Revision August 1, 2002

——
—
—— .
——— o
———

— oS

“ve

==# CYPRESS

CY3682 Design Notes

Introduction

The SX2 USB interface works with any standard micropro-
cessor or digital signal processor and adds USB 2.0 support
for any peripheral design. The EZ-USB 3682 SX2 Develop-
ment kit includes a Cypress FX 8051 processor and example
firmware to master the SX2. This document describes the FX
example firmware, fx2sx2. This firmware can be used as a
starting point for development with the SX2 using another
processor as external master.

This example firmware has the following sections: Initializa-
tion, Interrupt Service Routine, Read Register, Write Register,
Write Descriptor, Data Loopback, and Endpoint 0. The firm-
ware is written in the C language and structured so that most
of it can be reused in any application.

The functions:

* low_level_command_write
* low_level_command_read
* low_level_fifo_write

* low_level_fifo_read

are specific to the FX processor. These functions generate
the proper timing as described in the SX2 Datasheet for asyn-
chronous command and FIFO reads and writes. These func-
tions must be replaced by hardware specific routines for the
particular external master used to control the SX2. It is up to
the system designer to change or replace these func-
tions with their own hardware specific functions which
generate the proper timing as outlined in the SX2
datasheet.

Initialization Code

Initialization

This example creates four 512-byte double buffered end-
points. The FX uses an asynchronous interface and default
SX2 polarities and it enables all the SX2 interrupts. A list of
the registers and values used in this example is shown in
Table 1. The external master can perform other tasks while
waiting for the SX2 to initialize. For more details, consult the
SX2 datasheet. The description of the initialization process
follows.

After any hardware or FX processor initialization, the FX
brings the SX2 out of reset by sending a signal using an FX
general purpose 1/O pin. Then the FX waits until the SX2 is
ready to accept commands; the READY interrupt signals
when the SX2 is ready.

Once the SX2 is ready, the FX turns on LEDO and writes all
of the SX2 register values it needs to setup the SX2 for the
application. Next, the FX writes its descriptor string to the
SX2. Note: if the EEPROM initialization is used, then the
READY interrupt is replaced by the ENUM_OK interrupt, and
the host processor can then write the SX2 registers.

After the SX2 has its descriptor information, it connects and
enumerates. The FX firmware waits for the ENUM_OK inter-
rupt then, after the FX receives the ENUM_OK interrupt, it
turns on LED1 on the FX PCB.

Once the SX2 completes enumeration, the external master
must check and see whether the SX2 enumerated at High or
Full speed. After the FX checks the HSGRANT bit, it adjusts
the IN PACKET LENGTH so that the SX2 knows when to
automatically send packets to the USB host. The FX will turn
on LED?2 if the SX2 enumerated at High speed.

The last initialization task is for the FX to flush all of the SX2
FIFOs.

The initialization process is shown in Figure 1 and Figure 2.

/1WAt a m ni numof 200 m croseconds

SX2 gives us a ready interrupt
//Light LEDO to indicate SX2 is ready

/1 Setup SX2 with all default val ues

1 OUTA = 0; //Reset the SX2 with a FX GPIO
2 EZUSB_Del ay(1);

3 QUTA = 1; /1Bring the SX2 out of reset

4 EZUSB_Del ay(1); /1WAt until SX2 is going

5

6 /1 This code is for self powered devices which do not use the EEPROM to enunerate
7 #i f ndef BUSPOWER

8

9 while (!sx2_ready); [Vt until

10

11 | edX_rdvar = LEDO_ON,

12

13 for (i =0; i < sizeof(regs); i++)

14 {

15 WiteRegister (regs[i], regsvalue[i]);

16 }

Cypress Semiconductor Corporation

Downloaded from AFFOW.Com.

3901 North First Street

408-943-2600
August 1, 2002

SanJose ¢ CA 95134 -

http://www.arrow.com

Revision : August 1, 2002

CY3682 Design Notes

=—2 CYPRESS

17

18 WiteDescriptor(); //Load entire descriptor into SX2

19

20 #endi f

21

22 whil e (!enum ok); /1WAt until the SX2 has enunerated

23

24 | edX_rdvar = LED1_ON, //Light LED1 to indicate that we're enunerated

25

26 if (!(ReadRegister (0x2D) & 0x80)) /] Check if we have not enunerated at H ghspeed

27 {

28 WiteRegi ster (0x0A, 0x20); /1 Set IN packet length to 64

29 WiteRegi ster (0x0B, 0x40);

30 WiteRegister (0x0C, 0x20); /1Set IN packet length to 64

31 WiteRegister (0x0D, 0x40);

32 WiteRegi ster (0xOE, 0x20); /1Set IN packet length to 64

33 WiteRegi ster (0xOF, 0x40);

34 WiteRegister (0x10, 0x20); /1 Set IN packet length to 64

35 WiteRegister (0x11, 0x40);

36 | edX_rdvar = LED2_OFF; //DimLED2 to indicate full speed

37 }

38 el se

39 {

40 | edX rdvar = LED2_ON; /1 Light LED2 to indicate high speed

41 }

42

43

44 WiteRegi ster (0x20, OxFO); /1 Flush the FIFCs to start
Number | Register Value Number | Register Value
0x01 IFCONFIG 0xC8 0x11 EPSPKTLENL 0x00
0x02 FLAGSAB 0x00 0x12 EP2PFH 0x81
0x03 FLAGSCD 0x00 0x13 EP2PFL 0x00
0x04 POLAR 0x00 0x14 EP4PFH 0x81
0x06 EP2CFG 0xA2 0x15 EP4PFL 0x00
0x07 EP4ACFG 0xAO0 0x16 EP6PFH 0x81
0x08 EP6CFG OxE2 0x17 EPG6PFL 0x00
0x09 EP8CFG OxEO 0x18 EP8PFH 0x81
Ox0A EP2PKTLENH | 0x02 0x19 EP8PFL 0x00
0x0B EP2PKTLENL | Ox00 Ox1A EP2ISOINPKTS | 0x01
0x0C EP4PKTLENH | 0x02 0x1B EP4ISOINPKTS | 0x01
0x0D EP4PKTLENL | Ox00 0x1C EP6ISOINPKTS | 0x01
Ox0E EP6PKTLENH | 0x22 0x1D EP8ISOINPKTS | 0x01
OxOF EPG6PKTLENL | Ox00 Ox2E INTENABLE OxFF
0x10 EP8S8PKTLENH | 0x22

Table 1.Initial Register Values From Header File

Downloaded from AFFOW.Com.

http://www.arrow.com
http://www.arrow.com

Revision :

Downloaded from AFFOW.COmM.

August 1, 2002

@

YPRESS

CY3682 Design Notes

{Hnaly-:!r-ll: Wawelornm MACHIME 1 :||:_2|cq. I'.I:||'|1FEIJ {Curc-ﬂ:l ' Run I

Current Sample Feriod =
Wext Sample Feriod =

4,00 us
L DT

RCCUmITale
ur

HRrkrrs

frquisitinn Tima
arfe

12 Jul 2EE 1325026

FFOFT

| |-|— FX Resals S5¥2

GG

F X Wnies Haoister
nitahzabon Va

—

e -

]

FEOR W
- EITI—
INT - —
M2 Asserts READY Intermupt - I
rea 7 ocnf

L1 T

F X Writes Descriptor Table!

[

Figure 1. SX2 Initialization From Reset to Descriptor

lﬂnuluzer][Havelorm HACHINE | J[hcq. I:un1':|l] [Iianl:nl] [Run]

Currenl Sample Period =
Hextl Sample Period =

G000 ns
B0 00 iz

Accumulate
orf

[ia Tay Harkers fcquisition Time
B0 .00 us ort 12 Jul 2002 13125140
— . y = v T T
SH2 Asserts EMNUM_OK Intermupt
FRDE aTy
F d
REQDY v u
INT
| | a— A Haads Intarmupt | |
Fbo 7 any
o0 [o4 | ED

g
FX Heads Registar Dl

1o Check Bus Spead

; e
-

Figure 2. SX2 Initialization Continued

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Revision : August 1, 2002

CYPRESS

CY3682 Design Notes

WriteRegister

The WriteRegister function calls the hardware specific func-
tion low_level_command_write. The first byte write is the 6-bit
address of the register, with the most significant bit set and

WriteRegister Code

45 void WiteRegister (BYTE r, BYTE d) Ilr =

46 {

47 I ow_| evel _conmand_write (0x04, (r | 0x80));

48 I ow_ | evel _command_write (0x04, (d & OxFO) >> 4);
49 I ow_| evel _conmand_wite (0x04, (d & OxOF));

50 }

the next MSB cleared. The next write is the upper nibble of
the data, with the four most significant bits cleared. The last
write is the lower nibble of the data, with the four most signif-
icant bits cleared. The complete Write Register Function Se-
quence is shown in Figure 3.

regi ster nunber, d = data to be witten
//Wite request, bit7 =1,
/I/'Wite data high nibble

//Wite data | ow ni bble

bité = 0

l AnElyzar][HWavielorm MACHINE 1 |lr2|:|:_ |:|:|'I:|'|:|I] [[um:el] { RFur]
Aecumulale current Sample Feriod = 16.00 ns
Mext Sample Periogd = 16.00 ng
] Delay | Harkers | gcogulsltion Time
] | . 457 m= orr 12 Jul 20z 12:29:15
meqIsier Wrie Heguines Three YWrme Strobacs
Fapr sl - AL
f , < I
REALY Vi *
/ L
= | I I
INT
FDiy 7 &Ml
i | i | aF | iy
his Saguence Wntes DxF0 10 Registar 0
E

Figure 3. Write Register Sequence

ReadRegister

The ReadRegister function calls the hardware specific func-
tion low_level command_write and low_level command
_read. The first write is the address of the register, with the

ReadRegister Code

51 BYTE ReadRegi ster (BYTE r)

52 {

53 BYTE d;

54 read_i nterrupt = TRUE;

55 I ow_| evel _conmand_write (0x04, (r | 0x80 |
56 while (read_interrupt)

57 ;

58 d = low_| evel _command_read (0x04);

59 return (d);

60 }

Downloaded from AFFOW.Com.

two most significant bits set. The FX waits until it receives an
interrupt from the SX2 indicating that the data is ready. The
FX then performs a hardware specific read and returns the
data. The complete Read Register Sequence is shown in Fig-
ure 4.

Ilr regi ster nunber

/1d holds read data

0x40)); // Read request, bit7 =1, bit6 =1
//WAit until SX2 has data
/1 Read Dat a

4

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Revision :

August 1, 2002

—
—
—
——— .
—
—
—
—
— —
—

CYPRESS

CY3682 Design Notes

l Analyzer][Havelarm AACHINE 1 |lr=|:|:, |:|:|'I;|'|:|I] [l_’um;el] { Run]
Accumulale Current Sample Feriod = 80,00 ns
Mext Sample Feriod = 80.00 ns
] Delay | Harkers | Acqulsltion Time
5 1. 125 m= orf 12 Jul 2z 153:25:51
Sequience Heads Hegisher Da20. The Value Retumed is D03
F
SLRD
Sk =
RERDY | ll"'
!
LT '?l-l)
————
FDO 7 &l JI. — \
. .
o4/ | ED / \ o3
i _.-'I I'.
Read Reguess Diata s Ready F¥ Raads Da
¥ R

Figure 4. Read Register Sequence

source of the interrupt, some flags are set or toggled to tell

Interrupt Service Routine

The Interrupt Service Routine distinguishes between the two
types of interrupts (requested data ready or asynchronous
interrupt) by examining the read_interrupt flag. If the ISR finds
read_interrupt to be true, it clears the interrupt and does no
further processing. This indicates to the ReadRegister func-
tion that the data is available to read.

If read_interrupt is FALSE, then this interrupt is an asynchro-
nous interrupt that needs to be parsed. Depending on the

the main loop what is happening.

The INTERRUPT pin on the SX2 is connected to a hardware
interrupt source on the FX so that all SX2 interrupts are im-
mediately serviced by the FX. Data may be immediately pro-
cessed in the interrupt service routine or may be stored for
background processing by the main loop.

Every time the INTERRUPT signal is asserted by the SX2,
data is ready to be read, and the FX calls the
low_level_command_read function . This is true whether it is
requested data or an interrupt source.

/11f we are expecting data

/1 Clear flag
//Don't go any further

//Bus Activity

ISR Code

61 void intO_isr (void) interrupt O

62 {

63 BYTE i ;

64

65 if (read_interrupt)

66 {

67 read_i nterrupt = FALSE;

68 return;

69 }

70

71 i = low_level _comrmand_read (0x04);

72 switch (i)

73 {

74 case 0x01: / | Ready
75 sx2_ready = TRUE;

76 br eak;

77 case 0x02:

78 no_activity = Ino_activity;
79 br eak;

Downloaded from AFFOW.Com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Revision : August 1, 2002

CY3682 Design Notes

|
|l|||| |
"y
@
|_<:
U
=y
[y
N
N

80 case 0x04:

81 enum ok = TRUE;

82 br eak;

83 case 0x20: /1 Fl ags
84 got _out _data = TRUE;

85 br eak;

86 case 0x40: / | EPOBuf
87 epObuf _ready = TRUE;

88 br eak;

89 case 0x80: /] Set up
90 got _setup = TRUE;

91 br eak;

92 }

93 }

WriteDescriptor

The WriteDescriptor function uses the hardware specific
function low_level_command_write to write the descriptor
data to the SX2's 500 bytes of descriptor RAM. To load the
descriptor, the WriteDescriptor function does the following:

1. Initiate a Command Address Transfer to register 0x30.
This Command Address Transfer must conform to the
Command Protocol specified in the SX2 Data Sheet—bit
seven of the byte set to one, bit six set to zero, and the
remaining bits zero through five indicating the address of
the descriptor register (i.e., 0x30).

WriteDescriptor Code

94 void WiteDescriptor (void)

/] Enurer ati on conpl ete

2. Perform four Command Data Transfers representing the
LSB and MSB of the word value that defines the length of
the entire descriptor about to be transferred. These Com-
mand Data Transfers and all other data transfers must con-
form to the Command Protocol—-bit seven of each byte set
to zero, bits four through six are don't cares, and bits zero
through three are the lower or upper nibble of the byte
being transferred.

3. Write the descriptor one byte at a time (perform two Com-
mand Data Transfers at a time), until complete.

Note: the Command Address Transfer is only performed
once.

95 {

96 WORD | en,i;

97

98 len = sizeof (descriptor);

99

100 I ow_| evel _conmand_write (0x04, (0x30 | 0x80)); //Wite request, bit7 =1, bité =0

101 | ow_ | evel _command_write (0x04, (len & OxO0F0) >> 4); //Wite length high nibble of |sb

102 | ow | evel _comand _wite (0x04, (len & 0x000F)); //Wite length | ow nibble of Isb

103 low_| evel _conmand_write (0x04, (len & OxFO00) >> 12);//Wite length high nibble of nsb

104 I ow_ | evel _command_write (0x04, (len & OxOF00) >> 8); //Wite length | ow nibble of nsb

105 for (i =0; i <len; i++)

106 {

107 Il ow | evel _conmmand_write (0x04, (descriptor[i] & OxFO) >> 4);//Wite data high nibble

108 | ow | evel _command_write (0x04, (descriptor[i] & OxOF)); //Wite data | ow ni bble

109 }

110}

End po int O example acknowledg_es the vendor request OxAA if it is a ze-
ro-length request. This vendor request could be used by the

This section of code demonstrates how to handle endpoint O
USB traffic. If the SX2 receives a setup request that it cannot
handle automatically, it fires a SETUP interrupt. The FX ISR
sets the got_setup flag when it sees a setup interrupt. This
flag is checked in the main loop. For more information on
SETUP requests, consult the USB Specification.

After reading a SETUP interrupt, the FX clears the flag and
reads the eight bytes of setup data. For more information on
the format of the setup data, consult the USB specification.

After receiving the setup data, the FX determines the direc-
tion, length, and type of request--standard, class, vendor, or
unknown. Not all applications use every request type. This

Downloaded from AFFOW.Com.

host application to indicate application specific status and is
illustrated in Figure 5.

The example also responds to the vendor request OXAB. This
command can have a data stage. If the size is less than 64
bytes, the FX example loops back the data it receives.

The example also uses vendor requests 0xB6 and OxB8 to
signify a short packet, as described in the Data Loopback
section.

All other requests are stalled. To stall a request, the external
master initiates a write request for the SETUP register, 0x32,
and writes any non-zero value to the register.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Revision : August 1, 2002

—
—

—
—
—
—
——
——— S

()

YPRESS

CY3682 Design Notes

To complete endpoint zero data transfers, the epObuf_ready
flag is used. If the SX2 receives a setup request with a
non-zero length, it fires the EPOBUF interrupt. For an IN re-
quest, this interrupt indicates that the EPO buffer is available
to be written to. For an OUT request, this interrupt indicates
that a packet was transferred from the host to the SX2.

The FX firmware first clears the epObuf_ready flag that was
setinthe ISR. Ifit's an IN request, the FX firmware writes data

Setup Code

111 if (got_setup)
112 {
113 got _setup = FALSE;

for (i =0; i <8; i++)

=
[N
(&)]
~~

setup[i] = ReadRegi ster(0x32);

[
[
~

—

setupdirection = setup[0] & 0x80;

setupl ength = setup[6];

setuplength | = setup[7] << 8;

if ((setup[0] & 0x60) == 0)

122 {

[[****xx*x*x%TODO, Handl e or

switch (setup[1])

125 {

case 0x01:
switch(setup[O0])

128 {

case 0x02:

131 {

Downloaded from AFFOW.Com.

to the epObuffer, then writes the byte count to the bytecount
register. If it's an OUT request, the FX firmware reads the
bytecount register to determine how much data to read, then
reads the epObuffer. This example only handles a maximum
transfer of 64 bytes, but could be repeated for larger trans-
fers. The SETUP and EPO interrupts are illustrated in Figure
6.

/1 Recei ved setup interrupt

/1 Clear flag

/'l Read setup data

//Find direction, In =1, Qut =0
/1 CGet length of setup

/1 This is a standard request

keep track of any standard requests

/1l *** Clear Feature

/'l End Poi nt

if(setup[2] == 0)

switch(setup[4] & Ox7F)

{

case 2:
WiteRegister (0x06, O0xA2);
//Clear stall bit in EPxCFG
WiteRegister (0x33, 0);
/1 Ack this request
br eak;

case 4:
WiteRegister (0x07, O0xA0);
//Clear stall bit in EPxCFG
WiteRegister (0x33, 0);
/1 Ack this request
br eak;

case 6:
WiteRegister (0x08, O0xE2);
//Clear stall bit in EPxCFG
WiteRegister (0x33, 0);
/1 Ack this request
br eak;

case 8:
WiteRegi ster (0x09, OxEO);
//Clear stall bit in EPxCFG
WiteRegister (0x33, 0);
/1 Ack this request
br eak;

defaul t:

WiteRegister (0x32,
//Stall the request

OxXFF) ;

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Revision : August 1, 2002

O

CY3682 Design Notes

163 el se

164 WiteRegister (0x32, OxFF); //Stall the request
165 br eak;

166 }

167 br eak;

168 case 0x03: /] *** Set Feature

169 switch(setup[0])

170 {

171 case 0x02: /1 End Poi nt

172 if(setup[2] == 0)

173 {

174 swi tch(setup[4] & Ox7F)

175 {

176 case 2:

177 WiteRegi ster (0x06, O0xA6);
178 //Set stall bit in EPXCFG
179 WiteRegister (0x33, 0);
180 /1 Ack this request

181 br eak;

182 case 4:

183 WiteRegister (0x07, O0xAd4);
184 //Set stall bit in EPXCFG
185 WiteRegister (0x33, 0);
186 /1 Ack this request

187 br eak;

188 case 6:

189 WiteRegi ster (0x08, OxES6);
190 //Set stall bit in EPXCFG
191 WiteRegister (0x33, 0);
192 /1 Ack this request

193 br eak;

194 case 8:

195 WiteRegister (0x09, OxE4);
196 //Set stall bit in EPXCFG
197 WiteRegister (0x33, 0);
198 /1 Ack this request

199 br eak;

200 defaul t:

201 WiteRegister (0x32, OxFF);
202 //Stall the request

203 }

204 }

205 el se

206 WiteRegister (0x32, OxFF); //Stall the request
207 br eak;

208 }

209 br eak;

210 }

211 }

212 else if ((setup[0] & 0x60) == 0x20) /1 This is a class request

213 {

214 [****x*x*x*%*TODO; Handl e or keep track of any class requests

215

216 else if ((setup[0] & 0x60) == 0x40) /1 This is a vendor request

217 {

218 switch (setup[1])

219 {

220 [xx*xxxxxx%xxTODO, Add specific cases that you handl e

221 case OxAA: //We handl e this vendor command if zero length
222 if (!setuplength)

223 WiteRegister (0x33, 0); /1 Ack this request

224 el se

225 WiteRegister (0x32, OxFF); //Stall the request

226 br eak;

Downloaded from AFFOW.Com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Revision : August 1, 2002

CY3682 Design Notes

|
|l|||| |
"y
@
|_<:
U
=y}
[y
N
N

227 case OxAB:

228 if (setuplength > 64) //We want to handl e vendor OxAB
229 WiteRegister (0x32, OxFF); //But only if less than 64

230 el se

231 {

232 whil e (!epObuf_ready); /1WAt for buffer to becone avail able
233 epObuf _ready = FALSE; //Clear the flag

234 /1 This exanpl e | oops back any data that we receive with a OxXAB vendor request
235 /1 Note: this exanple only handl es 64 bytes

236 if (setupdirection) /11n request

237 {

238 for (i = 0; i < setuplength; i++)

239 {

240 WiteRegister(0x31, setupdata[i]);

241 //Wite data to buffer

242 }

243 WiteRegister (0x33, len); /I Wite bytecount
244 /I Note: This routine can be nodified for nultiple packets of 64

245 }

246 el se /1 Qut request

247 {

248 | en = ReadRegi ster (0x33); // Read t he bytecount
249 for (i =0; i <len; i++)

250 {

251 setupdata[i] = ReadRegister (0x31);

252 }

253 /I Note: This routine can be nodified for nultiple packets of 64

254 }

255 }

256 br eak;

257 case 0xB6:

258 ep6short packet = TRUE;

259 //Set a flag so that the main | oop commits what data it has

260 WiteRegister (0x33, 0); /1 Ack this request
261 br eak;

262 case 0xB8:

263 ep8short packet = TRUE;

264 //1Set a flag so that the main | oop conmits what data it has

265 WiteRegister (0x33, 0); /1 Ack this request
266 br eak;

267 defaul t: //We don't recogni ze the request
268 WiteRegister (0x32, OxFF); /1Stall the request
269 br eak;

272 el se /] Reserved or undefined request
273 WiteRegister (0x32, OxFF); //Stall the request

Downloaded from AFFOW.Com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Revision : August 1, 2002

YPRESS

I
g
@

CY3682 Design Notes

[Analyzer][Haveform AACHINE |

| (Acq. contrer] [cancer] [

Rurn]

Accumulale
ofr

Current Sample Feriod =
Mext Sample Feriod =

800, 0 ns
go0.0 ns

i gEec DLy Delay \| Harkers=
20 s BOG .0 us orr

Aogulslition Time
19 Jul 2 104040

RESET F Wyries OwD0 fo Register Dx33 to Ack 1he S#up Heques]
FaDE &
4 i
unid| FREE1 N EE EE O IR T
4 1 00 I 0 0
FOr 7 anf -~
> IR R R
T
E;._;e--'.i- ‘-EK”“-HH__ __ﬂ
hE:I-_Ex-T-:'_.:l -—h__q_h____d_ﬂ_a-’ |
F¥ Reads iha Setup Registar 8 Times for the Complaie Packet
—————
Figure 5. Setup Interrupt and Ack
[H'I!'IJEET][Havieloarm MACHIMNE 1][ﬂn:n:, |:|:||'|I;|'|:|I] [l_’nnpel] { Ruri]
Current Sample Feriod = 8,000 us
orr Mext Sample Period = &.000 us
[geC/Dliv Dellay] | Harkers] Acoulsltion Time
.00 ms B.O0DD ms ore 19 Jul 2 1) =gq:=22
FESET - : - -
FaDE &
o
::“ R SV
FOiy 7 ol |
10 00000 0000000400000

elup Sler

|I::|: TLIF
ril&rupl

-
Fn Heads 2 F¥ Peads G4 Byles of Data aftar
Hyfes of EFD Intermsd 1o Complats the

[ala Phase of & Setm

Tranisfar

Figure 6. Setup and EPO Interrupts and Data

Data Loopback

If there is bus activity, then the FX firmware checks to see if
the SX2 asserted the FLAGS interrupt. This indicates that the
host sent data to one of the OUT endpoints, EP2 or EP4. If
there is OUT data available, the FX firmware reads the
EP24FLAGS register. This register checks the empty status

Downloaded from AFFOW.COmM.

10

of EP2 and EPA4. If one of the endpoints contains data, the FX
firmware reads data out of the endpoint, one byte at a time,
and subsequently writes the bytes into one of the endpoints
used for USB IN data. EP2 data is looped into EP6, and EP4
data is looped into EP8. The FX firmware continues to read
and write data until the endpoint becomes empty.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Revision : August 1, 2002

—
—
—
—
—
—
—
——— S

()

YPRESS

CY3682 Design Notes

This is a very simple data loopback example and can be ex-
ercised using the EZ-USB Control Panel PC program. Bulk
Transfers of data can be sent OUT on EP2 or EP4 and then
requested IN on EP6 or EP8.

The FX firmware also has an example of how to send an IN
data packet which is less than the configured IN packet size.
To do this, use the vendor request 0xB6 or 0xB8 which will
write to the INPKTEND register, thereby committing any data
already in EP6 or EP8 to the USB, regardless of the config-
ured IN packet size.

This can also be exercised using the EZ-USB Control Panel
program. First, send a small amount of data to EP2 (e.g., 30
bytes). Then, request a larger amount of data from EP6 (e.g.,
64 bytes). The SX2 will not send the 30 bytes because the

Data Loopback Code

if (!no_activity)

276 {

| edX rdvar = LED3_ON;
if (got_out_data)

279 {

got _out_data =
tenmp = ReadRegister
if (!(tenp & 0x02))
283 {

do

285 {

291 }

294 }

if ('(tenmp & 0x20))
296 {

do

298 {

304 }

307 }
if (ep6shortpacket)

311 {
ep6short packet

//Wite EP6 packet
/1 Al'ternatively,

Downloaded from AFFOW.Com.

FALSE;

temp =

tenp =

(Ox1E);

if (low_level
/11f there is data to read from FI FO2
while (!low.|evel

configured IN packet size has not been received. To send the
30 bytes, use the Control Panel to send the vendor request
0xB6 to the SX2. The FX firmware will see this request and
commit the short packet.

The FX firmware checks the no_activity flag in its main loop.
This flag is toggled in the ISR. If TRUE, the device has either
been unplugged (self-powered), or suspended (bus-pow-
ered). If the device is bus-powered, then the FX firmware
should put the SX2, then the FX into a low-power mode. An-
other BUSACTIVITY interrupt will wake up the FX. If the de-
vice supports remote wakeup, then the FX can wakeup the
SX2 through a general purpose /O pin instead of waiting for
the host to resume.

/11f we are not suspended or unpl ugged

/1 The FLAGS int tells us we have out data

/| Read EP24 Fl ags Regi ster
/11f EP2 is NOT enpty (has data)

_data_read (0x00, &datal oopback))

data_write (0x02, datal oopback));

//Loop it back into FIFO6

ReadRegi st er

if (low_level
/1lf there is data to read from FI FO4
while (!low_|evel

(Ox1E); //Read EP24 Fl ags Regi ster

while (!(temp & 0x02));
/| Keep readi ng data out of EP2 until it

is enpty
/11f EP4 is NOT enpty (has data)
_data_read (0x01, &datal oopback))

_data_write (0x03, datal oopback));

//Loop it back into FIFC8

ReadRegi st er

= FALSE;
WiteRegi ster (0x20, 0x06);

end bit to | NPKTEND register

the FX hardware coul d strobe the I NPKTEND pin after setting
//the address pins to endpoint 6

11

(Ox1E); [//Read EP24 Fl ags Regi ster

while (!(temp & 0x20));
/1 Keep reading data out of EP4 until it

is enpty

/1 Someti mes we need to send an anpbunt of data < the autoinlength

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Revision : August 1, 2002

=_ = CY3682 Design Notes

318 if (ep8shortpacket)

319 /] Sormetines we need to send an amount of data < the autoinlength

320 {

321 ep8short packet = FALSE;

322 WiteRegister (0x20, 0x08);

323 /I'Wite EP8 packet end bit to | NPKTEND regi ster

324 /1 Alternatively, the FX hardware coul d strobe the | NPKTEND pin after setting
325 /1 the address pins to endpoint 8

326 }

327 }

328 el se /11f we are bus powered, then power down the SX2 and oursel ves

329 {

330 | edX_rdvar = LED3_OFF;

3317// tenmp = ReadRegi ster (0x01); /1 Read the | FCONFI G regi ster

332171/ WiteRegi ster (0x01, temp | 0x04); /1 Set the SX2 standby bit

3337// while (no_activity)

334 //

33517/ sl eep(); /1 Stay asleep until the host resunmes us
336 // }

337 [***xxx%x%%| f the device supports renpote wake-up, then it can
338 //wake up the SX2 instead of waiting for resune

339 }

Conclusion

The SX2 is a powerful, intelligent peripheral chip that is easy
to use and fits in a number of applications. This example
shows standard initialization and data handling for a typical
SX2 application. Most of the non-hardware-specific C code
can be reused in other SX2 projects, making this example an
excellent starting point for SX2 development.

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Downloaded from AFFOW.Com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

