Precision Rail-to-Rail Input and Output Op Amps

feATURES

- Rail-to-Rail Input and Output
- $90 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$ for $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}
- High Common Mode Rejection Ratio: 97dB Min
- C-Load ${ }^{\text {TM }}$ Stable Version (LT1219)
- High AvoL: $500 \mathrm{~V} / \mathrm{mV}$ Minimum Driving $10 \mathrm{k} \Omega$ Load
- Wide Supply Range:

2 V to $\pm 15 \mathrm{~V}$ (LT1218/LT1219)
2 V to $\pm 5 \mathrm{~V}$ (LT1218L/LT1219L)

- Shutdown Mode: $I_{S}<30 \mu \mathrm{~A}$
- Low Supply Current: $420 \mu \mathrm{~A}$ Max
- Low Input Bias Current: 18nA Typical
- 300kHz Gain-Bandwidth Product (LT1218)
- Slew Rate: 0.10V/ $\mu \mathrm{s}$ (LT1218)

APPLICATIONS

- Driving A/D Converters
- Test Equipment Amplifiers
- MUX Amplifiers
$\overline{\boldsymbol{\Sigma}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$
C-Load is a trademark of Linear Technology Corporation.

DESCRIPTIOn

The LT ${ }^{\text {® }} 1218 /$ LT1219 are bipolar op amps which combine rail-to-rail input and output operation with precision specifications. Unlike other rail-to-rail amplifiers, the LT1218/ LT1219's input offset voltage is a low $90 \mu \mathrm{~V}$ across the entire rail-to-rail input range, not just a portion of it. Using a patented technique, both input stages of the LT1218/ LT1219 are trimmed: one at the negative supply and the other at the positive supply. The resulting common mode rejection of 97 dB minimum is much better than other rail-to-rail input op amps. A minimum open-loop gain of $500 \mathrm{~V} / \mathrm{mV}$ into a 10 k load virtually eliminates all gain error.
The LT1218 has conventional compensation which assures stability for capacitive loads of 1000 pF or less. The LT1219 has compensation that requires the use of a $0.1 \mu \mathrm{~F}$ output capacitor, which improves the amplifier's supply rejection and reduces output impedance at high frequencies. The output capacitor's filtering action also reduces high frequency noise, which is beneficial when driving A/D converters.

High and low voltage versions of the devices are offered. Operation is specified for $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies for the LT1218L/LT1219L and $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ for the LT1218/ LT1219.

TYPICAL APPLICATION

Voltage Follower Input to Output Error

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION
Supply Voltage
LT1218/LT1219 $\pm 18 \mathrm{~V}$
LT1218L/LT1219L .. $\pm 8 \mathrm{~V}$
Input Current .. $\pm 15 \mathrm{~mA}$ Output Short-Circuit Duration (Note 1)Continuous Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Specified Temperature Range (Note 3) $\ldots-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Junction Temperature $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

TOP VIEW	ORDER PART NUMBER
	LT1218CN8
$\mathrm{V}_{\text {OS }}$ TRIM 1 1-8 $\mathrm{V}_{\text {OS }}$ TRIM	LT1218CS8
$-\mathrm{mm}{ }^{2}$	LT1218LCN8
+IN 3	LT1218LCS8
$\mathrm{V}^{-} 4$	LT1219CN8
N8 PACKAGE S8 PACKAGE	LT1219CS8
8-LEAD PDIP 8-LEAD PLASTIC S0	LT1219LCN8
$\begin{aligned} & \mathrm{T}_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=130^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{NB}) \\ & \mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=190^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~S} 8) \end{aligned}$	LT1219LCS8
	S8 PART MARKING
	12181219
	1218L 1219L

Consult factory for Industrial and Military grades.

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{C M}=\mathrm{V}_{0}=$ half supply, $\mathrm{V}_{\overline{S H D N}}=\mathrm{V}^{+}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		15	70	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	-70	$\begin{array}{r} \hline 30 \\ -18 \\ \hline \end{array}$	70	nA $n A$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		50	140	nA
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 18 \end{aligned}$	nA $n A$
$\Delta \mathrm{l}_{0}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		5	18	nA
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$		33		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$		0.09		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=50 \mathrm{mV} \text { to } 4.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=50 \mathrm{mV} \text { to } 2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{gathered} 1000 \\ 750 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & V_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\begin{aligned} & 97 \\ & 92 \end{aligned}$	$\begin{aligned} & 110 \\ & 106 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.3 \mathrm{~V}$ to 12V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	90	100		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\mathrm{SINK}}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 4 \\ 45 \\ 120 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 90 \\ 240 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & V^{+}-0.012 \\ & V^{+}-0.130 \\ & V^{+}-0.400 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-0.003 \\ & \mathrm{~V}^{+}-0.065 \\ & \mathrm{~V}^{+}-0.210 \end{aligned}$		V V V
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 4 \end{aligned}$	$\begin{gathered} 10 \\ 7 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Is	Supply Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 370 \\ & 370 \end{aligned}$	$\begin{aligned} & 420 \\ & 410 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Positive Supply Current, SHDN	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{\overline{S H D N}}=0 \mathrm{~V} \\ & V_{S}=3 V, V_{\overline{S H D N}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 9 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=$ half supply, $\mathrm{V}_{\overline{S H D N}}=\mathrm{V}^{+}$, unless otherwise noted.

SYMBOL	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
SR	Slew Rate	(LT1218/LT1218L)	$A_{V}=-1$		0.10		V / us
		(LT1219/LT1219L)	$A_{V}=-1$		0.05		V/ $/ \mathrm{s}$
GBW	Gain Bandwidth Product (LT1218/LT1218L) (LT1219/LT1219L)						
			$A_{V}=1000$		0.30		MHz
			$A_{V}=1000$		0.15		MHz

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=$ half supply, $\mathrm{V}_{\overline{S H D N}}=\mathrm{V}^{+}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & \hline 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Drift	(Note 2)	\bullet		1	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		25	80	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\mathrm{V}^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\bullet \bullet$	-75	$\begin{gathered} 30 \\ -18 \\ \hline \end{gathered}$	75	nA nA
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		50	150	nA
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	nA nA
$\overline{\Delta l}^{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}	\bullet		5	25	nA
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=50 \mathrm{mV} \text { to } 4.8 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=50 \mathrm{mV} \text { to } 2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 250 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} 1000 \\ 750 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet	$\begin{aligned} & 96 \\ & 91 \end{aligned}$	$\begin{aligned} & 104 \\ & 106 \end{aligned}$		dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.3 \mathrm{~V}$ to 12V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	\bullet	88	100		dB
VOL	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\mathrm{SINK}}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=2.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} \hline 4 \\ 45 \\ 130 \end{gathered}$	$\begin{gathered} \hline 14 \\ 100 \\ 290 \end{gathered}$	mV mV mV
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=2.5 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & \hline V^{+}-0.014 \\ & V^{+}-0.150 \\ & V^{+}-0.480 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-0.004 \\ & \mathrm{~V}^{+}-0.075 \\ & \mathrm{~V}^{+}-0.240 \\ & \hline \end{aligned}$		V V V
$I_{\text {SC }}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 6 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Is	Supply Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 370 \\ & 370 \end{aligned}$	$\begin{aligned} & 485 \\ & 475 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Positive Supply Current, SHDN	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{\overline{S H D N}}=0 \mathrm{~V} \\ & V_{S}=3 V, V_{\overline{S H D N}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	$\bullet \bullet$		$\begin{aligned} & \hline 9 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=$ half supply, $\mathrm{V}_{\overline{S H D N}}=\mathrm{V}^{+}$, unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+}-0.15 \\ & V_{C M}=V^{-}+0.15 \end{aligned}$	\bullet			$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Drift	(Note 2)	\bullet		1	4	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet		30	105	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.15 \\ & V_{C M}=V^{-}+0.15 \end{aligned}$	\bullet	-80		80	nA
$\Delta{ }^{\text {B }}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet			160	nA
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.15 \\ & V_{C M}=V^{-}+0.15 \end{aligned}$	\bullet			$\begin{aligned} & 40 \\ & 40 \end{aligned}$	nA nA
$\triangle{ }^{\text {U }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet			40	nA

3

ELECTRICAL CHARACTERISTICS

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=$ half supply, $\mathrm{V}_{\overline{S H D N}}=\mathrm{V}^{+}$, unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=50 \mathrm{mV} \text { to } 4.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=50 \mathrm{mV} \text { to } 2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 V, V_{C M}=V^{+}-0.15 \text { to } V^{-}+0.15 \\ & V_{S}=3 V, V_{C M}=V^{+}-0.15 \text { to } V^{-}+0.15 \end{aligned}$	\bullet	$\begin{aligned} & \hline 93 \\ & 88 \end{aligned}$	$\begin{aligned} & 102 \\ & 100 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.3 \mathrm{~V}$ to 12V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	\bullet	86	100		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\mathrm{SINK}}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} \hline 5 \\ 50 \\ 130 \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ 105 \\ 300 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=2.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-0.015 \\ & \mathrm{~V}^{+}-0.160 \\ & \mathrm{~V}^{+}-0.500 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}^{+}-0.004 \\ & \mathrm{~V}^{+}-0.070 \\ & \mathrm{~V}^{+}-0.250 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Is	Supply Current	$\begin{aligned} & \hline V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 410 \\ & 400 \end{aligned}$	$\begin{aligned} & \hline 505 \\ & 495 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	Positive Supply Current, SHDN	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{\overline{S H D N}}=0 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

LT1218L/LT1219L only; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		20	70	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	-70	$\begin{gathered} \hline 30 \\ -18 \end{gathered}$	70	nA nA
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		50	140	nA
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	nA nA
$\triangle{ }^{\text {a }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		5	18	nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{0}=-4.7 \mathrm{~V} \text { to } 4.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-4.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{aligned} & 500 \\ & 300 \end{aligned}$	$\begin{aligned} & 2800 \\ & 1300 \end{aligned}$		V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	103	114		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=5 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V}^{-}+0.004 \\ & \mathrm{~V}^{-}+0.045 \\ & \mathrm{~V}^{-}+0.180 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline V^{-}+0.012 \\ & V^{-}+0.090 \\ & V^{-}+0.525 \end{aligned}$	V
V_{OH}	Output Voltage Swing HIGH	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SOURCE }}=5 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}^{+}-0.012 \\ & \mathrm{~V}^{+}-0.130 \\ & \mathrm{~V}^{+}-0.800 \end{aligned}$	$\begin{aligned} & \hline V^{+}-0.003 \\ & V^{+}-0.065 \\ & V^{+}-0.350 \\ & \hline \end{aligned}$		V
ISC	Short-Circuit Current		6	12		mA
Is	Supply Current			400	430	$\mu \mathrm{A}$
	Positive Supply Current, SHDN	$\mathrm{V}_{\overline{\text { SHDN }}}=0 \mathrm{~V}$		10	40	$\mu \mathrm{A}$
SR	Slew Rate (LT1218/LT1218L) (LT1219/LT1219L)	$\begin{aligned} & A_{V}=-1, R_{L}=\text { Open, } V_{0}= \pm 3.5 \mathrm{~V} \\ & A_{V}=-1, R_{L}=\text { Open, } V_{0}= \pm 3.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
GBW	Gain-Bandwidth Product (LT1218/LT1218L) (LT1219/LT1219L)	$\begin{aligned} & A_{V}=1000 \\ & A_{V}=1000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.15 \\ & \hline \end{aligned}$		MHz MHz

ELECTRICAL CHARACTERISTICS

LT1218L/LT1219L only; $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		30	90	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet	-75	$\begin{gathered} 30 \\ -18 \end{gathered}$	75	nA $n A$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		50	150	nA
los	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	nA nA
$\triangle{ }^{\text {LOS }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		5	20	nA
Avol	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{0}=-4.7 \mathrm{~V} \text { to } 4.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-4.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 375 \\ & 275 \end{aligned}$	$\begin{aligned} & 2800 \\ & 1300 \end{aligned}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	100	110		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=5 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & \hline V^{-}+0.004 \\ & V^{-}+0.045 \\ & V^{-}+0.200 \end{aligned}$	$\begin{aligned} & \hline V^{-}+0.014 \\ & V^{-}+0.100 \\ & V^{-}+0.580 \end{aligned}$	V V V
$\overline{\mathrm{V}} \mathrm{OH}$	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & \hline \mathrm{V}^{+}-0.01 \\ & \mathrm{~V}^{+}-0.15 \\ & \mathrm{~V}^{+}-0.92 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}^{+}-0.004 \\ & \mathrm{~V}^{+}-0.075 \\ & \mathrm{~V}^{+}-0.450 \\ & \hline \end{aligned}$		V V V
ISC	Short-Circuit Current		\bullet	5	10		mA
Is	Supply Current		\bullet		400	495	$\mu \mathrm{A}$
	Positive Supply Current, SHDN	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$	\bullet		11	54	$\mu \mathrm{A}$

LT1218L, LT1219L only; $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{OV}, \mathrm{V}_{0}=\mathbf{O V}, \mathrm{V}_{\overline{S H D N}}=5 \mathrm{~V}$, unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+}-0.15 \\ & V_{C M}=V^{-}+0.15 \end{aligned}$			$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet		35	120	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.15 \\ & V_{C M}=V^{-}+0.15 \end{aligned}$		-80		80	nA
$\Delta{ }^{\text {B }}$	Input Bias Current	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet			160	nA
IOS	Input Offset Current Shift	$\begin{aligned} & V_{C M}=V^{+}-0.15 \\ & V_{C M}=V^{-}+0.15 \end{aligned}$	\bullet			$\begin{aligned} & 40 \\ & 40 \end{aligned}$	nA nA
$\triangle{ }^{\text {U }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet			40	nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{0}=-4.7 \mathrm{~V} \text { to } 4.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-4.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{gathered} 2000 \\ 600 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet	98	109		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & \hline V^{-}+0.005 \\ & V^{-}+0.050 \\ & V^{-}+0.200 \end{aligned}$	$\begin{aligned} & V^{-}+0.015 \\ & V^{-}+0.105 \\ & V^{-}+0.620 \end{aligned}$	V V V
$\mathrm{V}_{\text {OH }}$	Output Voltage Swing HIGH	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SOURCE }}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & V^{+}-0.004 \\ & V^{+}-0.070 \\ & V^{+}-0.400 \end{aligned}$		V
ISC	Short-Circuit Current		\bullet	5	10		mA
Is	Supply Current		\bullet		420	525	$\mu \mathrm{A}$
	Positive Supply Current, SHDN	$\mathrm{V}_{\overline{\text { SHDN }}}=0 \mathrm{~V}$	\bullet		18	60	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

LT1218/LT1219 only; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=15 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		30	70	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	-70	$\begin{gathered} \hline 30 \\ -18 \end{gathered}$	70	nA nA
Δl_{B}	Input Bias Current	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		50	140	nA
los	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	nA nA
$\triangle{ }^{\text {U }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		5	18	nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{0}=-14.7 \mathrm{~V} \text { to } 14.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{gathered} 1000 \\ 500 \end{gathered}$	$\begin{aligned} & 4000 \\ & 2000 \end{aligned}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}	113	120		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	100	110		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SINK }}=0.5 \mathrm{~mA} \\ \mathrm{I}_{\text {SINK }}=5 \mathrm{~mA} \\ \hline \end{array}$		$\begin{aligned} & V^{-}+0.004 \\ & V^{-}+0.045 \\ & V^{-}+0.270 \end{aligned}$	$\begin{aligned} & \hline V^{-}+0.012 \\ & V^{-}+0.090 \\ & V^{-}+0.525 \end{aligned}$	V V V
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output Voltage Swing HIGH	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{V}^{+}-0.012 \\ & \mathrm{~V}^{+}-0.130 \\ & \mathrm{~V}^{+}-0.800 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}^{+}-0.003 \\ & \mathrm{~V}^{+}-0.065 \\ & \mathrm{~V}^{+}-0.580 \end{aligned}$		V V V
$\mathrm{I}_{\text {SC }}$	Short-Circuit Current		10	20		mA
IS	Supply Current			425	550	$\mu \mathrm{A}$
	Positive Supply Current, SHDN	$V_{\text {SHDN }}=0 \mathrm{~V}$		15	40	$\mu \mathrm{A}$
SR	Slew Rate (LT1218/LT1218L) (LT1219/LT1219L	$\begin{aligned} & A_{V}=-1 \\ & A_{V}=-1 \end{aligned}$		$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
GBW	Gain Bandwidth Product (LT1218/LT1218L) (LT1219/LT1219L)	$\begin{aligned} & A_{V}=1000 \\ & A_{V}=1000 \end{aligned}$		$\begin{aligned} & 0.28 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

LT1218/LT1219 only; $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=15 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & \hline 120 \\ & 120 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 300 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		50	105	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet	-75	$\begin{gathered} \hline 30 \\ -18 \end{gathered}$	75	nA nA
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		50	150	nA
los	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	nA nA
$\underline{\Delta l_{0 S}}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		5	20	nA
AvoL	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{0}=-14.7 \mathrm{~V} \text { to } 14.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 750 \\ & 500 \end{aligned}$	$\begin{aligned} & 3000 \\ & 1500 \end{aligned}$		V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	109	114		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet	97	110		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=5 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & \hline V^{-}+0.004 \\ & V^{-}+0.045 \\ & V^{-}+0.310 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline V^{-}+0.014 \\ & V^{-}+0.100 \\ & V^{-}+0.580 \end{aligned}$	V V V
V_{OH}	Output Voltage Swing HIGH	No Load $I_{\text {SOURCE }}=0.5 \mathrm{~mA}$ $I_{\text {SOURCE }}=5 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline \mathrm{V}^{+}-0.003 \\ \mathrm{~V}^{+}-0.075 \\ \mathrm{~V}^{+}-0.700 \\ \hline \end{gathered}$		V V V

ELECTRICAL CHARACTERISTICS

LT1218/LT1219 only; $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{O V}, \mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=15 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
$I_{\text {SC }}$	Short-Circuit Current		\bullet	8	17		mA
I_{S}	Supply Current		\bullet	450	600	$\mu \mathrm{~A}$	
	Positive Supply Current, SHDN	$V_{\overline{S H D N}}=0 V$	\bullet	20	54	$\mu \mathrm{~A}$	

LT1218, LT1219 only; $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{OV}=\mathrm{V}_{0}=\mathrm{OV}, \mathrm{V}_{\overline{\text { SHDN }}}=15 \mathrm{~V}$, unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+}-0.15 \\ & V_{C M}=V^{-}+0.15 \end{aligned}$			$\begin{aligned} & \hline 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet		50	165	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.15 \\ & V_{C M}=V^{-}+0.15 \end{aligned}$		-80		80	nA $n A$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet			160	nA
los	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.15 \\ & V_{C M}=V^{-}+0.15 \end{aligned}$	\bullet			$\begin{aligned} & 40 \\ & 40 \end{aligned}$	nA
$\Delta l_{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet			40	nA
Avol	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{0}=-14.7 \mathrm{~V} \text { to } 14.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 500 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 3000 \\ & 1000 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}-0.15$ to $\mathrm{V}^{-}+0.15$	\bullet	105	114		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet	96	110		dB
V_{OL}	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & V^{-}+0.005 \\ & V^{-}+0.050 \\ & V^{-}+0.200 \end{aligned}$	$\begin{aligned} & \hline V^{-}+0.015 \\ & V^{-}+0.105 \\ & V^{-}+0.620 \end{aligned}$	V V V
V_{OH}	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SOURCE }}=2.5 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & \hline V^{+}-0.015 \\ & V^{+}-0.160 \\ & V^{+}-1.000 \end{aligned}$	$\begin{aligned} & \hline V^{+}-0.004 \\ & V^{+}-0.070 \\ & V^{+}-0.400 \end{aligned}$		V V V
ISC	Short-Circuit Current		\bullet	5	14		mA
I_{S}	Supply Current		\bullet			650	$\mu \mathrm{A}$
	Positive Supply Current, SHDN	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$	\bullet			60	$\mu \mathrm{A}$

The - denotes specifications which apply over the full operating temperature range.
Note 1: A heat sink may be required to keep the junction temperature below the Absolute Maximum Rating when the output is shorted indefinitely.

Note 2: This parameter is not 100% tested.
Note 3: The LT1218/LT1219 are designed, characterized and expected to meet these extended temperature limits, but are not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. Guaranteed I grade part are available: consult factory.

TYPICAL PERFORMANCE CHARACTERISTICS

LT1218/19•TPC01

LT1218/19•TPC04
Output Saturation Voltage vs Load Current (Output Low)

LT1218/19•TPC02

Output Saturation Voltage vs Load Current (Output High)

0.1 Hz to 10 Hz Output Voltage Noise

LT1218/19•TPC03
Input Bias Current vs Common Mode Voltage

LT1218/19•TPC06

TIME (1s/DIV)

TYPICAL PGRFORMANCG CHARACTERISTICS

LT1218 Gain Bandwidth and Phase Margin vs Supply Voltage

LT1218 Common Mode Rejection Ratio vs Frequency

LT1218/19•TPC15

LT1219 Power Supply Rejection Ratio vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

LT1218 Capacitive Load Handling

LT1218/19•TPC20
Open-Loop Gain, $\mathrm{V}_{\mathbf{S}}= \pm \mathbf{1 5 V}$

LT1219 Overshoot vs Load
Current, $\mathrm{V}_{\mathrm{S}}= \pm \mathbf{2 . 5 \mathrm { V }}$

LT1218/19•TPC21
Input Offset Drift vs Time

LT1219 Closed Loop Output Impedance vs Frequency

LT1218/19•TPC19
LT1219 Overshoot vs Load
Current, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

LT1218/19•TPC22
THD + Noise vs Frequency

LT1218/19•TPC25

TYPICAL PERFORMANCE CHARACTERISTICS

Small-Signal Response
$V_{S}= \pm 15 \mathrm{~V}$

Large-Signal Response
$V_{S}= \pm 15 \mathrm{~V}$

LT1218/19•TPC26

APPLICATIONS INFORMATION

Rail-to-Rail Operation

The LT1218/LT1219 differ from conventional op amps in the design of both the input and output stages. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage

Q1/Q2 and an NPN stage Q3/Q4, which are active over different portions of the input common mode range. Lateral devices are used in both input stages, eliminating the need for clamps across the input pins. Each input stage is trimmed for offset voltage. A complementary output configuration (Q23 through Q26) is employed to create an

Figure 1. LT1218 Simplified Schematic Diagram

APPLICATIONS INFORMATION

output stage with rail-to-rail swing. The amplifier is fabricated on Linear Technology's proprietary complementary bipolar process, which ensures very similar DC and AC characteristics for the output devices Q24 and Q26.

A simple comparator Q5 steers current from current source I_{1} between the two input stages. When the input common mode voltage V_{CM} is near the negative supply, Q5 is reverse biased, and I_{1} becomes the tail current for the PNP differential pair Q1/Q2. At the other extreme, when $V_{C M}$ is within about 1.3 V from the positive supply, Q 5 diverts I_{1} to the current mirror D3/Q6, which furnishes the tail current for the NPN differential pair Q3/Q4.

The collector currents of the two input pairs are combined in the second stage, consisting of Q7 through Q11. Most of the voltage gain in the amplifier is contained in this stage. Differential amplifier Q14/Q15 buffers the output of the second stage, converting the output voltage to differential currents. The differential currents pass through current mirrors D4/Q17 and D5/Q16, and are converted to differential voltages by Q18 and Q19. These voltages are also buffered and applied to the output Darlington pairs Q23/Q24 and Q25/Q26. Capacitors C1 and C2 form local feedback loops around the output devices, lowering the output impedance at high frequencies.

Input Offset Voltage

Since the amplifier has two input stages, the input offset voltage changes depending upon which stage is active. The input offsets are random, but bounded voltages. When the amplifier switches between stages, offset voltages may go up, down or remain flat; but will not exceed the guaranteed limits. This behavior is illustrated in three distribution plots of input offset voltage in the Typical Performance Characteristics section.

Overdrive Protection

Two circuits prevent the output from reversing polarity when the input voltage exceeds the common mode range. When the noninverting input exceeds the positive supply by approximately 300 mV , the clamp transistor Q12 (Fig-
ure 1) turns on, pulling the output of the second stage low, which forces the output high. For input below the negative supply, diodes D1 and D2 turn on, overcoming the saturation of the input pair Q1/Q2.

When overdriven, the amplifier draws input current that exceeds the normal input bias current. Figures 2 and 3 show typical input current as a function of input voltage. The input current must be less than 10 mA for the phase reversal protection to work properly. When the amplifier is severely overdriven, an external resistor should be used to limit the overdrive current.

LT1218/19• FO
Figure 2. Input Bias Current vs Common Mode Voltage

Figure 3. Input Bias Current vs Common Mode Voltage

APPLICATIONS Information

Shutdown

The biasing of the LT1218/LT1219 is controlled by the $\overline{\text { SHDN }}$ pin. When the SHDN pin is low, the part is shut down. In the shutdown mode, the output looks like a 40pF capacitor and the supply current is less than $30 \mu \mathrm{~A}$. The SHDN pin is referenced to the positive supply through an internal bias circuit (see Figure 1). The SHDN pin current with the pin low is typically $3 \mu \mathrm{~A}$.

The switching time between the shutdown and active states is about $20 \mu \mathrm{~s}$, however, the total time to settle will be greater by the slew time of the amplifier. For example, if the DC voltage at the amplifier output is OV in shutdown and -2 V in the active mode, an additional $20 \mu \mathrm{~s}$ is required. Figures 4 a and 4 b show the switching waveforms for a sinusoidal and a -2V DC input to the LT1218.

Figure 4a

$R_{L}=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$

The $\overline{\text { SHDN }}$ pin can be driven directly from CMOS logic if the logic and the LT1218/LT1219 are operated from the same supplies. For higher supply operation, an interface is required. An easy way to interface between supplies is to use open-drain logic, an example is shown in Figure 5. Because the SHDN pin is referenced to the positive supply, the logic used should have a breakdown voltage greater than the positive supply.

Figure 5. Shutdown Interface

Trim Pins

Trim pins are provided for compatibility with other single op amps. Input offset voltage can be adjusted over a $\pm 2.3 \mathrm{mV}$ range with a 10 k potentiometer.

Figure 6. Optional Offset Nulling

Improved Supply Rejection in the LT1219

The LT1219 is a variation of the LT1218 offering greater supply rejection and lower high frequency output impedance. The LT1219 requires a $0.1 \mu \mathrm{~F}$ load capacitance for

Figure 4b

LT1218/19• F04a

APPLICATIONS InFORMATION

compensation. The output capacitance forms a filter, which reduces pickup from the supply and lowers the output impedance. This additional filtering is helpful in mixed analog/digital systems with common supplies or systems employing switching supplies. Filtering also reduces high frequency noise, which may be beneficial when driving A/D converters.

Figures 7a and 7b show the outputs of the LT1218/LT1219 perturbed by a 200 mV P-p 50 kHz square wave added to the
positive supply. The LT1219 power supply rejection is about ten times greater than that of the LT1218 at 50 kHz . Note the 5-to-1 scale change in the output voltage traces.

The tolerance of the external compensation capacitor is not critical. The plots of Overshoot vs Load Current in the Typical Performance Characteristics section illustrate the effect of a capacitive load.

Figure 7b. LT1219 Power Supply Rejection Test

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS

Positive Supply Current Sense

PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.

LT1218/LT1219

TYPICAL APPLICATION

8-Channel, 12-Bit Data Acquisition System with Programmable Gain

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC ${ }^{\text {11152 }}$	Rail-to-Rail Input and Output, Zero-Drift Op Amp	High DC Accuracy, $10 \mu \mathrm{~V} \mathrm{~V}_{0 S(\mathrm{MAX})}, 100 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ Drift, 0.7 MHz GBW, $0.5 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, Maximum Supply Current 3mA
LT1366/LT1367	Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps	$475 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}, 400 \mathrm{kHz}$ GBW, $0.13 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, Maximum Supply Current $520 \mu \mathrm{~A}$ per Op Amp
LT1466/LT1467	Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps	Maximum Supply Current $75 \mu \mathrm{~A}$ per Op Amp, $390 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}(\mathrm{MAX})}$, 120kHz Gain Bandwidth

