
# **BOURNS®**

- Sensitive Gate Triacs
- 6 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I<sub>GT</sub> of 5 mA (Quadrants 1 3)



Pin 2 is in electrical contact with the mounting base.

MDC2ACA

## absolute maximum ratings over operating case temperature (unless otherwise noted)

| RATING                                                                          | SYMBOL              | VALUE            | UNIT               |   |  |
|---------------------------------------------------------------------------------|---------------------|------------------|--------------------|---|--|
|                                                                                 | TIC216D             |                  | 400                |   |  |
| Repetitive peak off-state voltage (see Note 1)                                  | TIC216M             |                  | 600                | ٧ |  |
|                                                                                 | TIC216S             | V <sub>DRM</sub> | 700                |   |  |
|                                                                                 | TIC216N             |                  | 800                | ı |  |
| Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note   | I <sub>T(RMS)</sub> | 6                | Α                  |   |  |
| Peak on-state surge current full-sine-waveat (or below) 25°C case temperature   | I <sub>TSM</sub>    | 60               | Α                  |   |  |
| Peak gate current                                                               | I <sub>GM</sub>     | ±1               | Α                  |   |  |
| Peak gate power dissipation at (or below) 85°C case temperature (pulse width \$ | $P_{GM}$            | 2.2              | W                  |   |  |
| Average gate power dissipation at (or below) 85°C case temperature (see Note 4) |                     |                  | 0.9                | W |  |
| Operating case temperature range                                                | T <sub>C</sub>      | -40 to +110      | °C                 |   |  |
| Storage temperature range                                                       | T <sub>stg</sub>    | -40 to +125      | °C                 |   |  |
| Lead temperature 1.6 mm from case for 10 seconds                                |                     |                  | T <sub>L</sub> 230 |   |  |

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
  - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 150 mA/°C.
  - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
  - 4. This value applies for a maximum averaging time of 20 ms.

## electrical characteristics at 25°C case temperature (unless otherwise noted)

| PARAMETER TEST CONDITIONS |                                   |                                            | MIN                | TYP                       | MAX | UNIT |    |    |
|---------------------------|-----------------------------------|--------------------------------------------|--------------------|---------------------------|-----|------|----|----|
| I <sub>DRM</sub>          | Repetitive peak off-state current | $V_D = \text{rated } V_{DRM}$              | I <sub>G</sub> = 0 | T <sub>C</sub> = 110°C    |     |      | ±2 | mA |
| I <sub>GT</sub>           |                                   | $V_{\text{supply}} = +12 \text{ V}\dagger$ | $R_L = 10 \Omega$  | t <sub>p(g)</sub> > 20 μs |     |      | 5  | mA |
|                           | Gate trigger                      | $V_{\text{supply}} = +12 \text{ V}\dagger$ | $R_L = 10 \Omega$  | $t_{p(g)} > 20 \mu s$     |     |      | -5 |    |
|                           | current                           | $V_{\text{supply}} = -12 \text{ V}\dagger$ | $R_L = 10 \Omega$  | $t_{p(g)} > 20 \mu s$     |     |      | -5 |    |
|                           |                                   | $V_{\text{supply}} = -12 \text{ V}\dagger$ | $R_L = 10 \Omega$  | $t_{p(g)} > 20 \mu s$     |     |      | 10 |    |

 $<sup>\</sup>dagger$  All voltages are with respect to Main Terminal 1.

#### PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.



## electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

| PARAMETER TEST CONDITIONS |                                            |                                                                                                                                                                             | MIN                                                                             | TYP                                                                                                                  | MAX | UNIT    |                          |      |
|---------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----|---------|--------------------------|------|
| V <sub>GT</sub>           | Gate trigger<br>voltage                    | $V_{\text{supply}} = +12 \text{ V}\dagger$ $V_{\text{supply}} = +12 \text{ V}\dagger$ $V_{\text{supply}} = -12 \text{ V}\dagger$ $V_{\text{supply}} = -12 \text{ V}\dagger$ | $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ | $t_{p(g)} > 20 \text{ µs}$<br>$t_{p(g)} > 20 \text{ µs}$<br>$t_{p(g)} > 20 \text{ µs}$<br>$t_{p(g)} > 20 \text{ µs}$ |     |         | 2.2<br>-2.2<br>-2.2<br>3 | V    |
| V <sub>T</sub>            | On-state voltage                           | $I_T = \pm 8.4 \text{ A}$                                                                                                                                                   | I <sub>G</sub> = 50 mA                                                          | (see Note 5)                                                                                                         |     |         | ±1.7                     | V    |
| I <sub>H</sub>            | Holding current                            | $V_{\text{supply}} = +12 \text{ V}^{\dagger}$<br>$V_{\text{supply}} = -12 \text{ V}^{\dagger}$                                                                              | $I_{G} = 0$ $I_{G} = 0$                                                         | Init' I <sub>TM</sub> = 100 mA<br>Init' I <sub>TM</sub> = -100 mA                                                    |     |         | 30<br>-30                | mA   |
| IL                        | Latching current                           | $V_{\text{supply}} = +12 \text{ V}^{\dagger}$<br>$V_{\text{supply}} = -12 \text{ V}^{\dagger}$                                                                              | (see Note 6)                                                                    |                                                                                                                      |     | 4<br>-2 |                          | mA   |
| dv/dt                     | Critical rate of rise of off-state voltage | V <sub>DRM</sub> = Rated V <sub>DRM</sub>                                                                                                                                   | I <sub>G</sub> = 0                                                              | T <sub>C</sub> = 110°C                                                                                               |     | ±20     |                          | V/µs |
| dv/dt <sub>(c)</sub>      | Critical rise of commutation voltage       | $V_{DRM} = Rated V_{DRM}$                                                                                                                                                   | I <sub>TRM</sub> = ±8.4 A                                                       | T <sub>C</sub> = 70°C                                                                                                | ±2  | ±5      |                          | V/µs |

<sup>†</sup> All voltages are with respect to Main Terminal 1.

NOTES: 5. This parameter must be measured using pulse techniques,  $t_p = \le 1$  ms, duty cycle  $\le 2$  %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

6. The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:  $R_G = 100 \ \Omega, \ t_{p(g)} = 20 \ \mu s, \ t_r = \le 15 \ ns, \ f = 1 \ kHz.$ 

#### thermal characteristics

| PARAMETER       |                                         |  |  | MAX  | UNIT |
|-----------------|-----------------------------------------|--|--|------|------|
| $R_{\theta JC}$ | Junction to case thermal resistance     |  |  | 2.5  | °C/W |
| $R_{\theta JA}$ | Junction to free air thermal resistance |  |  | 62.5 | °C/W |
|                 |                                         |  |  |      |      |