

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

00351 Low Power Hex D-Type Flip-Flop

FAIRCHILD

SEMICONDUCTOR

100351 Low Power Hex D-Type Flip-Flop

General Description

The 100351 contains six D-type edge-triggered, master/ slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP_a and CP_b) and common Master Reset (MR) input. Data enters a master when both CP_a and CP_b are LOW and transfers to the slave when CP_a and CP_b (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have 50 k Ω pull-down resistors.

Features

- 40% power reduction of the 100151
- 2000V ESD protection
- Pin/function compatible with 100151
- Voltage compensated operating range: -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
100351SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100351PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100351QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100351QI	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Devises also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 2000 Fairchild Semiconductor Corporation DS009885

100351

Truth Tables (Each Flip-flop)

Synchronous Operation

	Outputs			
D _n	CPa	CPb	MR	Q _n (t+1)
L	γ	L	L	L
Н	~	L	L	н
L	L	~	L	L
н	L	~	L	н
Х	Н	~	L	Q _n (t)
Х	~	Н	L	Q _n (t)
х	L	L	L	Q _n (t)

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

t = Time before CP positive transition

t+1 = Time after CP positive transition

∠ = LOW-to-HIGH transition

Logic Diagram

Asynchronous Operation

CPb

Х

MR

Н

Outputs

Q_n(t+1)

L

Inputs

CPa

Х

Dn

Х

Absolute Maximum Ratings(Note 1)

Storage Temperature (T_{STG}) Maximum Junction Temperature (T_J) V_{EE} Pin Potential to Ground Pin Input Voltage (DC) Output Current (DC Output HIGH) ESD (Note 2) $\begin{array}{l} -65^{\circ}\text{C to } +150^{\circ}\text{C} \\ +150^{\circ}\text{C} \\ -7.0\text{V to } +0.5\text{V} \\ \text{V}_{\text{EE}} \text{ to } +0.5\text{V} \\ -50 \text{ mA} \\ \geq 2000\text{V} \end{array}$

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	$0^{\circ}C$ to $+85^{\circ}C$
Industrial	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage (VFF)	-5.7V to -4.2V

00351

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

$\mathsf{V}_{EE}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{CC}=\mathsf{V}_{CCA}=GND,\,\mathsf{T}_{C}=0^{\circ}\mathsf{C}$ to +85°C Symbol Parameter Min Max Units Conditions Тур Output HIGH Voltage -1025 -955 -870 Vон V_{IN} =V_{IH} (Max) Loading with m٧ Output LOW Voltage -1830 -1705 -1620 or V_{IL} (Min) 50Ω to -2.0VV_{OL} Output HIGH Voltage -1035 $V_{IN} = V_{IH}$ (Min) Loading with VOHC m٧ VOLC Output LOW Voltage -1610 or V_{IL} (Max) 50Ω to -2.0V-1165 Guaranteed HIGH Signal for All Inputs Input HIGH Voltage -870 mV VIH Input LOW Voltage -1830 -1475 Guaranteed LOW Signal for All Inputs VIL m٧ Input LOW Current 0.50 $V_{IN} = V_{IL}$ (Min) μΑ $I_{\parallel L}$ $I_{\rm H}$ Input HIGH Current MR 350 D₀-D₅ 240 μA $V_{IN} = V_{IH}$ (Max) CP_a, CP_b 350 Power Supply Current -129 -62 mΑ Inputs OPEN IFF

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

Symbol	Parameter	T _C =	$T_C = 0^{\circ}C$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Conditions
Cymber		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	2.00	0.80	2.0	0.00	2 10	nc	Figuros 1, 3
t _{PHL}	CP _a , CP _b to Output	0.80	2.00	0.60	2.0	0.50	2.10	115	Figures 1, 5
t _{PLH}	Propagation Delay	1 10	2.30	1 10	2 30	1 20	2.40	ns	Figures 1, 4
t _{PHL}	MR to Output	1.10		1.10	2.50	1.20	2.40		
t _{TLH}	Transition Time	0.35	1.20	0.25	1 20	0.25	1 20	ns	Figuros 1, 3
t _{THL}	20% to 80%, 80% to 20%	0.33		0.55	1.20	0.55	1.20		riguies i, s
t _S	Setup Time								
	D ₀ -D ₅	0.40		0.40		0.40		ns	Figure 5
	MR (Release Time)	1.60		1.60		1.60			Figure 4
t _H	Hold Time	0.80		0.00		0.80		nc	Figure 5
	D ₀ -D ₅	0.80		0.00		0.00		115	
t _{PW} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 3, 4
	CP _a , CP _b , MR	2.00		2.00		2.00			

100351

Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics

Vr	- = -4.2V to -5	5.7V. Vcc = '	$V_{CCA} = GND$

0	Parameter	T _C =	= 0°C	T _C = -	+25°C	T _C = +85°C			
Symbol		Min	Max	Min	Max	Min	Max	Units	conditions
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.90	1.90	0.90	1 90	0.00	1.00		Figures 1, 2
t _{PHL}	CP _a , CP _b to Output	0.00	.80 1.80	0.80	1.00	0.90	1.90	115	Figures 1, 5
t _{PLH}	Propagation Delay	1 10	2 10	1 10	2 10	1 20	2 20	200	Figuros 1 4
t _{PHL}	MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	115	rigules 1, 4
t _{TLH}	Transition Time	0.45	1 70	0.45	1.60	0.45	1 70	ne	Figures 1 3
t _{THL}	20% to 80%, 80% to 20%	0.45	1.70	0.45	1.00	0.45	1.70	113	riguies i, s
t _S	Setup Time								
	D ₀ -D ₅	0.30		0.30		0.30		ns	Figure 5
	MR (Release Time)	1.50		1.50		1.50			Figure 4
t _H	Hold Time	0.80		0.80		0.80		ne	Figure 5
	D ₀ -D ₅	0.00		0.00		0.00		113	i igure o
t _{PW} (H)	Pulse Width HIGH	2.00		2.00		2.00		ne	Figures 3 4
	CP _a , CP _b , MR	2.00		2.00		2.00		113	riguies 5, 4
toshl	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		220		220		220	ps	(Note 4)
	Clock to Output Path								
toslh	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		210		210		210	ps	(Note 4)
	Clock to Output Path								
t _{ost}	Maximum Skew Opposite Edge								PLCC only
	Output-to-Output Variation		240		240		240	ps	(Note 4)
	Clock to Output Path								
t _{PS}	Maximum Skew								PLCC only
	Pin (Signal) Transition Variation		230		230		230	ps	(Note 4)
	Clock to Output Path								

Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

PLCC DC Electrical Characteristics

V_{EE} =-4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = 0°C to +85°C (Note 5)

Symbol	Parameter	T _C = -	–40°C	$T_C = 0^\circ \text{ to } +85^\circ C$		Unite	Conditions		
Gymbol	i arameter	Min	Max	Min	Max	Onits			
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	m\/	V _{IN} =V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mv	or V _{IL} (Min)	50Ω to –2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		m\/	$V_{IN} = V_{IH}$ (Min)	Loading with	
V _{OLC}	Output LOW Voltage		-1565		-1610	mv	or V _{IL} (Max)	50Ω to –2.0V	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal		
							for All Inputs		
VIL	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal		
							for All Inputs		
IIL	Input LOW Current	0.50		0.50		μA	$V_{IN} = V_{IL}$ (Min)		
IIH	Input HIGH Current								
	MR		350		350		V _{IN} = V _{IH} (Max)		
	D ₀ -D ₅		240		240	μΑ			
	CP _a , CP _b		350		350				
I _{EE}	Power Supply Current	-129	-62	-129	-62	mA	Inputs OPEN		

Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	–40°C	$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Unito	Conditions
Symbol		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	1 90	0.90	1.90	0.00	1.00		Figuros 1, 2
t _{PHL}	CP _a , CP _b to Output	0.80	1.80	0.80	1.60	0.90	1.90	ns	Figures 1, 3
t _{PLH}	Propagation Delay	1 10	2.10	1 10	2.10	1 20	2.20		Figures 1 4
t _{PHL}	MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	115	rigules 1, 4
t _{TLH}	Transition Time	0.45	1 70	0.45	1.60	0.45	1 70		Figuros 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.45	1.70	0.45	1.00	0.45	1.70	115	Figures 1, 5
t _S	Setup Time								
	D ₀ -D ₅	0.60		0.30		0.30		ns	Figure 5
	MR (Release Time)	2.20		1.50		1.50			Figure 4
t _H	Hold Time	0.00		0.00		0.00			Figure F
	D ₀ -D ₅	0.60		0.90		0.90		ns	Figure 5
t _{PW} (H)	Pulse Width HIGH	2.00		2.00		0.00			Figures 2, 4
	CP ₂ , CP ₅ , MR	2.00		2.00		∠.00		ns	Figures 3, 4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.