ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC14013B

Dual Type D Flip-Flop

The MC14013B dual type D flip-flop is constructed with MOS P -channel and N -channel enhancement mode devices in a single monolithic structure. Each flip-flop has independent Data, (D), Direct Set, (S), Direct Reset, (R), and Clock (C) inputs and complementary outputs (Q and $\overline{\mathrm{Q}}$). These devices may be used as shift register elements or as type T flip-flops for counter and toggle applications.

Features

- Static Operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Edge-Clocked Flip-Flop Design
- Logic State is Retained Indefinitely with Clock Level either High or Low; Information is Transferred to the Output only on the Positive-going Edge of the Clock Pulse
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4013B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

SOIC-14	SOEIAJ-14	TSSOP-14
D SUFFIX	F SUFFIX	DT SUFFIX
CASE 751A	CASE 965	CASE 948G

PIN ASSIGNMENT

$Q _ { A } \longdiv { 1 \bullet }$	14	$V_{D D}$
$\bar{Q}_{\text {A }} \mathrm{C} 2$	13	Q_{B}
$\mathrm{C}_{\mathrm{A}} \mathrm{C}^{\text {a }}$	12	Q_{B}
$\mathrm{R}_{\mathrm{A}} ¢ 4$	11	C_{B}
$\mathrm{D}_{\mathrm{A}} ¢ 5$	10	R_{B}
$\mathrm{Sa}_{\text {A }} 6$	9	D_{B}
$\mathrm{V}_{\text {SS }} ¢ 7$	8	S_{B}

MARKING DIAGRAMS

TSSOP-14

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { YY, Y } & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
\text { G or } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MC14013B

TRUTH TABLE

Inputs				Outputs	
Clock ${ }^{\dagger}$	Data	Reset	Set	Q	Q
ת	0	0	0	0	1
ת	1	0	0	1	0
\checkmark	X	0	0	Q	$\overline{\mathrm{Q}}$
X	X	1	0	0	1
X	X	0	1	1	0
X	X	1	1	1	1

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	
MC14013BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14013BDG*	SOIC-14 (Pb-Free)	55 Units / Rail
MC14013BDR2G	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel
NLV14013BDR2G*	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel
MC14013BDTR2G	TSSOP-14 (Pb-Free)	2500 Units / Tape \& Reel
NLV14013BDTR2G*	TSSOP-14 (Pb-Free)	2500 Units / Tape \& Reel
MC14013BFG	SOEIAJ-14 (Pb-Free)	2000 Units / Rail
MC14013BFELG	SOEIAJ-14 (Pb-Free)	Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ ${ }^{(2)}$	Max	Min	Max	
Output Voltage $V_{\text {in }}=V_{D D} \text { or } 0$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
$\mathrm{V}_{\text {in }}=0$ or V_{DD} ("1" Level	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	Vdc
 Input Voltage $" 0 "$ Level $\left(V_{O}=4.5\right.$ or 0.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=9.0\right.$ or 1.0 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=13.5\right.$ or 1.5 Vdc$)$ 	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \quad \text { " } 1 " \text { Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & \hline 3.5 \\ & 7.0 \\ & 11 \end{aligned}$		Vdc
$\begin{array}{\|ll} \hline \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	IOH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$		$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{aligned} & -1.7 \\ & -0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	mAdc
$\begin{array}{ll} (\mathrm{V} \text { OL }=0.4 \mathrm{Vdc}) & \text { Sink } \\ (\mathrm{V} \mathrm{OL}=0.5 \mathrm{Vdc}) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	loL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & \hline 0.002 \\ & 0.004 \\ & 0.006 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	-	$\begin{gathered} 30 \\ 60 \\ 120 \end{gathered}$	$\mu \mathrm{Adc}$
Total Supply Current ${ }^{(3)}$ (4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	I_{T}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} \mathrm{I}_{\mathrm{T}} & =(0.75 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ \mathrm{I}_{\mathrm{T}} & =(1.5 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ \mathrm{I}_{\mathrm{T}} & =(2.3 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \text { Vfk }
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.002$.

SWITCHING CHARACTERISTICS (Note 5) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	V_{DD}	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay Time Clock to Q, \bar{Q} $t_{\text {PLH }}, t_{P H L}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+90 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+42 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns}$ Set to Q, \bar{Q} $t_{\text {PLH }}, t_{P H L}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+90 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+42 \mathrm{~ns}$ $t_{\text {PLH }}, t_{P H L}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns}$ Reset to $\mathrm{Q}, \overline{\mathrm{Q}}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+265 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+67 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+50 \mathrm{~ns}$	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	5.0 10 15 5.0 10 15 .0 10 15		175 75 50 175 75 50 225 100 75	350 150 100 350 150 100 450 200 150	ns
Setup Times (Note 7)	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 7.5 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	ns
Hold Times (Note 7)	$\mathrm{th}_{\text {h }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 7.5 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	ns
Clock Pulse Width	twL, twh	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 250 \\ 100 \\ 70 \end{gathered}$	$\begin{gathered} 125 \\ 50 \\ 35 \end{gathered}$		ns
Clock Pulse Frequency	f_{cl}	$\begin{gathered} \hline 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 4.0 \\ 10 \\ 14 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 5.0 \\ & 7.0 \end{aligned}$	MHz
Clock Pulse Rise and Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 5.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{s}$
Set and Reset Pulse Width	t_{WL}, twh	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 250 \\ 100 \\ 70 \end{gathered}$	$\begin{gathered} 125 \\ 50 \\ 35 \end{gathered}$		ns
Removal Times Set Reset	$\mathrm{t}_{\text {rem }}$	5 10 15 5 10 15	80 45 35 50 30 25	$\begin{gathered} 0 \\ 5 \\ 5 \\ \hline-35 \\ -10 \\ -5 \end{gathered}$		ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
7. Data must be valid for 250 ns with a 5 V supply, 100 ns with 10 V , and 70 ns with 15 V .

LOGIC DIAGRAM (1/2 of Device Shown)

Inputs R and S low.
Figure 1. Dynamic Signal Waveforms (Data, Clock, and Output)

Figure 2. Dynamic Signal Waveforms (Set, Reset, Clock, and Output)

TYPICAL APPLICATIONS
n-STAGE SHIFT REGISTER

BINARY RIPPLE UP-COUNTER (Divide-by-2n)

MC14013B

PACKAGE DIMENSIONS

MC14013B

PACKAGE DIMENSIONS

TSSOP-14
CASE 948G
ISSUE B

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC14013B

PACKAGE DIMENSIONS

SOEIAJ-14
CASE 965
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE

MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.10	0.20	0.004	0.008
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	1.42	---	0.056

> ON Semiconductor and the ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

