FEATURES

Low offset voltage: $2.5 \mu \mathrm{~V}$ maximum
Low offset voltage drift: $0.015 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum
Low noise
$5.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at $\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{v}}=+100$
97 nV p-p at $\mathrm{f}=\mathbf{0 . 1} \mathrm{Hz}$ to $10 \mathrm{~Hz}, \mathrm{~A}_{\mathrm{v}}=+\mathbf{+ 1 0 0}$
Open-loop gain: 130 dB minimum
CMRR: 135 dB minimum
PSRR: 130 dB minimum
Unity-gain crossover: 4 MHz
Gain bandwidth product: 3 MHz at $\mathrm{A}_{\mathrm{v}}=+\mathbf{1 0 0}$
-3 dB closed-loop bandwidth: 6.2 MHz
Single-supply operation: 2.2 V to 5.5 V
Dual-supply operation: $\pm 1.1 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$
Rail-to-rail input and output (RRIO)
Unity-gain stable

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Extended industrial temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Product change notification
Qualification data available upon request

APPLICATIONS

Thermocouples/thermopiles
Load cell and bridge transducers
Precision instrumentation
Electronic scales
Medical instrumentation
Handheld test equipment

GENERAL DESCRIPTION

The ADA4528-2-EP is an ultralow noise, zero-drift operational amplifier featuring rail-to-rail input and output swing. With an offset voltage of $2.5 \mu \mathrm{~V}$, offset voltage drift of $0.015 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and typical noise of 97 nV p-p $\left(0.1 \mathrm{~Hz}\right.$ to $\left.10 \mathrm{~Hz}, \mathrm{~A}_{\mathrm{V}}=+100\right)$, the ADA4528-2-EP is well suited for applications in which error sources cannot be tolerated.

The ADA4528-2-EP has a wide operating supply range of 2.2 V to 5.5 V , high gain, and excellent CMRR and PSRR specifications,

Rev. 0

PIN CONNECTION DIAGRAM

NOTES
NOTES

1. CONNECT THE EXPOSED PAD TO
V- OR LEAVE IT UNCONNECTED.
Figure 1.

Figure 2. Voltage Noise Density vs. Frequency
which make it ideal for applications that require precision amplification of low level signals, such as position and pressure sensors, strain gages, and medical instrumentation.
The ADA4528-2-EP is specified over the extended industrial temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ and is available in an 8 -lead LFCSP package.

Additional application and technical information can be found in the ADA4528-2 datasheet.

TABLE OF CONTENTS

Features .. 1
Enhanced Product Features ... 1
Applications.. 1
Pin Connection Diagram ... 1
General Description ... 1
Revision History .. 2
Specifications... 3
Electrical Characteristics-2.5 V Operation 3
Electrical Characteristics-5 V Operation 5
Absolute Maximum Ratings 6
Thermal Resistance. 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics. 8
Outline Dimensions 17
Ordering Guide 17

REVISION HISTORY

8/2016—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—2.5 V OPERATION
$\mathrm{V}_{\mathrm{SY}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{SY}} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
NOISE PERFORMANCE						
Voltage Noise	$e_{n} p$-p	$\mathrm{f}=0.1 \mathrm{~Hz}$ to $10 \mathrm{~Hz}, \mathrm{~A}_{v}=+100$		97		nV p-p
Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{v}}=+100$		5.6		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{v}}=+100, \mathrm{~V}_{\mathrm{cm}}=2.0 \mathrm{~V}$		5.5		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Current Noise	$i_{n} \mathrm{p}$-p	$\mathrm{f}=0.1 \mathrm{~Hz}$ to $10 \mathrm{~Hz}, \mathrm{~A}_{v}=+100$		10		pA p-p
Current Noise Density	i_{n}	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{v}}=+100$		0.7		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

ELECTRICAL CHARACTERISTICS—5 V OPERATION

$\mathrm{V}_{\mathrm{SY}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{SY}} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 2.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	6 V
Input Voltage	$\pm \mathrm{V}_{\mathrm{SY}} \pm 0.3 \mathrm{~V}$
Input Current ${ }^{1}$	$\pm 10 \mathrm{~mA}$
Differential Input Voltage	$\pm \mathrm{V}_{\mathrm{SY}}$
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

${ }^{1}$ The input pins have clamp diodes to the power supply pins. Limit the input current to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V .

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment.
Careful attention to PCB thermal design is required.
θ_{IA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure (still air).
θ_{IC} is the junction to case thermal resistance, measured on the exposed pad of the package.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{JC}}$	Unit
$\mathrm{CP}-8-19^{1}$	52	3.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Thermal reporting per JEDEC JESD51-12.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge
without detection. Although this product features
patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD.
Therefore, proper ESD precautions should be taken to
avoid performance degradation or loss of functionality.

Enhanced Product

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. CONNECT THE EXPOSED PAD TO V- OR LEAVE IT UNCONNECTED.

Figure 3. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	OUT A	Output, Channel A.
2	-IN A	Inverting Input, Channel A.
3	+IN A	Noninverting Input, Channel A.
4	V-	Negative Supply Voltage.
5	+IN B	Noninverting Input, Channel B.
6	-IN B	Inverting Input, Channel B.
7	OUT B	Output, Channel B.
8	V+	Positive Supply Voltage.
	EPAD	Exposed Pad. Connect the exposed pad to V- or leave it unconnected.

TYPICAL PERFORMANCE CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 4. Input Offset Voltage ($V_{O S}$) Distribution

Figure 5. Input Offset Voltage Temperature Coefficient (T_{VVOS}) Drift Distribution

Figure 6. Input Offset Voltage $\left(V_{O S}\right)$ vs. Common-Mode Voltage $\left(V_{C M}\right)$

Figure 7. Input Offset Voltage $\left(V_{\text {OS }}\right)$ Distribution

Figure 8. Input Offset Voltage Temperature Coefficient ($T C_{V O S}$) Drift Distribution

Figure 9. Input Offset Voltage ($V_{O S}$) vs. Common-Mode Voltage ($V_{C M}$)

Figure 10. Input Bias Current $\left(I_{B}\right)$ vs. Temperature

Figure 11. Output Voltage ($V_{O L}$) to Supply Rail vs. Temperature

Figure 12. Output Voltage $\left(V_{O H}\right)$ to Supply Rail vs. Temperature

Figure 13. Input Bias Current $\left(I_{B}\right)$ vs. Temperature

Figure 14. Output Voltage $\left(V_{O L}\right)$ to Supply Rail vs. Temperature

Figure 15. Output Voltage $\left(V_{O H}\right)$ to Supply Rail vs. Temperature

Figure 16. Open-Loop Gain and Phase vs. Frequency

Figure 17. Closed-Loop Gain vs. Frequency

Figure 18. CMRR vs. Frequency

Figure 19. Open-Loop Gain and Phase vs. Frequency

Figure 20. Closed-Loop Gain vs. Frequency

Figure 21. CMRR vs. Frequency

Figure 22. PSRR vs. Frequency

Figure 23. Closed-Loop Output Impedance (Zout) vs. Frequency

Figure 24. Large Signal Transient Response

Figure 25. PSRR vs. Frequency

Figure 26. Closed-Loop Output Impedance (Zout) vs. Frequency

Figure 27. Large Signal Transient Response

Figure 28. Small Signal Transient Response

Figure 29. Small Signal Overshoot vs. Load Capacitance

Figure 30. Positive Overload Recovery

Figure 31. Small Signal Transient Response

Figure 32. Small Signal Overshoot vs. Load Capacitance

Figure 33. Positive Overload Recovery

Figure 34. Negative Overload Recovery

Figure 35. Positive Settling Time to 0.1\%

Figure 36. Negative Settling Time to 0.1\%

Figure 37. Negative Overload Recovery

Figure 38. Positive Settling Time to 0.1\%

Figure 39. Negative Settling Time to 0.1\%

Figure 40. Voltage Noise Density vs. Frequency

Figure 41. Current Noise Density vs. Frequency

Figure 42. 0.1 Hz to 10 Hz Noise

Figure 43. Voltage Noise Density vs. Frequency

Figure 44. Current Noise Density vs. Frequency

TIME (1s/DIV)
Figure 45. 0.1 Hz to 10 Hz Noise

Figure 46. THD + N vs. Amplitude

Figure 47. THD + N vs. Frequency

Figure 48.Channel Separation vs. Frequency

Figure 49. $T H D+N$ vs. Amplitude

Figure 50. $T H D+N$ vs. Frequency

Figure 51. Channel Separation vs. Frequency

Figure 52. Supply Current ($l_{\text {sץ }}$) per Amplifier vs. Temperature

Enhanced Product

OUTLINE DIMENSIONS

Figure 53. 8-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-8-19)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADA4528-2TCPZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-19	A3H
ADA4528-2TCPZ-EPR7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-19	A3H

[^0]
[^0]: ${ }^{1} Z=$ RoHS Compliant Part.

