
Revision August 1, 2002

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
August 1, 2002

CY3682 Design Notes

Introduction
The SX2 USB interface works with any standard micropro-
cessor or digital signal processor and adds USB 2.0 support
for any peripheral design. The EZ-USB 3682 SX2 Develop-
ment kit includes a Cypress FX 8051 processor and example
firmware to master the SX2. This document describes the FX
example firmware, fx2sx2. This firmware can be used as a
starting point for development with the SX2 using another
processor as external master.
This example firmware has the following sections: Initializa-
tion, Interrupt Service Routine, Read Register, Write Register,
Write Descriptor, Data Loopback, and Endpoint 0. The firm-
ware is written in the C language and structured so that most
of it can be reused in any application.
The functions:
• low_level_command_write
• low_level_command_read
• low_level_fifo_write
• low_level_fifo_read

are specific to the FX processor. These functions generate
the proper timing as described in the SX2 Datasheet for asyn-
chronous command and FIFO reads and writes. These func-
tions must be replaced by hardware specific routines for the
particular external master used to control the SX2. It is up to
the system designer to change or replace these func-
tions with their own hardware specific functions which
generate the proper timing as outlined in the SX2
datasheet.

Initialization
This example creates four 512-byte double buffered end-
points. The FX uses an asynchronous interface and default
SX2 polarities and it enables all the SX2 interrupts. A list of
the registers and values used in this example is shown in
Table 1. The external master can perform other tasks while
waiting for the SX2 to initialize. For more details, consult the
SX2 datasheet. The description of the initialization process
follows.
After any hardware or FX processor initialization, the FX
brings the SX2 out of reset by sending a signal using an FX
general purpose I/O pin. Then the FX waits until the SX2 is
ready to accept commands; the READY interrupt signals
when the SX2 is ready.
Once the SX2 is ready, the FX turns on LED0 and writes all
of the SX2 register values it needs to setup the SX2 for the
application. Next, the FX writes its descriptor string to the
SX2. Note: if the EEPROM initialization is used, then the
READY interrupt is replaced by the ENUM_OK interrupt, and
the host processor can then write the SX2 registers.
After the SX2 has its descriptor information, it connects and
enumerates. The FX firmware waits for the ENUM_OK inter-
rupt then, after the FX receives the ENUM_OK interrupt, it
turns on LED1 on the FX PCB.
Once the SX2 completes enumeration, the external master
must check and see whether the SX2 enumerated at High or
Full speed. After the FX checks the HSGRANT bit, it adjusts
the IN PACKET LENGTH so that the SX2 knows when to
automatically send packets to the USB host. The FX will turn
on LED2 if the SX2 enumerated at High speed.
The last initialization task is for the FX to flush all of the SX2
FIFOs.
The initialization process is shown in Figure 1 and Figure 2.

Initialization Code
1 OUTA = 0; //Reset the SX2 with a FX GPIO
2 EZUSB_Delay(1); //Wait a minimum of 200 microseconds
3 OUTA = 1; //Bring the SX2 out of reset
4 EZUSB_Delay(1); //Wait until SX2 is going
5
6 //This code is for self powered devices which do not use the EEPROM to enumerate
7 #ifndef BUSPOWER
8
9 while (!sx2_ready); //Wait until SX2 gives us a ready interrupt
10
11 ledX_rdvar = LED0_ON; //Light LED0 to indicate SX2 is ready
12
13 for (i = 0; i < sizeof(regs); i++) //Setup SX2 with all default values
14 {
15 WriteRegister (regs[i], regsvalue[i]);
16 }

Downloaded from Arrow.com.

http://www.arrow.com

CY3682 Design Notes

2

Revision : August 1, 2002

17
18 WriteDescriptor(); //Load entire descriptor into SX2
19
20 #endif
21
22 while (!enum_ok); //Wait until the SX2 has enumerated
23
24 ledX_rdvar = LED1_ON; //Light LED1 to indicate that we're enumerated
25
26 if (!(ReadRegister (0x2D) & 0x80)) //Check if we have not enumerated at Highspeed
27 {
28 WriteRegister (0x0A, 0x20); //Set IN packet length to 64
29 WriteRegister (0x0B, 0x40);
30 WriteRegister (0x0C, 0x20); //Set IN packet length to 64
31 WriteRegister (0x0D, 0x40);
32 WriteRegister (0x0E, 0x20); //Set IN packet length to 64
33 WriteRegister (0x0F, 0x40);
34 WriteRegister (0x10, 0x20); //Set IN packet length to 64
35 WriteRegister (0x11, 0x40);
36 ledX_rdvar = LED2_OFF; //Dim LED2 to indicate full speed
37 }
38 else
39 {
40 ledX_rdvar = LED2_ON; //Light LED2 to indicate high speed
41 }
42
43
44 WriteRegister (0x20, 0xF0); //Flush the FIFOs to start

Table 1.Initial Register Values From Header File

Number Register Value Number Register Value

0x01 IFCONFIG 0xC8 0x11 EP8PKTLENL 0x00

0x02 FLAGSAB 0x00 0x12 EP2PFH 0x81

0x03 FLAGSCD 0x00 0x13 EP2PFL 0x00

0x04 POLAR 0x00 0x14 EP4PFH 0x81

0x06 EP2CFG 0xA2 0x15 EP4PFL 0x00

0x07 EP4CFG 0xA0 0x16 EP6PFH 0x81

0x08 EP6CFG 0xE2 0x17 EP6PFL 0x00

0x09 EP8CFG 0xE0 0x18 EP8PFH 0x81

0x0A EP2PKTLENH 0x02 0x19 EP8PFL 0x00

0x0B EP2PKTLENL 0x00 0x1A EP2ISOINPKTS 0x01

0x0C EP4PKTLENH 0x02 0x1B EP4ISOINPKTS 0x01

0x0D EP4PKTLENL 0x00 0x1C EP6ISOINPKTS 0x01

0x0E EP6PKTLENH 0x22 0x1D EP8ISOINPKTS 0x01

0x0F EP6PKTLENL 0x00 0x2E INTENABLE 0xFF

0x10 EP8PKTLENH 0x22

Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

3

Revision : August 1, 2002

Figure 1. SX2 Initialization From Reset to Descriptor

Figure 2. SX2 Initialization Continued

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

4

Revision : August 1, 2002

WriteRegister
The WriteRegister function calls the hardware specific func-
tion low_level_command_write. The first byte write is the 6-bit
address of the register, with the most significant bit set and

the next MSB cleared. The next write is the upper nibble of
the data, with the four most significant bits cleared. The last
write is the lower nibble of the data, with the four most signif-
icant bits cleared. The complete Write Register Function Se-
quence is shown in Figure 3.

WriteRegister Code
45 void WriteRegister (BYTE r, BYTE d) //r = register number, d = data to be written
46 {
47 low_level_command_write (0x04, (r | 0x80)); //Write request, bit7 = 1, bit6 = 0
48 low_level_command_write (0x04, (d & 0xF0) >> 4); //Write data high nibble
49 low_level_command_write (0x04, (d & 0x0F)); //Write data low nibble
50 }

Figure 3. Write Register Sequence

ReadRegister
The ReadRegister function calls the hardware specific func-
tion low_level_command_write and low_level_command
_read. The first write is the address of the register, with the

two most significant bits set. The FX waits until it receives an
interrupt from the SX2 indicating that the data is ready. The
FX then performs a hardware specific read and returns the
data. The complete Read Register Sequence is shown in Fig-
ure 4.

ReadRegister Code
51 BYTE ReadRegister (BYTE r) //r = register number
52 {
53 BYTE d; //d holds read data
54 read_interrupt = TRUE;
55 low_level_command_write (0x04, (r | 0x80 | 0x40)); //Read request, bit7 = 1, bit6 = 1
56 while (read_interrupt) //Wait until SX2 has data
57 ;
58 d = low_level_command_read (0x04); //Read Data
59 return (d);
60 }

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

5

Revision : August 1, 2002

Figure 4. Read Register Sequence

Interrupt Service Routine
The Interrupt Service Routine distinguishes between the two
types of interrupts (requested data ready or asynchronous
interrupt) by examining the read_interrupt flag. If the ISR finds
read_interrupt to be true, it clears the interrupt and does no
further processing. This indicates to the ReadRegister func-
tion that the data is available to read.
If read_interrupt is FALSE, then this interrupt is an asynchro-
nous interrupt that needs to be parsed. Depending on the

source of the interrupt, some flags are set or toggled to tell
the main loop what is happening.
The INTERRUPT pin on the SX2 is connected to a hardware
interrupt source on the FX so that all SX2 interrupts are im-
mediately serviced by the FX. Data may be immediately pro-
cessed in the interrupt service routine or may be stored for
background processing by the main loop.
Every time the INTERRUPT signal is asserted by the SX2,
data is ready to be read, and the FX calls the
low_level_command_read function . This is true whether it is
requested data or an interrupt source.

ISR Code
61 void int0_isr (void) interrupt 0
62 {
63 BYTE i;
64
65 if (read_interrupt) //If we are expecting data
66 {
67 read_interrupt = FALSE; //Clear flag
68 return; //Don't go any further
69 }
70
71 i = low_level_command_read (0x04);
72 switch (i)
73 {
74 case 0x01: //Ready
75 sx2_ready = TRUE;
76 break;
77 case 0x02: //Bus Activity
78 no_activity = !no_activity;
79 break;

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

6

Revision : August 1, 2002

80 case 0x04: //Enumeration complete
81 enum_ok = TRUE;
82 break;
83 case 0x20: //Flags
84 got_out_data = TRUE;
85 break;
86 case 0x40: //EP0Buf
87 ep0buf_ready = TRUE;
88 break;
89 case 0x80: //Setup
90 got_setup = TRUE;
91 break;
92 }
93 }

WriteDescriptor
The WriteDescriptor function uses the hardware specific
function low_level_command_write to write the descriptor
data to the SX2's 500 bytes of descriptor RAM. To load the
descriptor, the WriteDescriptor function does the following:
1. Initiate a Command Address Transfer to register 0x30.

This Command Address Transfer must conform to the
Command Protocol specified in the SX2 Data Sheet–bit
seven of the byte set to one, bit six set to zero, and the
remaining bits zero through five indicating the address of
the descriptor register (i.e., 0x30).

2. Perform four Command Data Transfers representing the
LSB and MSB of the word value that defines the length of
the entire descriptor about to be transferred. These Com-
mand Data Transfers and all other data transfers must con-
form to the Command Protocol–bit seven of each byte set
to zero, bits four through six are don't cares, and bits zero
through three are the lower or upper nibble of the byte
being transferred.

3. Write the descriptor one byte at a time (perform two Com-
mand Data Transfers at a time), until complete.
Note: the Command Address Transfer is only performed
once.

WriteDescriptor Code
94 void WriteDescriptor (void)
95 {
96 WORD len,i;
97
98 len = sizeof(descriptor);
99
100 low_level_command_write (0x04, (0x30 | 0x80)); //Write request, bit7 = 1, bit6 = 0
101 low_level_command_write (0x04, (len & 0x00F0) >> 4); //Write length high nibble of lsb
102 low_level_command_write (0x04, (len & 0x000F)); //Write length low nibble of lsb
103 low_level_command_write (0x04, (len & 0xF000) >> 12);//Write length high nibble of msb
104 low_level_command_write (0x04, (len & 0x0F00) >> 8); //Write length low nibble of msb
105 for (i = 0; i < len; i++)
106 {
107 low_level_command_write (0x04, (descriptor[i] & 0xF0) >> 4);//Write data high nibble
108 low_level_command_write (0x04, (descriptor[i] & 0x0F)); //Write data low nibble
109 }
110 }

Endpoint 0
This section of code demonstrates how to handle endpoint 0
USB traffic. If the SX2 receives a setup request that it cannot
handle automatically, it fires a SETUP interrupt. The FX ISR
sets the got_setup flag when it sees a setup interrupt. This
flag is checked in the main loop. For more information on
SETUP requests, consult the USB Specification.
After reading a SETUP interrupt, the FX clears the flag and
reads the eight bytes of setup data. For more information on
the format of the setup data, consult the USB specification.
After receiving the setup data, the FX determines the direc-
tion, length, and type of request--standard, class, vendor, or
unknown. Not all applications use every request type. This

example acknowledges the vendor request 0xAA if it is a ze-
ro-length request. This vendor request could be used by the
host application to indicate application specific status and is
illustrated in Figure 5.
The example also responds to the vendor request 0xAB. This
command can have a data stage. If the size is less than 64
bytes, the FX example loops back the data it receives.
The example also uses vendor requests 0xB6 and 0xB8 to
signify a short packet, as described in the Data Loopback
section.
All other requests are stalled. To stall a request, the external
master initiates a write request for the SETUP register, 0x32,
and writes any non-zero value to the register.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

7

Revision : August 1, 2002

To complete endpoint zero data transfers, the ep0buf_ready
flag is used. If the SX2 receives a setup request with a
non-zero length, it fires the EP0BUF interrupt. For an IN re-
quest, this interrupt indicates that the EP0 buffer is available
to be written to. For an OUT request, this interrupt indicates
that a packet was transferred from the host to the SX2.
The FX firmware first clears the ep0buf_ready flag that was
set in the ISR. If it’s an IN request, the FX firmware writes data

to the ep0buffer, then writes the byte count to the bytecount
register. If it’s an OUT request, the FX firmware reads the
bytecount register to determine how much data to read, then
reads the ep0buffer. This example only handles a maximum
transfer of 64 bytes, but could be repeated for larger trans-
fers. The SETUP and EP0 interrupts are illustrated in Figure
6.

Setup Code
111 if (got_setup) //Received setup interrupt
112 {
113 got_setup = FALSE; //Clear flag
114 for (i = 0; i < 8; i++)
115 {
116 setup[i] = ReadRegister(0x32); //Read setup data
117 }
118 setupdirection = setup[0] & 0x80; //Find direction, In = 1, Out = 0
119 setuplength = setup[6]; //Get length of setup
120 setuplength |= setup[7] << 8;
121 if ((setup[0] & 0x60) == 0) //This is a standard request
122 {
123 //********TODO: Handle or keep track of any standard requests
124 switch (setup[1])
125 {
126 case 0x01: // *** Clear Feature
127 switch(setup[0])
128 {
129 case 0x02: // End Point
130 if(setup[2] == 0)
131 {
132 switch(setup[4] & 0x7F)
133 {
134 case 2:
135 WriteRegister (0x06, 0xA2);
136 //Clear stall bit in EPxCFG
137 WriteRegister (0x33, 0);
138 //Ack this request
139 break;
140 case 4:
141 WriteRegister (0x07, 0xA0);
142 //Clear stall bit in EPxCFG
143 WriteRegister (0x33, 0);
144 //Ack this request
145 break;
146 case 6:
147 WriteRegister (0x08, 0xE2);
148 //Clear stall bit in EPxCFG
149 WriteRegister (0x33, 0);
150 //Ack this request
151 break;
152 case 8:
153 WriteRegister (0x09, 0xE0);
154 //Clear stall bit in EPxCFG
155 WriteRegister (0x33, 0);
156 //Ack this request
157 break;
158 default:
159 WriteRegister (0x32, 0xFF);
160 //Stall the request
161 }
162 }

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

8

Revision : August 1, 2002

163 else
164 WriteRegister (0x32, 0xFF); //Stall the request
165 break;
166 }
167 break;
168 case 0x03: // *** Set Feature
169 switch(setup[0])
170 {
171 case 0x02: // End Point
172 if(setup[2] == 0)
173 {
174 switch(setup[4] & 0x7F)
175 {
176 case 2:
177 WriteRegister (0x06, 0xA6);
178 //Set stall bit in EPxCFG
179 WriteRegister (0x33, 0);
180 //Ack this request
181 break;
182 case 4:
183 WriteRegister (0x07, 0xA4);
184 //Set stall bit in EPxCFG
185 WriteRegister (0x33, 0);
186 //Ack this request
187 break;
188 case 6:
189 WriteRegister (0x08, 0xE6);
190 //Set stall bit in EPxCFG
191 WriteRegister (0x33, 0);
192 //Ack this request
193 break;
194 case 8:
195 WriteRegister (0x09, 0xE4);
196 //Set stall bit in EPxCFG
197 WriteRegister (0x33, 0);
198 //Ack this request
199 break;
200 default:
201 WriteRegister (0x32, 0xFF);
202 //Stall the request
203 }
204 }
205 else
206 WriteRegister (0x32, 0xFF); //Stall the request
207 break;
208 }
209 break;
210 }
211 }
212 else if ((setup[0] & 0x60) == 0x20) //This is a class request
213 {
214 //********TODO: Handle or keep track of any class requests
215 }
216 else if ((setup[0] & 0x60) == 0x40) //This is a vendor request
217 {
218 switch (setup[1])
219 {
220 //**********TODO: Add specific cases that you handle
221 case 0xAA: //We handle this vendor command if zero length
222 if (!setuplength)
223 WriteRegister (0x33, 0); //Ack this request
224 else
225 WriteRegister (0x32, 0xFF); //Stall the request
226 break;

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

9

Revision : August 1, 2002

227 case 0xAB:
228 if (setuplength > 64) //We want to handle vendor 0xAB
229 WriteRegister (0x32, 0xFF); //But only if less than 64
230 else
231 {
232 while (!ep0buf_ready); //Wait for buffer to become available
233 ep0buf_ready = FALSE; //Clear the flag
234 //This example loops back any data that we receive with a 0xAB vendor request
235 //Note: this example only handles 64 bytes
236 if (setupdirection) //In request
237 {
238 for (i = 0; i < setuplength; i++)
239 {
240 WriteRegister(0x31, setupdata[i]);
241 //Write data to buffer
242 }
243 WriteRegister (0x33, len); //Write bytecount
244 //Note: This routine can be modified for multiple packets of 64
245 }
246 else //Out request
247 {
248 len = ReadRegister (0x33); //Read the bytecount
249 for (i = 0; i < len; i++)
250 {
251 setupdata[i] = ReadRegister (0x31);
252 }
253 //Note: This routine can be modified for multiple packets of 64
254 }
255 }
256 break;
257 case 0xB6:
258 ep6shortpacket = TRUE;
259 //Set a flag so that the main loop commits what data it has
260 WriteRegister (0x33, 0); //Ack this request
261 break;
262 case 0xB8:
263 ep8shortpacket = TRUE;
264 //Set a flag so that the main loop commits what data it has
265 WriteRegister (0x33, 0); //Ack this request
266 break;
267 default: //We don't recognize the request
268 WriteRegister (0x32, 0xFF); //Stall the request
269 break;
270 }
271 }
272 else //Reserved or undefined request
273 WriteRegister (0x32, 0xFF); //Stall the request
274 }

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

10

Revision : August 1, 2002

Figure 5. Setup Interrupt and Ack

Figure 6. Setup and EP0 Interrupts and Data

Data Loopback
If there is bus activity, then the FX firmware checks to see if
the SX2 asserted the FLAGS interrupt. This indicates that the
host sent data to one of the OUT endpoints, EP2 or EP4. If
there is OUT data available, the FX firmware reads the
EP24FLAGS register. This register checks the empty status

of EP2 and EP4. If one of the endpoints contains data, the FX
firmware reads data out of the endpoint, one byte at a time,
and subsequently writes the bytes into one of the endpoints
used for USB IN data. EP2 data is looped into EP6, and EP4
data is looped into EP8. The FX firmware continues to read
and write data until the endpoint becomes empty.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

11

Revision : August 1, 2002

This is a very simple data loopback example and can be ex-
ercised using the EZ-USB Control Panel PC program. Bulk
Transfers of data can be sent OUT on EP2 or EP4 and then
requested IN on EP6 or EP8.
The FX firmware also has an example of how to send an IN
data packet which is less than the configured IN packet size.
To do this, use the vendor request 0xB6 or 0xB8 which will
write to the INPKTEND register, thereby committing any data
already in EP6 or EP8 to the USB, regardless of the config-
ured IN packet size.
This can also be exercised using the EZ-USB Control Panel
program. First, send a small amount of data to EP2 (e.g., 30
bytes). Then, request a larger amount of data from EP6 (e.g.,
64 bytes). The SX2 will not send the 30 bytes because the

configured IN packet size has not been received. To send the
30 bytes, use the Control Panel to send the vendor request
0xB6 to the SX2. The FX firmware will see this request and
commit the short packet.
The FX firmware checks the no_activity flag in its main loop.
This flag is toggled in the ISR. If TRUE, the device has either
been unplugged (self-powered), or suspended (bus-pow-
ered). If the device is bus-powered, then the FX firmware
should put the SX2, then the FX into a low-power mode. An-
other BUSACTIVITY interrupt will wake up the FX. If the de-
vice supports remote wakeup, then the FX can wakeup the
SX2 through a general purpose I/O pin instead of waiting for
the host to resume.

Data Loopback Code
275 if (!no_activity) //If we are not suspended or unplugged
276 {
277 ledX_rdvar = LED3_ON;
278 if (got_out_data) //The FLAGS int tells us we have out data
279 {
280 got_out_data = FALSE;
281 temp = ReadRegister (0x1E); //Read EP24 Flags Register
282 if (!(temp & 0x02)) //If EP2 is NOT empty (has data)
283 {
284 do
285 {
286 if (low_level_data_read (0x00, &dataloopback))
287 //If there is data to read from FIFO2
288 while (!low_level_data_write (0x02, dataloopback));
289 //Loop it back into FIFO6
290 temp = ReadRegister (0x1E); //Read EP24 Flags Register
291 }
292 while (!(temp & 0x02));
293 //Keep reading data out of EP2 until it is empty
294 }
295 if (!(temp & 0x20)) //If EP4 is NOT empty (has data)
296 {
297 do
298 {
299 if (low_level_data_read (0x01, &dataloopback))
300 //If there is data to read from FIFO4
301 while (!low_level_data_write (0x03, dataloopback));
302 //Loop it back into FIFO8
303 temp = ReadRegister (0x1E); //Read EP24 Flags Register
304 }
305 while (!(temp & 0x20));
306 //Keep reading data out of EP4 until it is empty
307 }
308 }
309 if (ep6shortpacket)
310 //Sometimes we need to send an amount of data < the autoinlength
311 {
312 ep6shortpacket = FALSE;
313 WriteRegister (0x20, 0x06);
314 //Write EP6 packet end bit to INPKTEND register
315 //Alternatively, the FX hardware could strobe the INPKTEND pin after setting
316 //the address pins to endpoint 6
317 }

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

CY3682 Design Notes

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Revision : August 1, 2002

318 if (ep8shortpacket)
319 //Sometimes we need to send an amount of data < the autoinlength
320 {
321 ep8shortpacket = FALSE;
322 WriteRegister (0x20, 0x08);
323 //Write EP8 packet end bit to INPKTEND register
324 //Alternatively, the FX hardware could strobe the INPKTEND pin after setting
325 // the address pins to endpoint 8
326 }
327 }
328 else //If we are bus powered, then power down the SX2 and ourselves
329 {
330 ledX_rdvar = LED3_OFF;
331 // temp = ReadRegister (0x01); //Read the IFCONFIG register
332 // WriteRegister (0x01, temp | 0x04); //Set the SX2 standby bit
333 // while (no_activity)
334 // {
335 // sleep(); //Stay asleep until the host resumes us
336 // }
337 //*********If the device supports remote wake-up, then it can
338 //wake up the SX2 instead of waiting for resume
339 }

Conclusion
The SX2 is a powerful, intelligent peripheral chip that is easy
to use and fits in a number of applications. This example
shows standard initialization and data handling for a typical
SX2 application. Most of the non-hardware-specific C code
can be reused in other SX2 projects, making this example an
excellent starting point for SX2 development.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

