
BOURNS®

- Sensitive Gate Triacs
- 4 A RMS
- Glass Passivated Wafer
- 400 V to 700 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	TIC206D		400	
Repetitive peak off-state voltage (see Note 1)	TIC206M	V _{DRM}	600	V
	TIC206S		700	
Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note	T(RMS)	4	Α	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			25	Α
Peak gate current	I _{GM}	±0.2	Α	
Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤	P _{GM}	1.3	W	
Average gate power dissipation at (or below) 85°C case temperature (see Note 4)			0.3	W
Operating case temperature range			-40 to +110	°C
Storage temperature range			-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds	T _L	230	°C	

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 160 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS			MIN	TYP	MAX	UNIT		
I _{DRM}	Repetitive peak off-state current	$V_D = \text{rated } V_{DRM}$	I _G = 0	T _C = 110°C			±1	mA
I _{GT}		$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.9	5	
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-2.2	-5	mA
	current $V_{\text{supply}} = -1$	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-1.8	-5	IIIA
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \ \mu s$		2.4	10	

† All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

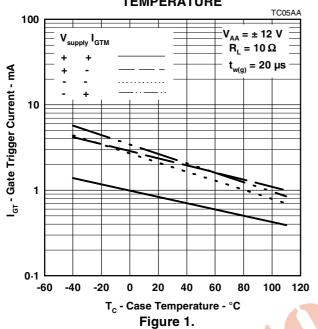
PARAMETER TEST CONDITIONS			MIN	TYP	MAX	UNIT		
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$ $R_L = 10 \Omega$	t _{p(g)} > 20 μs t _{p(g)} > 20 μs		0.7 -0.7	2 -2	
V _{GT}	voltage	V _{supply} = -12 V†	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.7	-2	V
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		0.7	2	
V_{T}	On-state voltage	$I_T = \pm 4.2 \text{ A}$	$I_G = 50 \text{ mA}$	(see Note 5)		±1.4	±2.2	V
I _H	Holding current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$I_G = 0$	Init' $I_{TM} = 100 \text{ mA}$		1.5	15	mA
		$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$		-1.3	-15	ША
IL	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$	(see Note 6)				30 -30	mA
dv/dt	Critical rate of rise of off-state voltage	$V_{DRM} = Rated V_{DRM}$	I _G = 0	T _C = 110°C		±20		V/µs
dv/dt _(c)	Critical rise of commutation voltage	$V_{DRM} = Rated V_{DRM}$	I _{TRM} = ±4.2 A	T _C = 85°C	±1	±3		V/µs

[†] All voltages are with respect to Main Terminal 1.

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

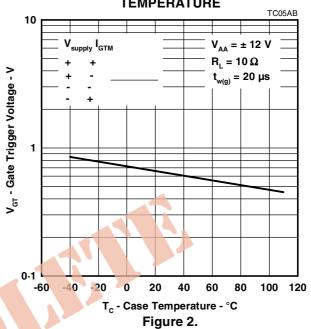
6. The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

thermal characteristics

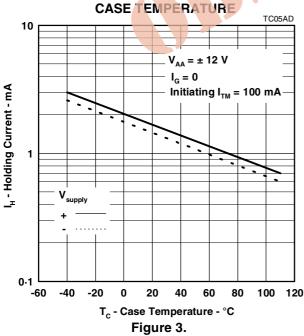

PARAMETER				MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			7.8	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

BOURNS®

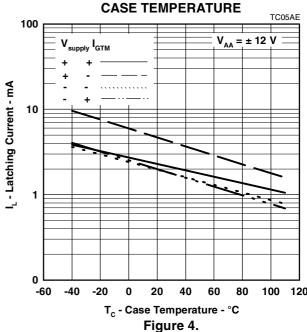
TYPICAL CHARACTERISTICS


GATE TRIGGER CURRENT vs

TEMPERATURE



GATE TRIGGER VOLTAGE


TEMPERATURE

HOLDING CURRENT

LATCHING CURRENT vs

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.