.5	V
V _{CC(A)}	supply voltage A	$V_{CC(B)} \ge V_{CC(A)}$				
		maximum speed performance	2.7	-	3.6	V
		low-voltage applications	1.5	-	3.6	V
VI	input voltage	control inputs: nOE and nDIR	0	-	5.5	V
V _{I/O}	input/output voltage	nAn port	0	-	V _{CC(A)}	V
		nBn port	0		V _{CC(B)}	V
Vo	output voltage	nAn port	0	-	V _{CC(A)}	V
		nBn port	0		V _{CC(B)}	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC(A)} = 2.7 V to 3.0 V	0	-	20	ns/V
		V _{CC(A)} = 3.0 V to 3.6 V	0	-	10	ns/V
		V _{CC(B)} = 3.0 V to 4.5 V	0	-	20	ns/V
		V _{CC(B)} = 4.5 V to 5.5 V	0	-	10	ns/V

Table 5. Recommended operating conditions

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		-40 °	C to +85 °	С	-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
V _{IH}	HIGH-level	nBn port							
	input voltage	V _{CC(B)} = 3.0 V to 5.5 V	[2]	2.0	-	-	2.0	-	V
	nAn port, nOE and nDIR								
	V _{CC(A)} = 3.0 V to 3.6 V		2.0	-	-	2.0	-	V	
	V _{CC(A)} = 2.3 V to 2.7 V	[2]	1.7	-	-	1.7	-	V	
V _{IL}	LOW-level	nBn port							
	input voltage	V _{CC(B)} = 4.5 V to 5.5 V	[2]	-	-	0.8	-	0.8	V
		V _{CC(B)} = 3.0 V to 3.6 V	[2]	-	-	0.7	-	0.7	V
		nAn port, nOE and nDIR							
		V _{CC(A)} = 3.0 V to 3.6 V		-	-	0.8	-	0.8	V
		V _{CC(A)} = 2.3 V to 2.7 V	[2]	-	-	0.7	-	0.7	V

16-bit dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions	-40 °C	; to +85 °	С	-40 °C to +	-125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V _{OH}	HIGH-level	nBn port; V _I = V _{IH} or V _{IL}						
	output voltage	I _O = -24 mA; V _{CC(B)} = 4.5 V	V _{CC(B)} - 0.8	-	-	V _{CC(B)} - 1.2	-	V
		I _O = -12 mA; V _{CC(B)} = 4.5 V	V _{CC(B)} - 0.5	-	-	V _{CC(B)} - 0.8	-	V
		I _O = -18 mA; V _{CC(B)} = 3.0 V	V _{CC(B)} - 0.8	-	-	V _{CC(B)} - 1.0	-	V
		I _O = -100 μA; V _{CC(B)} = 3.0 V	V _{CC(B)} - 0.2	V _{CC(B)}	-	V _{CC(B)} - 0.3	-	V
		nAn port; V _I = V _{IH} or V _{IL}						
		I _O = -24 mA; V _{CC(A)} = 3.0 V	V _{CC(A)} - 0.7	-	-	V _{CC(A)} - 1.0	-	V
		I _O = -100 μA; V _{CC(A)} = 3.0 V	V _{CC(A)} - 0.2	-	-	V _{CC(A)} - 0.3	-	V
		I _O = -12 mA; V _{CC(A)} = 2.7 V	V _{CC(A)} - 0.5	-	-	V _{CC(A)} - 0.8	-	V
		I _O = -8 mA; V _{CC(A)} = 2.3 V	V _{CC(A)} - 0.6	-	-	V _{CC(A)} - 0.6	-	V
		I _O = -100 μA; V _{CC(A)} = 2.3 V	V _{CC(A)} - 0.2	V _{CC(A)}	-	V _{CC(A)} - 0.3	-	V
V _{OL}	LOW-level	nBn port; V _I = V _{IH} or V _{IL}						
	output voltage	I _O = 24 mA; V _{CC(B)} = 4.5 V	-	-	0.55	-	0.80	V
		I _O = 12 mA; V _{CC(B)} = 4.5 V	-	-	0.40	-	0.60	V
		I _O = 100 μA; V _{CC(B)} = 4.5 V	-	-	0.20	-	0.30	V
		I _O = 18 mA; V _{CC(B)} = 3.0 V	-	-	0.55	-	0.80	V
		I _O = 100 μA; V _{CC(B)} = 3.0 V	-	-	0.20	-	0.30	V
		nAn port; V _I = V _{IH} or V _{IL}						
		I _O = 24 mA; V _{CC(A)} = 3.0 V	-	-	0.55	-	0.80	V
		I _O = 100 μA; V _{CC(A)} = 3.0 V	-	-	0.20	-	0.30	V
		I _O = 12 mA; V _{CC(A)} = 2.7 V	-	-	0.40	-	0.60	V
		I _O = 12 mA; V _{CC(A)} = 2.3 V	-	-	0.60	-	0.60	V
		I _O = 100 μA; V _{CC(A)} = 2.3 V	-	-	0.20	-	0.20	V
I _I	input leakage current	V _l = 5.5 V or GND	-	±0.1	±5	-	±10	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL};$ [3] $V_{O} = V_{CC} \text{ or } GND$	-	±0.1	±10	-	±20	μA
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A	-	0.1	40	-	80	μA
ΔI _{CC}	additional supply current	per control pin; $V_I = V_{CC} - 0.6 V$; [4] $I_O = 0 A$	-	5	500	-	5000	μA
CI	input capacitance		-	4.0	-	-	-	pF
C _{I/O}	input/output capacitance	nAn and nBn port	-	5.0	-	-	-	pF

[4] $V_{CC(A)} = 2.7 \text{ V}$ to 3.6 V: other inputs at $V_{CC(A)}$ or GND; $V_{CC(B)} = 4.5 \text{ V}$ to 5.5 V: other inputs at $V_{CC(B)}$ or GND.

Product data sheet

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND = 0 V; $t_r = t_f \le 2.5 ns$; $C_L = 50 pF$; for test circuit see Fig. 6.

Symbol	Parameter	Conditions	-4	0 °C to +85	°C	-40 °C t	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation	nAn to nBn; see <u>Fig. 4</u>	2]					
	delay	V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(B)} = 3.0 V to 3.6 V	1.5	3.3	7.6	1.5	9.5	ns
		V _{CC(A)} = 2.7 V; V _{CC(B)} = 4.5 V to 5.5 V	1.0	3.0	5.9	1.0	7.5	ns
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(B)} = 4.5 V to 5.5 V	1.0	2.9	5.8	1.0	7.5	ns
		nBn to nAn; see <u>Fig. 4</u>	2]					
		V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(B)} = 3.0 V to 3.6 V	1.0	3.0	7.6	1.0	9.5	ns
		V _{CC(A)} = 2.7 V; V _{CC(B)} = 4.5 V to 5.5 V	1.0	4.3	6.7	1.0	8.5	ns
	V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(B)} = 4.5 V to 5.5 V	1.2	2.5	5.8	1.2	7.5	ns	
t _{en}	enable time	nOE to nBn; see <u>Fig. 5</u>	3]					
	V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(B)} = 3.0 V to 3.6 V	1.5	4.1	11.5	1.5	14.5	ns	
		V _{CC(A)} = 2.7 V; V _{CC(B)} = 4.5 V to 5.5 V	1.5	3.6	9.2	1.5	11.5	ns
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(B)} = 4.5 V to 5.5 V	1.0	3.2	8.9	1.0	12.0	ns
		nOE to nAn; see Fig. 5	3]					
		V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(B)} = 3.0 V to 3.6 V	1.5	4.6	12.3	1.5	15.5	ns
		V _{CC(A)} = 2.7 V; V _{CC(B)} = 4.5 V to 5.5 V	1.5	4.3	9.3	1.5	12.0	ns
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(B)} = 4.5 V to 5.5 V	1.0	3.2	8.9	1.0	11.5	ns
t _{dis}	disable time	nOE to nBn; see Fig. 5	4]					
		V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(B)} = 3.0 V to 3.6 V	2.0	2.7	10.5	2.0	13.5	ns
		V _{CC(A)} = 2.7 V; V _{CC(B)} = 4.5 V to 5.5 V	2.5	4.6	9.0	2.5	11.5	ns
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(B)} = 4.5 V to 5.5 V	2.1	4.9	8.6	2.1	11.0	ns
		nOE to nAn; see Fig. 5	4]					
		V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(B)} = 3.0 V to 3.6 V	1.0	2.7	9.3	1.0	12.0	ns
		V _{CC(A)} = 2.7 V; V _{CC(B)} = 4.5 V to 5.5 V	1.5	3.5	9.0	1.5	11.5	ns
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(B)} = 4.5 V to 5.5 V	2.0	3.2	8.6	2.0	11.0	ns

16-bit dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions		-40 °C to +85 °C			-40 °C to	o +125 ℃	Unit
				Min	Typ <mark>[1]</mark>	Мах	Min	Max	
C _{PD}	power dissipation capacitance	5 V port: nAn to nBn; V _I = GND to V _{CC} ; V _{CC(B)} = 5 V; V _{CC(A)} = 3.3 V	[5]						
		outputs enabled		-	30	-	-	-	pF
		outputs disabled		-	15	-	-	-	pF
		3 V port: nBn to nAn; V _I = GND to V _{CC} ; V _{CC(B)} = 5 V; V _{CC(A)} = 3.3 V	[5]						
		outputs enabled		-	40	-	-	-	pF
		outputs disabled		-	5	-	-	-	pF

All typical values are measured at nominal voltage for $V_{CC(B)}$ and $V_{CC(A)}$ and at T_{amb} = 25 °C. [1]

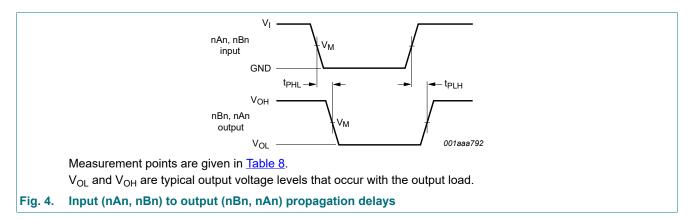
[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] t_{en} is the same as t_{PZL} and t_{PZH} .

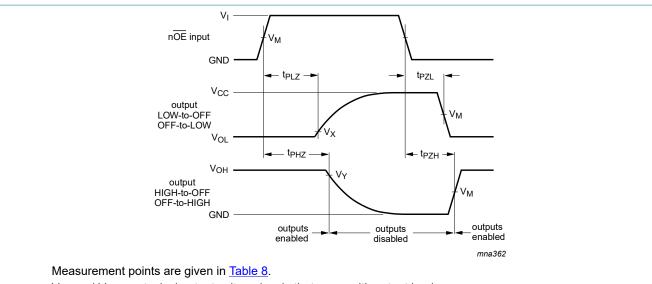
[4] t_{dis} is the same as t_{PLZ} and t_{PHZ} . [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;


fo = output frequency in MHz;

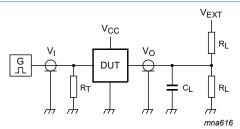
 C_L = output load capacitance in pF;


V_{CC} = supply voltage in V;

N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of outputs.

10.1. Waveforms and test circuit

16-bit dual supply translating transceiver; 3-state



 V_{OL} and V_{OH} are typical output voltage levels that occur with output load.

Fig. 5. 3-state enable and disable times

Table 8. Measurement points

Direction	Supply voltag	Supply voltage			Output			
	V _{CC(A)}	V _{CC(B)}	VI	V _M	V _M	V _X	V _Y	
nAn port to nBn port	2.3 V to 2.7 V	2.7 V to 3.6 V	V _{CC(A)}	$0.5 \times V_{CC(A)}$	1.5 V	V _{OL(B)} + 0.3 V	V _{OH(B)} - 0.3 V	
nBn port to nAn port	2.3 V to 2.7 V	2.7 V to 3.6 V	2.7 V	1.5 V	$0.5 \times V_{CC(A)}$	V _{OL(A)} + 0.15 V	V _{OH(A)} - 0.15 V	
nAn port to nBn port	2.7 V to 3.6 V	4.5 V to 5.5 V	2.7 V	1.5 V	$0.5 \times V_{CC(B)}$	$0.2 \times V_{CC(B)}$	$0.8 \times V_{CC(B)}$	
nBn port to nAn port	2.7 V to 3.6 V	4.5 V to 5.5 V	3.0 V	1.5 V	1.5 V	V _{OL(A)} + 0.3 V	V _{OH(A)} - 0.3 V	

Test data is given in Table 9.

Definitions for test circuit:

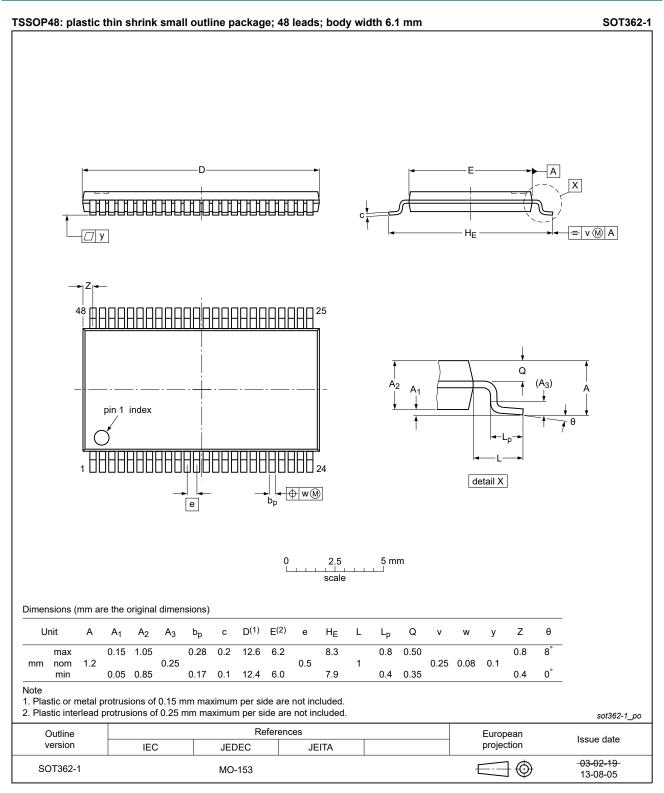
 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

R_L = Load resistance.

V_{EXT} = External voltage for measuring switching times.

Fig. 6. Test circuit for measuring switching times


		-	_	
Tab	e	9.	Test	data

Direction	Supply voltage		Load		V _{EXT}		
2	V _{CC(A)} V _{CC(B)}		CL	RL		t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
nAn port to nBn port	2.3 V to 2.7 V	2.7 V to 3.6 V	50 pF	500 Ω	open	GND	2 × V _{CC}
nBn port to nAn port	2.3 V to 2.7 V	2.7 V to 3.6 V	50 pF	500 Ω	open	GND	6.0 V
nAn port to nBn port	2.7 V to 3.6 V	4.5 V to 5.5 V	50 pF	500 Ω	open	GND	2 × V _{CC}
nBn port to nAn port	2.7 V to 3.6 V	4.5 V to 5.5 V	50 pF	500 Ω	open	GND	6.0 V

74ALVC164245_Q100

16-bit dual supply translating transceiver; 3-state

11. Package outline

Fig. 7. Package outline SOT362-1 (TSSOP48)

74ALVC164245_Q100

Product data sheet

12. Abbreviations

Table 10. Abbreviati	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 11. Revision history **Document ID Release date** Data sheet status Change notice Supersedes 74ALVC164245_Q100 v.4 Product data sheet 20210727 74ALVC164245_Q100 v.3 Modifications: Section 2 updated. Section 7: derating values for Ptot total power dissipation updated. • 74ALVC164245_Q100 v.3 Product data sheet 74ALVC164245_Q100 v.2 20190409 Modifications: <u>Table 6</u>: Typo corrected for $V_{OL(max)}$ at $V_{CC(B)}$ = 4.5 V. 74ALVC164245_Q100 v.2 20181112 Product data sheet 74ALVC164245_Q100 v.1 Modifications: The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Package outline drawing Fig. 7 updated. • 20130514 Product data sheet 74ALVC164245 Q100 v.1

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

16-bit dual supply translating transceiver; 3-state

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Functional diagram	2
5. Pinning information	4
5.1. Pinning	4
5.2. Pin description	4
6. Functional description	5
7. Limiting values	5
8. Recommended operating conditions	6
9. Static characteristics	6
10. Dynamic characteristics	8
10.1. Waveforms and test circuit	9
11. Package outline	11
12. Abbreviations	12
13. Revision history	12
14. Legal information	13

© Nexperia B.V. 2021. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 27 July 2021

74ALVC164245_Q100