## **NXP Semiconductors**

**Technical Data** 

# **RF Power LDMOS Transistor**

## High Ruggedness N-Channel Enhancement-Mode Lateral MOSFET

This high ruggedness device is designed for use in high VSWR industrial, medical, broadcast, aerospace and mobile radio applications. Its unmatched input and output design supports frequency use from 1.8 to 400 MHz.

#### **Typical Performance**

| Frequency<br>(MHz)                | Signal Type                      | V <sub>DD</sub><br>(V) | P <sub>out</sub><br>(W) | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) |
|-----------------------------------|----------------------------------|------------------------|-------------------------|-------------------------|-----------------------|
| 27 (1)                            | CW                               | 65                     | 1800 CW                 | 27.8                    | 75.6                  |
| 64                                | Pulse (100 μsec, 10% Duty Cycle) | 65                     | 1800 Peak               | 27.1                    | 69.5                  |
| 81.36                             | CW                               | 62                     | 1800 CW                 | 25.1                    | 78.7                  |
| 87.5–108 (2,3)                    | 08 (2,3) CW                      |                        | 1600 CW                 | 23.6                    | 82.5                  |
| 123/128                           | Pulse (100 μsec, 10% Duty Cycle) | 65                     | 1800 Peak               | 25.9                    | 69.0                  |
| 144                               | CW                               | 65                     | 1800 CW                 | 23.5                    | 78.0                  |
| 175                               | CW                               | 60                     | 1560 CW                 | 23.5                    | 75.9                  |
| 174–230<br>Doherty <sup>(3)</sup> |                                  |                        | 250 Avg.                | 21.3                    | 43.3                  |
| 230 (4)                           | Pulse (100 μsec, 20% Duty Cycle) | 65                     | 1800 Peak               | 25.1                    | 75.1                  |
| 325                               | Pulse (12 μsec, 10% Duty Cycle)  | 63                     | 1700 Peak               | 22.8                    | 64.9                  |

#### Load Mismatch/Ruggedness

| Frequency<br>(MHz) | Signal Type                            | VSWR                          | P <sub>in</sub><br>(W)         | Test<br>Voltage | Result                   |
|--------------------|----------------------------------------|-------------------------------|--------------------------------|-----------------|--------------------------|
| 230 (4)            | Pulse<br>(100 μsec, 20%<br>Duty Cycle) | > 65:1 at all<br>Phase Angles | 14 Peak<br>(3 dB<br>Overdrive) | 65              | No Device<br>Degradation |

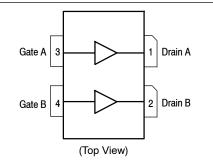
- 1. Measured in 27 MHz reference circuit (page 6).
- 2. Measured in 87.5-108 MHz broadband reference circuit (page 11).
- The values shown are the center band performance numbers across the indicated frequency range.
- 4. Measured in 230 MHz production test fixture (page 17).

#### **Features**

- Unmatched input and output allowing wide frequency range utilization
- · Device can be used single-ended or in a push-pull configuration
- Qualified up to a maximum of 65 V<sub>DD</sub> operation
- Characterized from 30 to 65 V for extended power range
- · High breakdown voltage for enhanced reliability
- Suitable for linear application with appropriate biasing
- Integrated ESD protection with greater negative gate-source voltage range for improved Class C operation
- Lower thermal resistance option in over-molded plastic package: MRFX1K80N
- · Included in NXP product longevity program with assured supply for a minimum of 15 years after launch

#### **Typical Applications**

- Industrial, scientific, medical (ISM)
  - Laser generation
  - Plasma generation
  - Particle accelerators
  - MRI, RF ablation and skin treatment
  - Industrial heating, welding and drying systems


Document Number: MRFX1K80H Rev. 1, 09/2018

**VRoHS** 

## MRFX1K80H

1.8–400 MHz, 1800 W CW, 65 V WIDEBAND RF POWER LDMOS TRANSISTOR





Note: The backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Radio and VHF TV broadcast

- Aerospace
  - HF communications
  - Radar



© 2017–2018 NXP B.V.

### **Table 1. Maximum Ratings**

| Rating                                                             | Symbol           | Value        | Unit      |
|--------------------------------------------------------------------|------------------|--------------|-----------|
| Drain-Source Voltage                                               | V <sub>DSS</sub> | -0.5, +179   | Vdc       |
| Gate-Source Voltage                                                | V <sub>GS</sub>  | -6.0, +10    | Vdc       |
| Storage Temperature Range                                          | T <sub>stg</sub> | -65 to +150  | °C        |
| Case Operating Temperature Range                                   | T <sub>C</sub>   | -40 to +150  | °C        |
| Operating Junction Temperature Range (1,2)                         | TJ               | -40 to +225  | °C        |
| Total Device Dissipation @ T <sub>C</sub> = 25°C Derate above 25°C | P <sub>D</sub>   | 2247<br>11.2 | W<br>W/°C |

### **Table 2. Thermal Characteristics**

| Characteristic                                                                                                                                                      |                 | Value (2,3) | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|------|
| Thermal Resistance, Junction to Case CW: Case Temperature 99°C, 1800 W CW, 65 Vdc, I <sub>DQ(A+B)</sub> = 150 mA, 98 MHz                                            | $R_{\theta JC}$ | 0.09        | °C/W |
| Thermal Impedance, Junction to Case Pulse: Case Temperature 65°C, 1800 W Peak, 100 μsec Pulse Width, 20% Duty Cycle, 65 Vdc, I <sub>DQ(A+B)</sub> = 100 mA, 230 MHz | $Z_{	heta JC}$  | 0.017       | °C/W |

### **Table 3. ESD Protection Characteristics**

| Test Methodology                      | Class             |
|---------------------------------------|-------------------|
| Human Body Model (per JESD22-A114)    | 2, passes 2500 V  |
| Charge Device Model (per JESD22-C101) | C3, passes 2000 V |

## Table 4. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                 | Symbol               | Min | Тур  | Max | Unit |
|----------------------------------------------------------------------------------------------------------------|----------------------|-----|------|-----|------|
| Off Characteristics <sup>(4)</sup>                                                                             |                      |     |      |     |      |
| Gate-Source Leakage Current<br>(V <sub>GS</sub> = 5 Vdc, V <sub>DS</sub> = 0 Vdc)                              | I <sub>GSS</sub>     | _   | _    | 1   | μAdc |
| Drain-Source Breakdown Voltage<br>(V <sub>GS</sub> = 0 Vdc, I <sub>D</sub> = 100 mAdc)                         | V <sub>(BR)DSS</sub> | 179 | 193  | _   | Vdc  |
| Zero Gate Voltage Drain Leakage Current (V <sub>DS</sub> = 65 Vdc, V <sub>GS</sub> = 0 Vdc)                    | I <sub>DSS</sub>     | _   | _    | 10  | μAdc |
| Zero Gate Voltage Drain Leakage Current (V <sub>DS</sub> = 179 Vdc, V <sub>GS</sub> = 0 Vdc)                   | I <sub>DSS</sub>     | _   | _    | 100 | mAdc |
| On Characteristics                                                                                             |                      |     |      |     |      |
| Gate Threshold Voltage <sup>(4)</sup><br>(V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 740 μAdc)                 | V <sub>GS(th)</sub>  | 2.1 | 2.5  | 2.9 | Vdc  |
| Gate Quiescent Voltage $(V_{DD} = 65 \text{ Vdc}, I_{D(A+B)} = 100 \text{ mAdc}, Measured in Functional Test)$ | V <sub>GS(Q)</sub>   | 2.4 | 2.8  | 3.2 | Vdc  |
| Drain-Source On-Voltage <sup>(4)</sup><br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 2.76 Adc)                | V <sub>DS(on)</sub>  | _   | 0.21 | _   | Vdc  |
| Forward Transconductance (4)<br>(V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 43 Adc)                            | 9fs                  | _   | 44.7 | _   | S    |

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at <a href="http://www.nxp.com/RF/calculators">http://www.nxp.com/RF/calculators</a>.
- $3. \ \ Refer to \ AN1955, \textit{Thermal Measurement Methodology of RF Power Amplifiers}. \ Go \ to \ \underline{\text{http://www.nxp.com/RF}} \ and \ search \ for \ AN1955.$
- 4. Each side of device measured separately.

(continued)

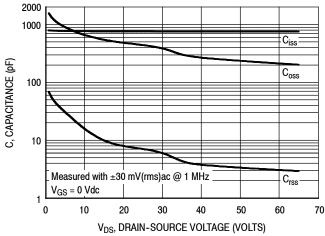
## Table 4. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted) (continued)

| Characteristic                                                                                          | Symbol           | Min | Тур | Max | Unit |
|---------------------------------------------------------------------------------------------------------|------------------|-----|-----|-----|------|
| Dynamic Characteristics <sup>(1)</sup>                                                                  |                  |     |     |     |      |
| Reverse Transfer Capacitance (V <sub>DS</sub> = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V <sub>GS</sub> = 0 Vdc) | C <sub>rss</sub> | _   | 2.9 | _   | pF   |
| Output Capacitance<br>(V <sub>DS</sub> = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V <sub>GS</sub> = 0 Vdc)        | C <sub>oss</sub> | _   | 203 | _   | pF   |
| Input Capacitance (V <sub>DS</sub> = 65 Vdc, V <sub>GS</sub> = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)            | C <sub>iss</sub> | _   | 760 | _   | pF   |

Functional Tests (In NXP Production Test Fixture, 50 ohm system)  $V_{DD}$  = 65 Vdc,  $I_{DQ(A+B)}$  = 100 mA,  $P_{out}$  = 1800 W Peak (360 W Avg.), f = 230 MHz, 100  $\mu$ sec Pulse Width, 20% Duty Cycle

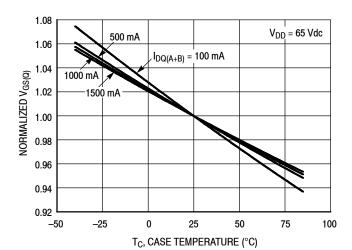
| Power Gain        | G <sub>ps</sub> | 24.0 | 25.1  | 26.5      | dB |
|-------------------|-----------------|------|-------|-----------|----|
| Drain Efficiency  | $\eta_{D}$      | 70.0 | 75.1  | _         | %  |
| Input Return Loss | IRL             | =    | -14.4 | <b>-9</b> | dB |

## Table 5. Load Mismatch/Ruggedness (In NXP Production Test Fixture, 50 ohm system) I<sub>DQ(A+B)</sub> = 100 mA


| Frequency<br>(MHz) | Signal Type                         | VSWR                          | P <sub>in</sub><br>(W)        | Test Voltage, V <sub>DD</sub> | Result                |
|--------------------|-------------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------|
| 230                | Pulse<br>(100 μsec, 20% Duty Cycle) | > 65:1 at all<br>Phase Angles | 14 W Peak<br>(3 dB Overdrive) | 65                            | No Device Degradation |

## **Table 6. Ordering Information**

| Device      | Tape and Reel Information                            | Package     |
|-------------|------------------------------------------------------|-------------|
| MRFX1K80HR5 | R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel | NI-1230H-4S |


<sup>1.</sup> Each side of device measured separately.

#### **TYPICAL CHARACTERISTICS**



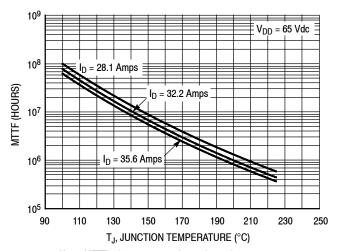

Note: Each side of device measured separately.

Figure 2. Capacitance versus Drain-Source Voltage



| I <sub>DQ</sub> (mA) | Slope (mV/°C) |
|----------------------|---------------|
| 100                  | -3.21         |
| 500                  | -2.79         |
| 1000                 | -2.69         |
| 1500                 | -2.61         |

Figure 3. Normalized V<sub>GS</sub> versus Quiescent Current and Case Temperature



**Note:** MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at <a href="http://www.nxp.com/RF/calculators">http://www.nxp.com/RF/calculators</a>.

Figure 4. MTTF versus Junction Temperature – CW

## **LINEAR MODEL**

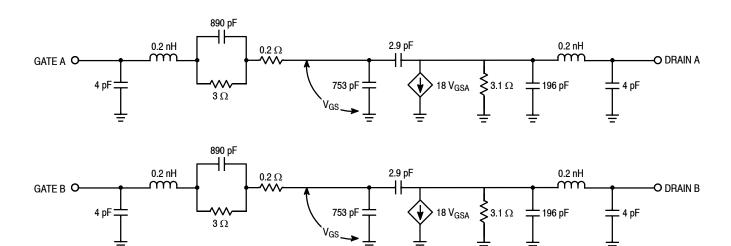



Figure 5. Simple Linear Model for the MRFX1K80H

## 27 MHz REFERENCE CIRCUIT $-2.9" \times 6.9"$ (73 mm $\times$ 175 mm)

Table 7. 27 MHz Performance (In NXP Reference Circuit, 50 ohm system)

 $I_{DQ(A+B)} = 200 \text{ mA}, P_{in} = 3 \text{ W, CW}$ 

| Frequency<br>(MHz) | V <sub>DD</sub><br>(V) | P <sub>out</sub><br>(W) | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) |
|--------------------|------------------------|-------------------------|-------------------------|-----------------------|
| 27                 | 50                     | 1200                    | 26.0                    | 82.3                  |
|                    | 57.5                   | 1520                    | 27.0                    | 80.1                  |
|                    | 65                     | 1800                    | 27.8                    | 75.6                  |

### 27 MHz REFERENCE CIRCUIT - 2.9" × 6.9" (73 mm × 175 mm)

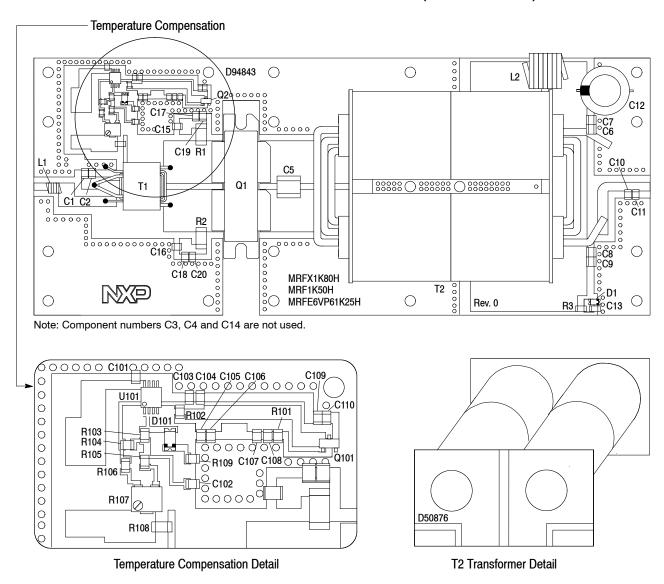



Figure 6. MRFX1K80H Reference Circuit Component Layout - 27 MHz

## 27 MHz REFERENCE CIRCUIT - 2.9" × 6.9" (73 mm × 175 mm)

Table 8. MRFX1K80H Reference Circuit Component Designations and Values – 27 MHz

| Part                                                         | Part Description                                       |                       | Manufacturer     |  |
|--------------------------------------------------------------|--------------------------------------------------------|-----------------------|------------------|--|
| C1, C17, C18                                                 | 1000 pF Chip Capacitor                                 | ATC                   |                  |  |
| C2, C15, C16                                                 | 39 K pF Chip Capacitor                                 | ATC200B393KT50XT      | ATC              |  |
| C5                                                           | 470 pF Chip Capacitor                                  | ATC                   |                  |  |
| C6, C8                                                       | 2.2 μF Chip Capacitor                                  | HMK432B7225KM-T       | Taiyo Yuden      |  |
| C7, C9, C19, C20                                             | 470 pF Chip Capacitor                                  | ATC100B471JT200XT     | ATC              |  |
| C10, C11                                                     | 22 pF Chip Capacitor                                   | ATC100B220JT500XT     | ATC              |  |
| C12                                                          | 470 μF, 100 V Electrolytic Capacitor                   | MCGPR100V477M16X32-RH | Multicomp        |  |
| C13                                                          | 1000 pF Chip Capacitor                                 | C2012X7R2E102M        | TDK              |  |
| D1                                                           | Green LED, 1206                                        | LG N971-KN-1          | OSRAM            |  |
| L1                                                           | 82 nH Inductor                                         | 1812SMS-82NJLC        | Coilcraft        |  |
| L2                                                           | 7 Turns, #16 AWG, ID = 10 mm Inductor,<br>Hand Wound   | 8074                  | Belden           |  |
| Q1                                                           | RF Power LDMOS Transistor                              | MRFX1K80H             | NXP              |  |
| R1, R2                                                       | 33 Ω, 3 W Chip Resistor                                | 1-2176070-3           | TE Connectivity  |  |
| R3                                                           | 9.1 kΩ, 1/4 W Chip Resistor                            | CRCW12069K10FKEA      | Vishay           |  |
| PCB                                                          | Arlon TC350 0.030" $\epsilon_{r} = 3.5$                | D94843                | MTL              |  |
| Transformer                                                  |                                                        |                       |                  |  |
| T1 Core                                                      | Multi-Aperture Core, 43 Material                       | 2843000302            | Fair-Rite        |  |
| T1 Primary                                                   | rimary 2 Turns, #20 AWG Magnetic Wire 8076             |                       | Belden           |  |
| T1 Secondary                                                 | 1 Turn, #24 AWG Teflon Wire                            | 5854/7 BL005          | Alpha Wire       |  |
| T2 Core                                                      | 61 Round Cable Core, x4                                | 2661102002            | Fair-Rite        |  |
| T2 Primary                                                   | Copper Pipe, Type L, ID = 3/8", OD = 1/2", cut to 2.4" | LH03010               | Mueller          |  |
| T2 Secondary                                                 | 3 Turns, #16 AWG PTFE Covered Wire, Twisted            | TEF16                 | RF Parts Company |  |
| T2 PCB                                                       | Arlon TC350 0.030" $\epsilon_r = 3.5, x2$              | D50876                | MTL              |  |
| Temperature Compensation                                     |                                                        |                       |                  |  |
| C101, C102, C104, C106,<br>C108, C110                        | 1 μF Chip Capacitor                                    | GRM21BR71H105KA12L    | Murata           |  |
| C103, C105, C107, C109                                       | 1 nF Chip Capacitor                                    | C2012X7R2E102M        | TDK              |  |
| D101                                                         | Red LED, 1206                                          | LH N974-KN-1          | OSRAM            |  |
| Q101                                                         | NPN Bipolar Transistor                                 | BC847ALT1G            | ON Semiconductor |  |
| R101                                                         | 2.2 kΩ, 1/8 W Chip Resistor                            | CRCW08052K20JNEA      | Vishay           |  |
| R102, R109                                                   | 1.2 kΩ, 1/8 W Chip Resistor                            | CRCW08051K20FKEA      | Vishay           |  |
| R103                                                         | 10 Ω, 1/8 W Chip Resistor                              | RK73H2ATTD10R0F       | KOA Speer        |  |
| R104                                                         | 1 kΩ, 1/8 W Chip Resistor                              | RR1220P-102-D         | Susumu           |  |
| R105                                                         | 3.9 kΩ, 1/8 W Chip Resistor                            | CRCW08053K90JNEA      | Vishay           |  |
| R106                                                         | 200 Ω, 1/8 W Chip Resistor                             | CRCW0805200RJNEA      | Vishay           |  |
| R107 5 kΩ Multi-turn Cermet Trimming Potentiometer, 11 Turns |                                                        | 3224W-1-502E          | Bourns           |  |
| R108                                                         | 10 Ω, 1/4 W Chip Resistor                              | CRCW120610R0JNEA      | Vishay           |  |
| U101                                                         | Voltage Regulator 5 V, Micro8                          | LP2951ACDMR2G         | ON Semiconductor |  |
|                                                              |                                                        |                       |                  |  |

Note: Refer to MRFX1K80H's printed circuit boards and schematics to download the 27 MHz heatsink drawing.

### **TYPICAL CHARACTERISTICS**



| f<br>(MHz) | V <sub>DD</sub><br>(V) | P1dB<br>(W) | P <sub>sat</sub><br>(W) |
|------------|------------------------|-------------|-------------------------|
|            | 50                     | 825         | 1250                    |
| 27         | 57.5                   | 1010        | 1600                    |
|            | 65                     | 1150        | 1900                    |

Figure 7. CW Output Power versus Input Power and Drain-Source Voltage

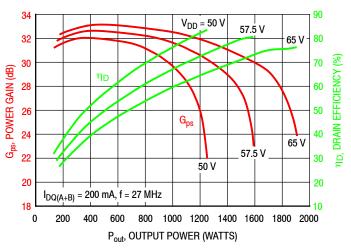



Figure 8. Power Gain and Drain Efficiency versus CW Output Power and Drain-Source Voltage

## **27 MHz REFERENCE CIRCUIT**

| f   | Z <sub>source</sub> | Z <sub>load</sub> |
|-----|---------------------|-------------------|
| MHz | Ω                   | Ω                 |
| 27  | 8.70 + j6.28        | 6.21 + j2.68      |

 $Z_{source} = \begin{array}{l} \text{Test circuit impedance as measured from} \\ \text{gate to gate, balanced configuration.} \end{array}$ 

Z<sub>load</sub> = Test circuit impedance as measured from drain to drain, balanced configuration.

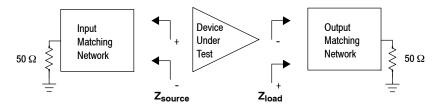
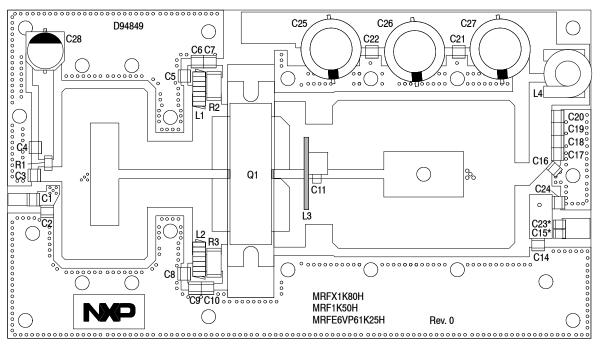



Figure 9. Series Equivalent Source and Load Impedance – 27 MHz


## 87.5–108 MHz BROADBAND REFERENCE CIRCUIT – $2.9'' \times 5.1''$ (73 mm $\times$ 130 mm)

## Table 9. 87.5–108 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system)

 $I_{DQ(A+B)} = 200 \text{ mA}, P_{in} = 7 \text{ W}, CW$ 

| Frequency<br>(MHz) | V <sub>DD</sub> (V) | P <sub>out</sub><br>(W) | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) |
|--------------------|---------------------|-------------------------|-------------------------|-----------------------|
| 87.5               | 60                  | 1521                    | 23.4                    | 84.9                  |
| 98                 | 98 60 1600          |                         | 23.6                    | 82.5                  |
| 108                | 60                  | 1556                    | 23.5                    | 80.0                  |

### 87.5-108 MHz BROADBAND REFERENCE CIRCUIT - 2.9" x 5.1" (73 mm x 130 mm)



\*C15 and C23 are mounted vertically.

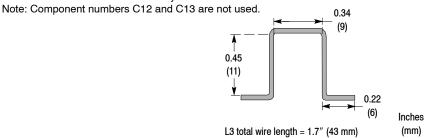



Figure 10. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Layout

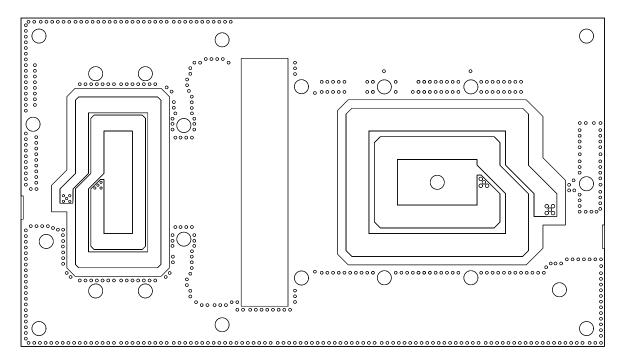



Figure 11. MRFX1K80H 87.5-108 MHz Broadband Reference Circuit Component Layout - Bottom

Table 10. MRFX1K80H 87.5-108 MHz Broadband Reference Circuit Component Designations and Values

| Part                                       | Part Description                                                                |                                                | Manufacturer        |  |
|--------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|---------------------|--|
| C1, C3, C6, C9, C18, C19,<br>C20, C21, C22 | 1000 pF Chip Capacitor ATC100B102JT                                             |                                                | ATC                 |  |
| C2                                         | 33 pF Chip Capacitor                                                            | ATC100B330JT500XT                              | ATC                 |  |
| C4, C5, C8                                 | 10,000 pF Chip Capacitor                                                        | ATC200B103KT50XT                               | ATC                 |  |
| C7, C10, C15, C16, C17, C23                | 470 pF Chip Capacitor                                                           | ATC100B471JT200XT                              | ATC                 |  |
| C11                                        | 100 pF, 300 V Mica Capacitor                                                    | MIN02-002EC101J-F                              | CDE                 |  |
| C14, C24                                   | 12 pF Chip Capacitor                                                            | ATC100B120GT500XT                              | ATC                 |  |
| C25, C26, C27                              | 220 μF, 100 V Electrolytic Capacitor                                            | EEV-FC2A221M Panasonic-ECG                     |                     |  |
| C28                                        | 22 μF, 35 V Electrolytic Capacitor                                              | Electrolytic Capacitor UUD1V220MCL1GS Nichicon |                     |  |
| L1, L2                                     | 17.5 nH Inductor, 6 Turns                                                       | B06TJLC                                        | Coilcraft           |  |
| L3                                         | 1.5 mm Non-Tarnish Silver Plated Copper Wire,<br>Total Wire Length = 1.7"/43 mm | per Wire, SP1500NT-001 Scientific Wire Company |                     |  |
| L4                                         | 22 nH Inductor                                                                  | 1212VS-22NMEB Coilcraft                        |                     |  |
| Q1                                         | RF Power LDMOS Transistor                                                       | MRFX1K80H                                      | NXP                 |  |
| R1                                         | 10 Ω, 1/4 W Chip Resistor                                                       | CRCW120610R0JNEA                               | Vishay              |  |
| R2, R3                                     | 33 Ω, 2 W Chip Resistor                                                         | 1-2176070-3                                    | TE Connectivity     |  |
| Thermal Pad                                | TG Series Soft Thermal Conductive Pad                                           | TG6050-150-150-5.0-0                           | t-Global Technology |  |
| PCB                                        | Arlon TC350 0.030", $\epsilon_{r} = 3.5$                                        | D94849                                         | MTL                 |  |

Note: Refer to MRFX1K80H's printed circuit boards and schematics to download the 87.5–108 MHz heatsink drawing.

## TYPICAL CHARACTERISTICS – 87.5–108 MHz, 60 V BROADBAND REFERENCE CIRCUIT

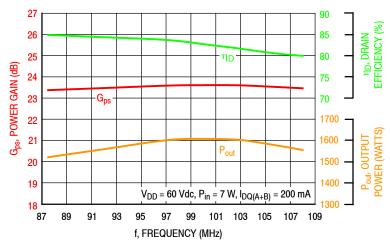



Figure 12. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power

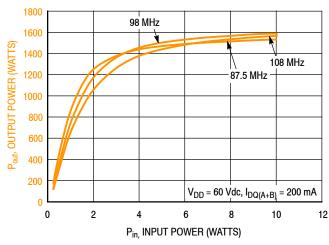



Figure 13. CW Output Power versus Input Power and Frequency

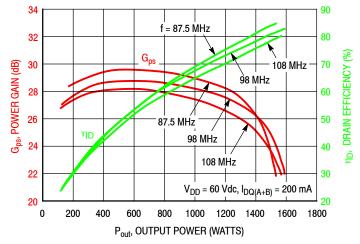
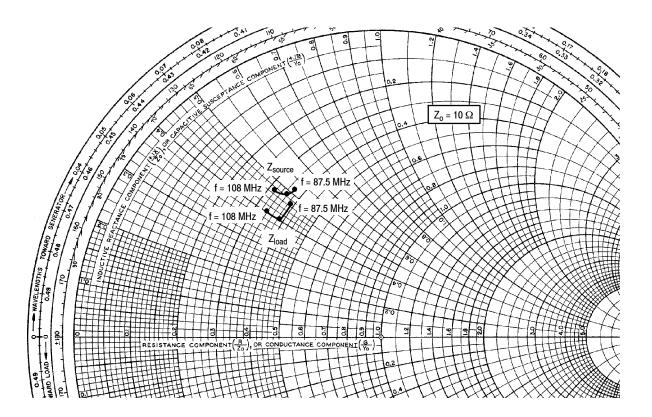




Figure 14. Power Gain and Drain Efficiency versus CW Output Power and Frequency

### 87.5-108 MHz BROADBAND REFERENCE CIRCUIT



| f<br>MHz | Z <sub>source</sub><br>Ω | Z <sub>load</sub><br>Ω |
|----------|--------------------------|------------------------|
| 87.5     | 3.69 + j5.19             | 3.90 + j4.73           |
| 98       | 3.60 + j4.90             | 3.88 + j3.99           |
| 108      | 3.16 + j4.69             | 3.35 + j3.95           |

Z<sub>source</sub> = Test circuit impedance as measured from gate to gate, balanced configuration.

Z<sub>load</sub> = Test circuit impedance as measured from drain to drain, balanced configuration.

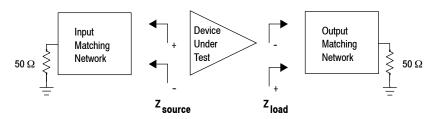
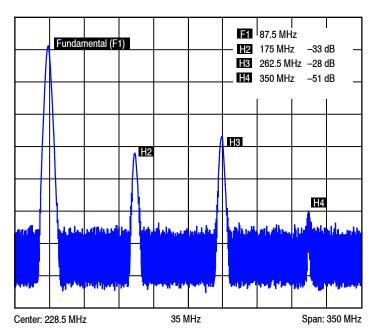
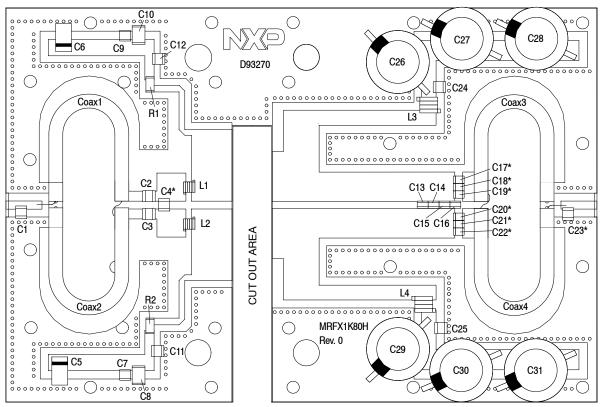




Figure 15. Broadband Series Equivalent Source and Load Impedance – 87.5–108 MHz


## HARMONIC MEASUREMENTS — 87.5-108 MHz BROADBAND REFERENCE CIRCUIT



| H2        | H3          | H4        |
|-----------|-------------|-----------|
| (175 MHz) | (262.5 MHz) | (350 MHz) |
| –33 dB    | –28 dB      |           |

Figure 16. 87.5 MHz Harmonics @ 1300 W CW

## 230 MHz PRODUCTION TEST FIXTURE – 6.0" × 4.0" (152 mm × 102 mm)



\*C4, C17, C18, C19, C20, C21, C22 and C23 are mounted vertically.

Figure 17. MRFX1K80H Test Fixture Component Layout - 230 MHz

Table 11. MRFX1K80H Test Fixture Component Designations and Values - 230 MHz

| Part                                | Part Description                                 |                       | Manufacturer |
|-------------------------------------|--------------------------------------------------|-----------------------|--------------|
| C1, C2, C3                          | 22 pF Chip Capacitor ATC100B220JT500XT           |                       | ATC          |
| C4                                  | 27 pF Chip Capacitor                             | ATC100B270JT500XT     | ATC          |
| C5, C6                              | 22 μF, 35 V Tantalum Capacitor                   | T491X226K035AT        | Kemet        |
| C7, C9                              | 0.1 μF Chip Capacitor                            | CDR33BX104AKWS        | AVX          |
| C8, C10                             | 220 nF Chip Capacitor                            | C1812C224K5RACTU      | Kemet        |
| C11, C12, C24, C25                  | 1000 pF Chip Capacitor                           | ATC100B102JT50XT      | ATC          |
| C13                                 | 24 pF Chip Capacitor                             | ATC800R240JT500XT     | ATC          |
| C14, C15, C16                       | 20 pF Chip Capacitor                             | ATC800R200JT500XT     | ATC          |
| C17, C18, C19, C20, C21, C22        | 240 pF Chip Capacitor                            | ATC100B241JT200XT     | ATC          |
| C23 7.5 pF Chip Capacitor ATC100B7R |                                                  | ATC100B7R5CT500XT     | ATC          |
| C26, C27, C28, C29, C30, C31        | 470 μF, 100 V Electrolytic Capacitor             | MCGPR100V477M16X32-RH | Multicomp    |
| Coax1, 2, 3, 4                      | 25 $Ω$ Semi Rigid Coax Cable, 2.2" Shield Length | UT-141C-25            | Micro-Coax   |
| L1, L2                              | 5 nH Inductor, 2 Turns                           | A02TJLC               | Coilcraft    |
| L3, L4                              | 6.6 nH Inductor, 2 Turns                         | GA3093-ALC            | Coilcraft    |
| R1, R2                              | 10 Ω, 1/4 W Chip Resistor                        | CRCW120610R0JNEA      | Vishay       |
| PCB                                 | Arlon AD255A 0.030", $\epsilon_{r} = 2.55$       | D93270                | MTL          |

## TYPICAL CHARACTERISTICS — 230 MHz, T<sub>C</sub> = 25°C PRODUCTION TEST FIXTURE

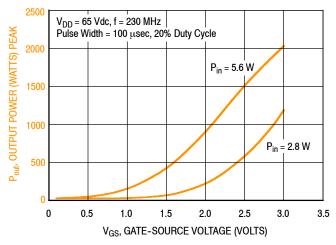
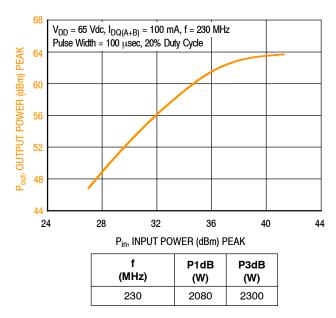



Figure 18. Output Power versus Gate-Source Voltage at a Constant Input Power

26

25

24


23

22

21

20

POWER GAIN (dB)



19
50 100 1000 3000

Pout, OUTPUT POWER (WATTS) PEAK

Figure 20. Power Gain and Drain Efficiency versus Output Power and Quiescent Current

300 mA

900 mA

600 mA

V<sub>DD</sub> = 65 Vdc, f = 230 MHz

Gps

100 mA

Pulse Width = 100 µsec

20% Duty Cycle

600 mA

300 mA

100 mA

I<sub>DQ(A+B)</sub> = 900 mA



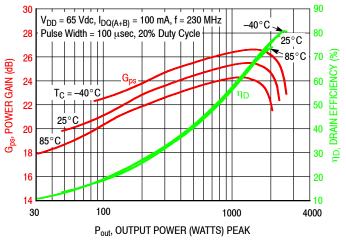



Figure 21. Power Gain and Drain Efficiency versus Output Power

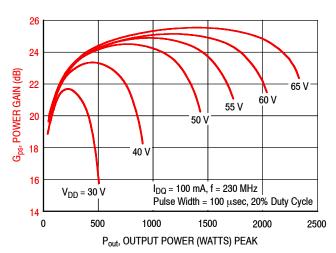



Figure 22. Power Gain versus Output Power and Drain-Source Voltage

#### MRFX1K80H

90

80

70

**50** 

40

30

20

**DRAIN EFFICIENCY** 

<u>–</u>

## 230 MHZ PRODUCTION TEST FIXTURE

| f<br>MHz | $Z_{source} \ \ \Omega$ | Z <sub>load</sub><br>Ω |
|----------|-------------------------|------------------------|
| 230      | 1.1 + j2.7              | 2.2 + j2.9             |

Z<sub>source</sub> = Test fixture impedance as measured from gate to gate, balanced configuration.

Z<sub>load</sub> = Test fixture impedance as measured from drain to drain, balanced configuration.

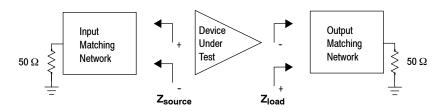
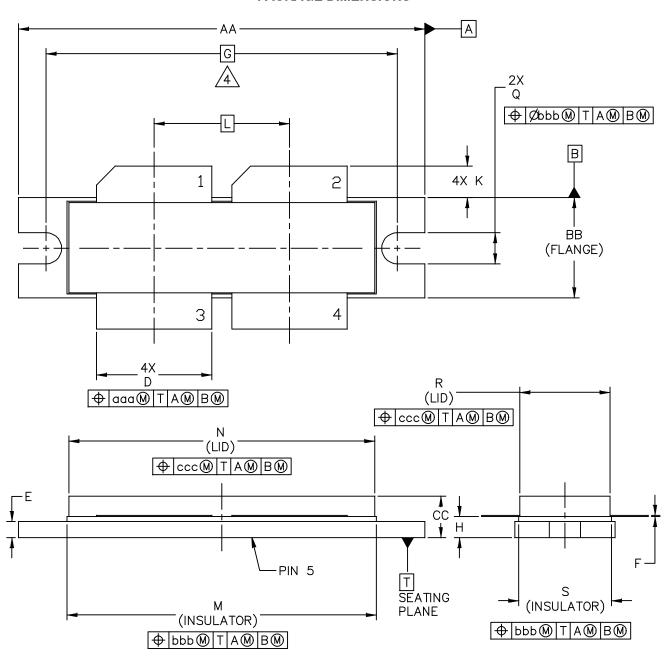




Figure 23. Series Equivalent Source and Load Impedance – 230 MHz

## **PACKAGE DIMENSIONS**



| © NXP SEMICONDUCTORS N.V.<br>ALL RIGHTS RESERVED |  |         | PRINT VERSION NOT  | TO SCALE   |
|--------------------------------------------------|--|---------|--------------------|------------|
| TITLE:                                           |  | DOCUME  | NT NO: 98ASB16977C | REV: G     |
| NI-1230-4H                                       |  | STANDAF | RD: NON-JEDEC      |            |
|                                                  |  | S0T1787 | <b>-</b> 1 03      | 3 MAR 2016 |

## NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0.762 MM) AWAY FROM PACKAGE BODY.
- RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

|                                 | IN                 | CH                          | MILI  | LIMETER   |          | INCH MILLIMETE |            | METER      |         |
|---------------------------------|--------------------|-----------------------------|-------|-----------|----------|----------------|------------|------------|---------|
| DIM                             | MIN                | MAX                         | MIN   | MAX       | DIM      | MIN            | MAX        | MIN        | MAX     |
| AA                              | 1.615              | 1.625                       | 41.02 | 41.28     | N        | 1.218          | 1.242      | 30.94      | 31.55   |
| BB                              | .395               | .405                        | 10.03 | 10.29     | Q        | .120           | .130       | 3.05       | 3.30    |
| CC                              | .170               | .190                        | 4.32  | 4.83      | R        | .355           | .365       | 9.02       | 9.27    |
| D                               | .455               | .465                        | 11.56 | 11.81     | S        | .365           | .375       | 9.27       | 9.53    |
| Е                               | .062               | .066                        | 1.57  | 1.68      |          |                |            |            |         |
| F                               | .004               | .007                        | 0.10  | 0.18      |          |                |            |            |         |
| G                               | 1.400              | BSC                         | 35.   | 56 BSC    | aaa      |                | .013       | 0.         | 33      |
| Н                               | .082               | .090                        | 2.08  | 2.29      | bbb      |                | .010       | 0.         | 25      |
| K                               | .117               | .137                        | 2.97  | 3.48      | ccc      |                | .020       | 0.         | .51     |
| L                               | .540               | BSC                         | 13.   | 72 BSC    |          |                |            |            |         |
| М                               | 1.219              | 1.241                       | 30.96 | 31.52     |          |                |            |            |         |
|                                 |                    |                             |       |           |          |                |            |            |         |
|                                 |                    |                             |       |           |          |                |            |            |         |
| (                               |                    | NDUCTORS N.V.<br>S RESERVED |       | MECHANICA | L OU     | TLINE          | PRINT VERS | SION NOT T | O SCALE |
| TITLE: DOCUMENT NO: 98ASB16977C |                    |                             |       | 6977C     | REV: G   |                |            |            |         |
| NI-1230-4H STANDARD: NON-JEDEC  |                    |                             |       | 2         |          |                |            |            |         |
|                                 | S0T1787-1 03 MAR 2 |                             |       |           | MAR 2016 |                |            |            |         |

## PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

#### **Application Notes**

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

#### **Engineering Bulletins**

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

#### **Software**

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

### **Development Tools**

· Printed Circuit Boards

### To Download Resources Specific to a Given Part Number:

- 1. Go to <a href="http://www.nxp.com/RF">http://www.nxp.com/RF</a>
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

#### **REVISION HISTORY**

The following table summarizes revisions to this document.

| Revision | Date       | Description                                                                                                                                                                                                                                                             |
|----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | Aug. 2017  | Initial release of data sheet                                                                                                                                                                                                                                           |
| 1        | Sept. 2018 | Typical Performance table: updated values for 81.36 MHz reference circuit; added performance information for 175 MHz reference circuit and 174–230 MHz Doherty reference circuit, p. 1                                                                                  |
|          |            | Feature bullets: updated Aerospace feature bullets, p. 1                                                                                                                                                                                                                |
|          |            | Fig. 3, Normalized V <sub>GS</sub> versus Quiescent Current and Case Temperature: corrected 50 Vdc to 65 Vdc to reflect actual performance in graph, p. 4                                                                                                               |
|          |            | Fig. 5, Linear Model: added simple linear model for MRFX1K80H, p. 5                                                                                                                                                                                                     |
|          |            | • Fig. 10 (previously Fig. 9), 87.5–108 MHz Broadband Reference Circuit: added note regarding components not used, p. 12                                                                                                                                                |
|          |            | • Fig. 20 (previously Fig. 19), Power Gain and Drain Efficiency versus Output Power and Quiescent Current: updated graph to reflect correct Drain Efficiency performance. Output Power axis value "3" changed to "50" to reflect actual output power performance, p. 18 |

### How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: <a href="mailto:nxp.com/SalesTermsandConditions">nxp.com/SalesTermsandConditions</a>.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2017–2018 NXP B.V.



Document Number: MRFX1K80H

Rev. 1, 09/2018