

. . eescale Semiconductor Technical Data

Document Number: AFT21S230S_232S Rev. 3, 3/2014

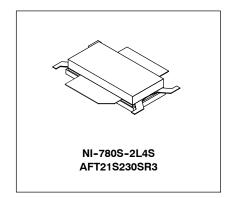
√RoHS

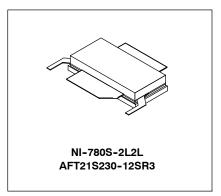
RF Power LDMOS Transistors

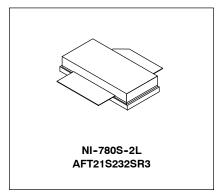
N-Channel Enhancement-Mode Lateral MOSFETs

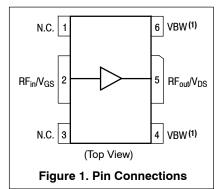
These 50 W RF power LDMOS transistors are designed for cellular base station applications covering the frequency range of 2110 to 2170 MHz.

• Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 1500 mA, P_{out} = 50 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

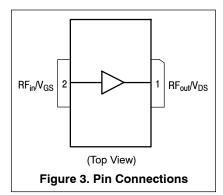

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
2110 MHz	16.7	30.5	7.2	-35.7	-19
2140 MHz	17.0	31.0	7.1	-35.4	-20
2170 MHz	17.2	31.8	7.0	-34.8	-15


AFT21S230SR3 AFT21S230-12SR3 AFT21S232SR3


2110–2170 MHz, 50 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTORS


Features

- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- · Designed for Digital Predistortion Error Correction Systems
- · Optimized for Doherty Applications
- NI-780S-2L2L, NI-780S-2L4S: R3 Suffix = 250 Units, 44 mm Tape Width, 13-inch Reel.
- NI-780S-2L: R3 Suffix = 250 Units, 56 mm Tape Width, 13-inch Reel. For R5 Tape and Reel options, see p. 17.



Device can operate with the V_{DD} current supplied through pin 4 and pin 6 (AFT21S230S)
or pin 2 and pin 4 (AFT21S230-12S) at a reduced RF output power level. Refer to CW
operation data in the Maximum Ratings table.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
CW Operation @ T_C = 25°C when DC current is fed through drain lead, pin 5 (AFT21S230S), pin 3 (AFT21S230-12S) or pin 1 (AFT21S232S) Derate above 25°C	CW	161 0.75	W W/°C
CW Operation @ T _C = 25°C when DC current is fed through pin 4 and pin 6 (AFT21S230S) or pin 2 and pin 4 (AFT21S230-12S) Derate above 25°C	CW	104 0.44	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$		°C/W
Case Temperature 80°C, 50 W CW, 28 Vdc, I _{DQ} = 1500 mA, 2110 MHz		0.43	
Case Temperature 86°C, 140 W CW (4), 28 Vdc, I _{DQ} = 1500 mA, 2110 MHz		0.38	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22-C101)	IV

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic		Min	Тур	Max	Unit
Off Characteristics					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 291 μAdc)	V _{GS(th)}	1.5	2.0	2.5	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _D = 1500 mAdc, Measured in Functional Test)	V _{GS(Q)}	2.2	2.7	3.2	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3.7 Adc)	V _{DS(on)}	0.1	0.2	0.3	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.
- 4. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

(continued)

Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

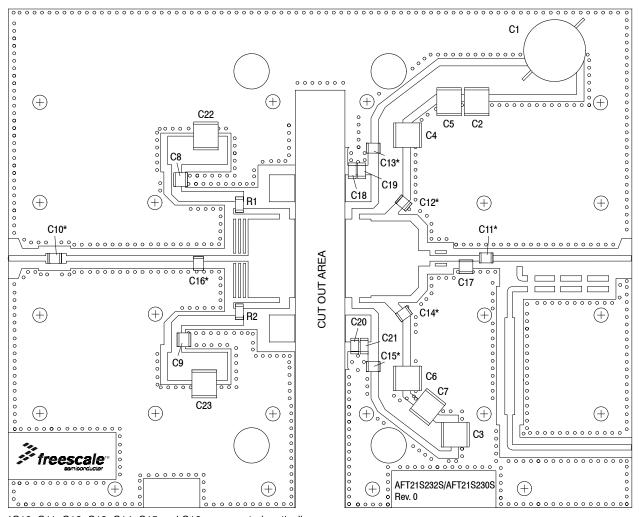
Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28	Vdc, I _{DQ} = 15	500 mA, P _{out} =	= 50 W Avg., 1	f = 2110 MHz,	

Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 1500 mA, P_{out} = 50 W Avg., f = 2110 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	16.0	16.7	19.0	dB
Drain Efficiency	η _D	29.0	30.5	_	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	6.7	7.2	_	dB
Adjacent Channel Power Ratio	ACPR	_	-35.7	-34.0	dBc
Input Return Loss	IRL	_	-19	-10	dB

Load Mismatch (In Freescale Test Fixture, 50 ohm system) $I_{DQ} = 1500$ mA, f = 2140 MHz

, , , , , ,	,
VSWR 10:1 at 32 Vdc, 269 W CW (2) Output Power	No Device Degradation
(3 dB Input Overdrive from 182 W CW (2) Rated Power)	


Typical Performance (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 1500 \text{ mA}$, 2110-2170 MHz Bandwidth

P _{out} @ 1 dB Compression Point, CW	P1dB	_	182(2)	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 2110-2170 MHz bandwidth)	Φ	_	-19.3	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) AFT21S230S AFT21S232S	VBW _{res}	_	95 60	_	MHz
Gain Flatness in 60 MHz Bandwidth @ Pout = 50 W Avg.	G _F	_	0.5	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG		0.016	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C) (2)	ΔP1dB	_	0.007	_	dB/°C

^{1.} Part internally matched both on input and output.

^{2.} Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

^{*}C10, C11, C12, C13, C14, C15 and C16 are mounted vertically.

Figure 4. AFT21S230SR3(232SR3) Test Circuit Component Layout

Table 5. AFT21S230SR3(232SR3) Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	470 μF, 63 V Electrolytic Capacitor	B41694A5477Q7	EPCOS
C2, C3, C4, C5, C6, C7, C22, C23	10 μF, 100 V Chip Capacitors	C5750X7S2A106M	TDK
C8, C9, C10, C11, C12, C13, C14, C15	6.8 pF Chip Capacitors	ATC100B6R8BT500XT	ATC
C16	0.6 pF Chip Capacitor	ATC100B0R6BT500XT	ATC
C17	0.3 pF Chip Capacitor	ATC100B0R3BT500XT	ATC
C18, C19, C20, C21	1 μF, 50 V Chip Capacitors	CDR34BX104AKWS	AVX
R1, R2 8.2 Ω, 1/4 W Chip Resistors		RC1206FR-108R2L	Yageo
PCB	Rogers RO4350B, 0.020", ε _r = 3.66	_	MTL

TYPICAL CHARACTERISTICS

Figure 5. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 50 Watts Avg.

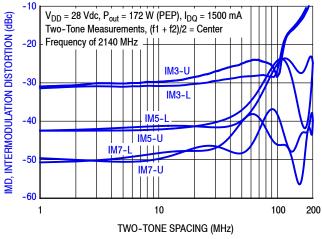


Figure 6a. Intermodulation Distortion Products versus Two-Tone Spacing — AFT21S230S

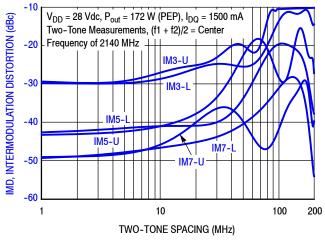


Figure 6b. Intermodulation Distortion Products versus Two-Tone Spacing — AFT21S232S

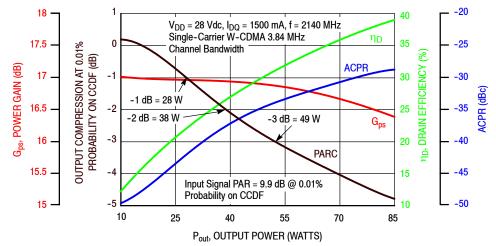


Figure 7. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

AFT21S230SR3 AFT21S230-12SR3 AFT21S232SR3

TYPICAL CHARACTERISTICS

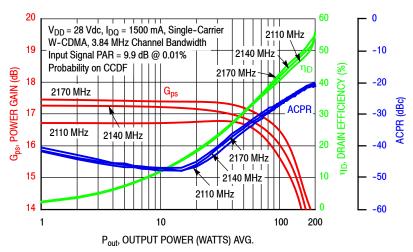


Figure 8. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

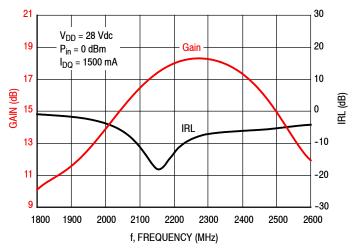


Figure 9. Broadband Frequency Response

 V_{DD} = 28 Vdc, I_{DQ} = 1500 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

					Max Output Power							
				Max		P1dB				P3	BdB	
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Linear Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	(dBm)	(W)	η _D (%)	AM/PM (°)
2110	1.20 - j6.00	1.20 + j5.90	1.50 - j3.90	17.7	54.3	269	55.4	11	55.2	331	57.0	16
2140	1.70 - j6.40	1.50 + j6.30	1.60 - j4.00	17.7	54.3	269	55.1	10	55.2	331	56.0	15
2170	1.70 - j6.80	1.75 + j6.70	1.50 - j4.00	17.8	54.3	269	54.7	11	55.2	331	56.0	16

⁽¹⁾ Load impedance for optimum P1dB power.

 Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

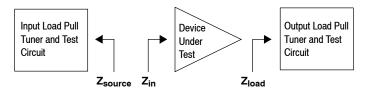


Figure 10. Load Pull Performance — Maximum P1dB Tuning

 V_{DD} = 28 Vdc, I_{DQ} = 1500 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

					Efficienc	у						
				Max		P	ldB			P3	BdB	
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Linear Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	(dBm)	(W)	η _D (%)	AM/PM (°)
2110	1.20 - j6.00	1.20 + j5.93	2.10 - j2.41	20.0	52.7	186	64.9	16	54.3	269	66.2	20
2140	1.70 - j6.40	1.40 + j6.30	1.80 - j2.60	19.8	52.8	191	64.2	16	53.4	219	65.4	24
2170	1.70 - j6.80	1.80 + j6.80	1.70 - j2.60	20.0	52.8	191	64.2	17	54.2	263	65.5	22

⁽¹⁾ Load impedance for optimum P1dB efficiency.

 Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

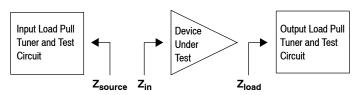
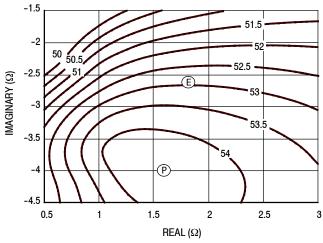



Figure 11. Load Pull Performance — Maximum Drain Efficiency Tuning

P1dB - TYPICAL LOAD PULL CONTOURS — 2140 MHz

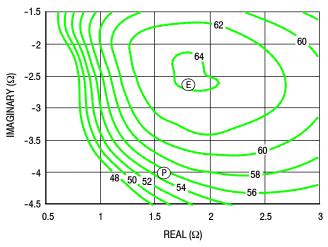
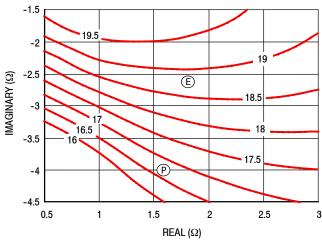



Figure 12. P1dB Load Pull Output Power Contours (dBm)

Figure 13. P1dB Load Pull Efficiency Contours (%)

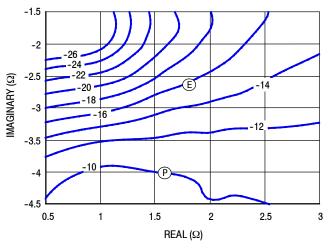
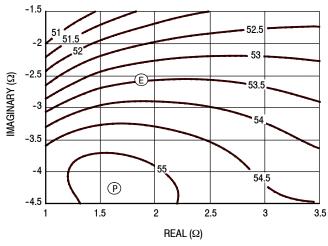


Figure 14. P1dB Load Pull Gain Contours (dB)

Figure 15. P1dB Load Pull AM/PM Contours (°)


NOTE: (P) = Maximum Output Power

(E) = Maximum Drain Efficiency

Gain
Drain Efficiency
Linearity
Output Power

P3dB - TYPICAL LOAD PULL CONTOURS — 2140 MHz

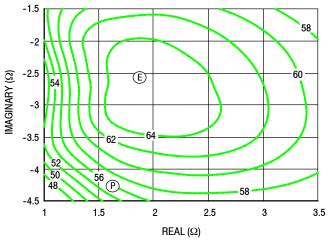
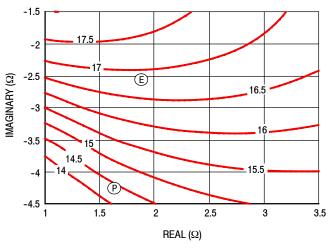



Figure 16. P3dB Load Pull Output Power Contours (dBm)

Figure 17. P3dB Load Pull Efficiency Contours (%)

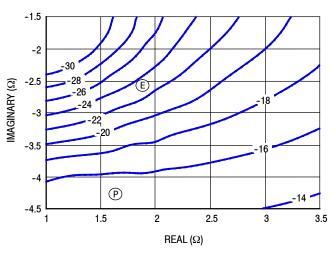
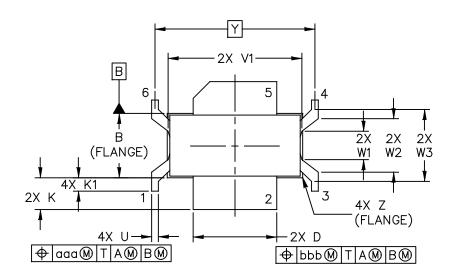
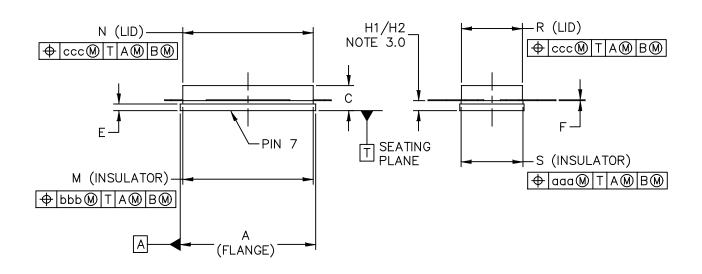


Figure 18. P3dB Load Pull Gain Contours (dB)

Figure 19. P3dB Load Pull AM/PM Contours (°)

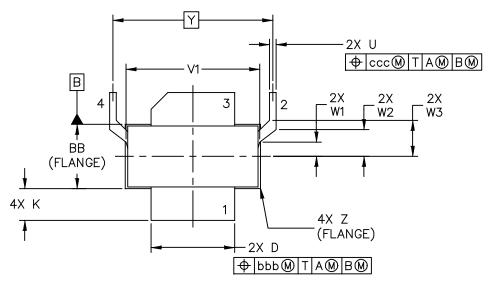

NOTE: (P) = Maximum Output Power

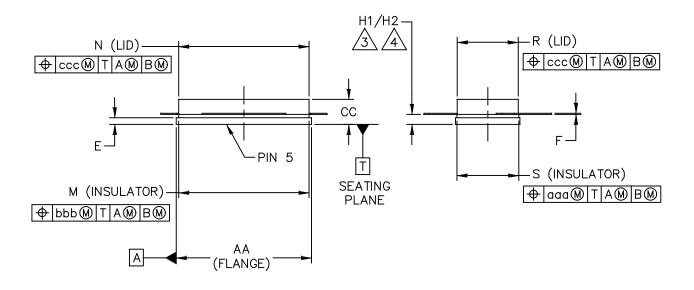

(E) = Maximum Drain Efficiency

Gain
Drain Efficiency
Linearity
Output Power

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00443D	REV: A
NI-780S-	6	CASE NU	JMBER: 2268-02	24 MAY 2012
		STANDAF	RD: NON-JEDEC	




NOTES:

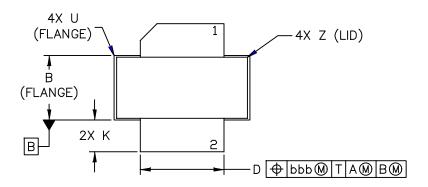
- 1.0 CONTROLLING DIMENSION: INCH.
- 2.0 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3.0 DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 2 & 5. H2 APPLIES TO PINS 1, 3, 4 & 6.

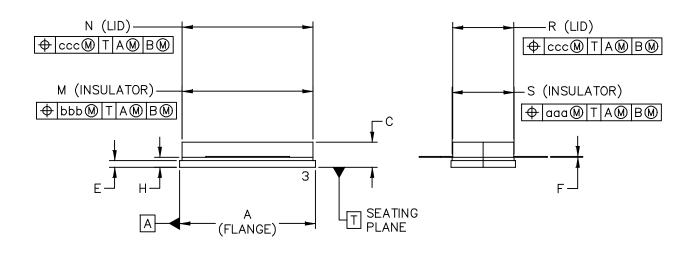
	INCH		MILLIMETER				INCH		MILLIMETER		
DIM	MIN	MAX	MIN		MAX	DIM	MIN	MAX	MIN		MAX
A	.805	815	20.45	_	20.70	R	.365	375	9.2	7 –	9.53
В	.380	390	9.65	_	9.91	S	.365	<i>-</i> .375	9.2	7 –	9.53
С	.125	170	3.18	_	4.32	U	.035	045	0.8	9 –	1.14
D	.495	505	12.57	_	12.83	V1	.795	805	20.	19 –	20.45
E	.035	045	0.89	_	1.14	W1	.165	175	4.1	9 –	4.45
F	.004	007	0.10	_	0.18	W2	.315	325	8.0	0 –	8.26
H1	.057	067	1.45	· _	1.70	W3	.425	435	10.8	30 —	11.05
H2	.054	070	1.37	· –	1.78	Y	.9	56 BSC	24.28	BSC	
K	.170	210	4.32	_	5.33	Z	R.000	- R.040	R.0	0 –	R1.02
K1	.070	090	1.78	_	2.29	aaa	_	.005 —	_	0.12	7 _
М	.774	786	19.66	_	19.96	bbb	_	.010 —	_	0.25	4 –
N	.772	788	19.61	_	20.02	ссс	_	.015 –	_	0.38	1 –
© F	REESCALE	SEMICONDUCTOR.	INC.			I 011	L TNE	DDINT VEDS		T TO 9	SCALE.
ALL RIGHTS RESERVED.				CHANICA	L 00	L OUTLINE PRINT VERS			SION NOT TO SCALE		
TITLE:							DOCUMENT NO: 98ASA00443D REV: A				Α
NI-780S-6							CASE NUMBER: 2268-02 24 MAY 2				AY 2012
						Ī	STANDARD: NON-JEDEC				
						!					

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE				
TITLE:		DOCUMEN	NT NO: 98ASA00517D REV: A				
NI-780-2S2L		STANDAF	RD: NON-JEDEC				
			08 MAR 2013				

NOTES:

- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.


 $_{\rm L}$ DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 1 & 3. H2 APPLIES TO PINS 2 & 4.



TOLERANCE OF DIMENSION H2 IS TENTATIVE AND COULD CHANGE ONCE SUFFICIENT MANUFACTURING DATA IS AVAILABLE.

	II.	VCH	MILLIMETER					INCH	MILLIMETER		
DIM	MIN	MAX	MIN		MAX	DIM	MIN	MAX	MIN		MAX
AA	.805	815	20.45	· –	20.70	R	.365	375	9.27	_	9.53
ВВ	.380	390	9.65	Б	9.91	S	.365	375	9.27	_	9.53
СС	.125	170	3.18	_	4.32	U	.035	045	0.89	_	1.14
D	.495	505	12.57	' –	12.83	V1	.795	805	20.19	_	20.45
E	.035	045	0.89) _	1.14	W1	.080	090	2.03	_	2.29
F	.004	007	0.10	_	0.18	W2	.155	165	3.94	_	4.19
H1	.057	067	1.45	5 –	1.70	W3	.210	220	5.33	_	5.59
H2	.054	070	1.37	' –	1.78	Y	.9	56 BSC	24.28 BSC		3SC
K	.170	210	4.32	2 –	5.33	Z	R.000	– R.040	R0.00	_	R1.02
М	.774	786	19.6	6 –	19.96	aaa	_	.005 —	_	0.13	_
N	.772	788	19.6	1 –	20.02	bbb	_	.010 —	_	0.25	_
						ccc	-	.015 –	_	0.38	_
	© FREESCALE SEMICONDUCTOR, INC. MECHANICA					L OU	ΓLINE	PRINT VERS	TON NOI	TO S	CALE
TITLE:	•						DOCUME	NT NO: 98ASAC	00517D	F	EV: A
	NI-780-2S2L						STANDARD: NON-JEDEC				
						•	08 MAR 201				R 2013

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:		DOCUMENT NO): 98ASB16718C	REV: H
NI-780S		CASE NUMBER	R: 465A-06	31 MAR 2005
		STANDARD: NO	N-JEDEC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED .030 (0.762) AWAY FROM PACKAGE BODY.

STYLE 1:

PIN 1. DRAIN

2. GATE

3. SOURCE

	INCH		MIL	<i>I</i> ILLIMETER				INCH		М	ILLIME1	ER	
DIM	MIN		MAX	MIN		MAX	DIM	MIN		MAX	MIN		MAX
Α	.805	_	.815	20.45	_	20.7	U	_	_	.040	_	_	1.02
В	.380	_	.390	9.65	-	9.91	Z	_	_	.030	_	_	0.76
С	.125	_	.170	3.18	-	4.32	aaa	_	.005	_	_	0.12	7 —
D	.495	_	.505	12.57	-	12.83	bbb	_	.010	_	_	0.25	4 –
E	.035	_	.045	0.89	_	1.14	ccc	_	.015	_	_	0.38	1 –
F	.003	_	.006	0.08	_	0.15	_	_	_	_	_	_	_
Н	.057	_	.067	1.45	_	1.7	_	_	_	_	_	_	_
K	.170	_	.210	4.32	_	5.33	_	_	_	_	_	_	_
М	.774	_	.786	19.61	_	20.02	_	_	_	_	_	_	_
N	.772	_	.788	19.61	-	20.02	_	_	_	_	_	_	_
R	.365	_	.375	9.27	_	9.53	_	_	_	_	_	_	_
S	.365	_	.375	9.27	_	9.52	_	_	_	_	_	_	_
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA				CHANICA	L OUT	LINE	PR	INT VERS	SION NO	T TO S	CALE		
TITLE:							DOCU	MENT NO): 98A	SB167180	;	REV:	Н
NI-780S					CASE NUMBER: 465A-06 31 MAR 2			R 2005					
					STANI	DARD: NO	N-JE	DEC	•				

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following documents, software and tools to aid your design process.

Application Notes

AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- · RF High Power Model
- · .s2p File

Development Tools

· Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

R5 TAPE AND REEL OPTION

NI-780S-2L4S: R5 Suffix = 50 Units, 44 mm Tape Width, 13-inch Reel. NI-780S-2L: R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel.

The R5 tape and reel option for AFT21S230S and AFT21S232S parts will be available for 2 years after release of AFT21S230S and AFT21S232S. Freescale Semiconductor, Inc. reserves the right to limit the quantities that will be delivered in the R5 tape and reel option. At the end of the 2 year period customers who have purchased this device in the R5 tape and reel option will be offered AFT21S230S and AFT21S232S in the R3 tape and reel option.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Oct. 2012	Initial Release of Data Sheet
1	Nov. 2012	Corrected Tape and Reel tape width from 32 mm to 44 mm, pp. 1, 17
2	Mar. 2013	Table 1. Maximum Ratings, CW Operation for drain lead: changed CW Operation @ T _C = 25°C from 163 W to 161 W and changed derate factor from 0.79 W/°C to 0.75 W/°C to reflect recent thermal measurement test results of the AFT21S230S and AFT21S232S parts, p. 2 Table 1. Maximum Ratings: added CW Operation rating and derate factor if the AFT21S230S part is
		biased through pin 4 and pin 6, p. 2
		Table 4. Load Mismatch: added footnote 2, indicating CW output power and CW rated power exceed recommended operating conditions, p. 3
3	Mar. 2014	Added part number AFT21S230-12SR3, p. 1
		Added NI-780S-2L2L package isometric, p. 1, and Mechanical Outline, pp. 12-13
		Added Fig. 2, Pin Connections drawing for AFT21S230-12SR3 and VBW lead DC feed connecvtions footnote for AFT21S230SR3 and AFT21S230-12SR3, p. 1
		Maximum Ratings table, CW operation: added AFT21S230-12S part to VBW lead DC feed condition information, pp. 2-3
		Table 5, Test Circuit Component Designations and Values: updated PCB description to reflect most current board specifications from Rogers, p. 4

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2012–2014 Freescale Semiconductor, Inc.

