74AHC377; 74AHCT377

Octal D-type flip-flop with data enable; positive-edge trigger

Rev. 02 — 12 June 2008 Product data sheet

1. General description

The 74AHC377; 74AHCT377 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. 7-A.

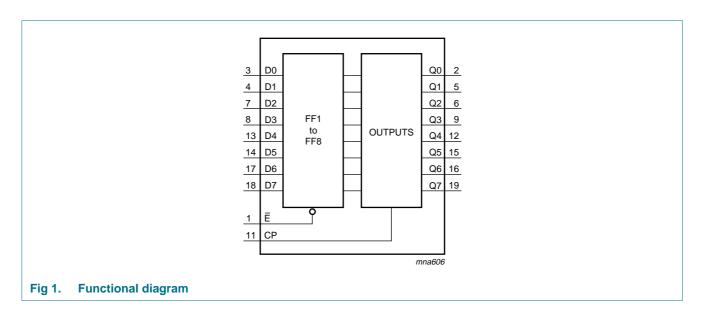
The 74AHC377; 74AHCT377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. A common clock input (CP) loads all flip-flops simultaneously when the data enable input (\overline{E}) is LOW. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output (Qn) of the flip-flop. The \overline{E} input is only required to be stable one set-up time prior to the LOW-to-HIGH transition for predictable operation.

For versions associated with the 74AHC377; 74AHCT377, refer to the following:

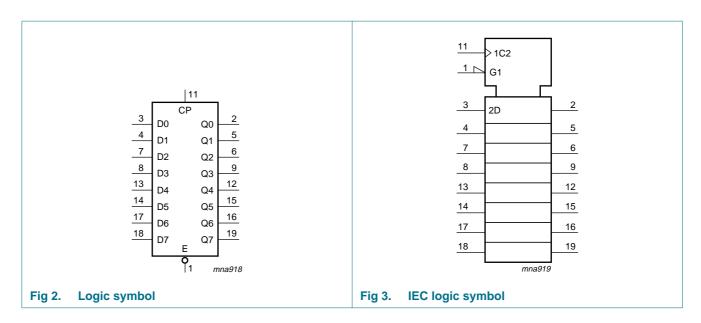
- For the master reset version, see 74AHC273; 74AHCT273
- For the transparent latch version, see 74AHC373; 74AHCT373
- For the 3-state version, see 74AHC374; 74AHCT374

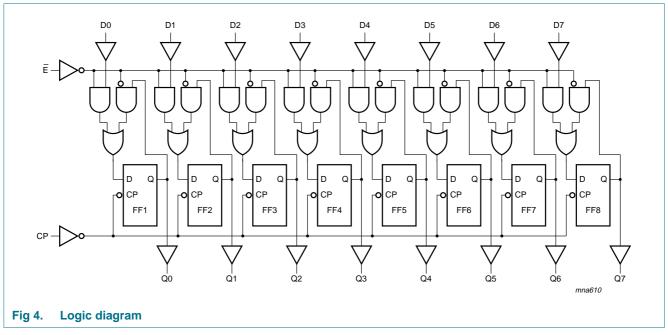
2. Features

- Balanced propagation delays
- All inputs have Schmitt-trigger actions
- Inputs accept voltages higher than V_{CC}
- Ideal for addressable register applications
- Data enable for address and data synchronization
- Eight positive-edge triggered D-type flip-flops
- Input levels:
 - ◆ For 74AHC377: CMOS level
 - ◆ For 74AHCT377: TTL level
- ESD protection:
 - ◆ HBM EIA/JESD22-A114E exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V
 - ◆ CDM EIA/JESD22-C101C exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C



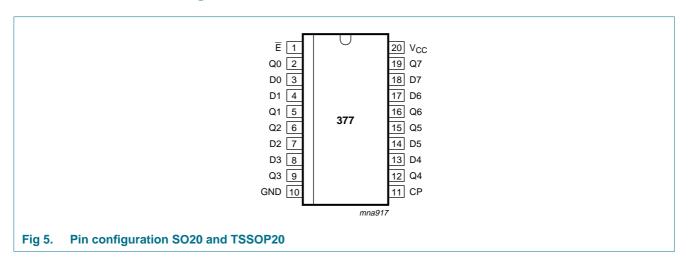
Ordering information


Ordering information Table 1.


Type number	Package								
	Temperature range	Name	Description	Version					
74AHC377									
74AHC377D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1					
74AHC377PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1					
74AHCT377									
74AHCT377D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1					
74AHCT377PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1					

Functional diagram 4.

2 of 16



74AHC_AHCT377_2 © Nexperia B.V. 2017. All rights reserved Rev. 02 — 12 June 2008

3 of 16

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

	•	
Symbol	Pin	Description
Ē	1	data enable input (active LOW)
Q0	2	flip-flop output
D0	3	data input
D1	4	data input
Q1	5	flip-flop output
Q2	6	flip-flop output
D2	7	data input
D3	8	data input
Q3	9	flip-flop output
GND	10	ground (0 V)
СР	11	clock input (LOW-to-HIGH, edge triggered)
Q4	12	flip-flop output
D4	13	data input
D5	14	data input
Q5	15	flip-flop output
Q6	16	flip-flop output
D6	17	data input
D7	18	data input
Q7	19	flip-flop output
V_{CC}	20	supply voltage

6. Functional description

Table 3. Function table [1]

Operating mode	Control		Input	Output
	Ē	СР	Dn	Qn
Load 1	I	\uparrow	h	Н
Load 0	I	↑	I	L
Hold (do nothing)	h	↑	X	no change
	Н	X	Х	no change

^[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;

↑ = LOW-to-HIGH CP transition;

X = don't care.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
V_{I}	input voltage		-0.5	+7.0	V
I_{IK}	input clamping current	$V_{I} < -0.5 V$	<u>[1]</u> –20	-	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> –20	+20	mA
Io	output current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	-25	+25	mA
I_{CC}	supply current		-	+75	mA
I_{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P_{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] -	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] For SO20 packages: above 70 °C the value of P_{tot} derates linearly at 8 mW/K. For TSSOP20 packages: above 60 °C the value of P_{tot} derates linearly at 5.5 mW/K.

Recommended operating conditions

Table 5. **Operating conditions**

Parameter	Conditions	Min	Тур	Max	Unit
77					
supply voltage		2.0	5.0	5.5	V
input voltage		0	-	5.5	V
output voltage		0	-	V_{CC}	V
ambient temperature		-40	+25	+125	°C
input transition rise and fall rate	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-	100	ns/V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	20	ns/V
377					
supply voltage		4.5	5.0	5.5	V
input voltage		0	-	5.5	V
output voltage		0	-	V_{CC}	V
ambient temperature		-40	+25	+125	°C
input transition rise and fall rate	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	20	ns/V
	supply voltage input voltage output voltage ambient temperature input transition rise and fall rate 377 supply voltage input voltage output voltage ambient temperature	supply voltage input voltage output voltage ambient temperature input transition rise and fall rate $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ 377 supply voltage input voltage output voltage output voltage ambient temperature	supply voltage 2.0 input voltage 0 0 output voltage 0 ambient temperature -40 input transition rise and fall rate $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} - V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ - 377 supply voltage 4.5 input voltage 0 output voltage 0 ambient temperature 0 ambient temperature -40	supply voltage $2.0 ext{ } 5.0$ input voltage $0 ext{ } 0$ ambient temperature $-40 ext{ } +25$ input transition rise and fall rate $V_{CC} = 3.0 ext{ } V_{CC} = 3.0 ext{ } V_{CC} = 4.5 ext{ $	3 supply voltage 2.0 5.0 5.5 input voltage 0 - 5.5 output voltage 0 - V_{CC} ambient temperature -40 +25 +125 input transition rise and fall rate $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ - - 100 $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ - - 20 377 supply voltage 4.5 5.0 5.5 input voltage 0 - 5.5 output voltage 0 - V_{CC} ambient temperature -40 +25 +125

Static characteristics

Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74AHC3	77	'								
V_{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	-	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 3.0 V	2.1	-	-	2.1	-	2.1	-	V
		V _{CC} = 5.5 V	3.85	-	-	3.85	-	3.85	-	V
V_{IL}	LOW-level	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 3.0 V	-	-	0.9	-	0.9	-	0.9	V
		V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	1.65	V
011	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_{O} = -50 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -50 \mu\text{A}; V_{CC} = 3.0 \text{V}$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_{O} = -50 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_O = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 50 \mu A; V_{CC} = 2.0 \text{ V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A$; $V_{CC} = 3.0 \text{ V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
		$I_{O} = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V

74AHC_AHCT377_2 © Nexperia B.V. 2017. All rights reserved Rev. 02 — 12 June 2008

6 of 16

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C	;	–40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
II	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	4.0	-	40	-	80	μΑ
C _I	input capacitance	$V_I = V_{CC}$ or GND	-	3	10	-	10	-	10	pF
74AHCT	377									
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	8.0	-	8.0	-	0.8	V
011	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_O = -50 \mu A$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -8.0 \text{ mA}$	3.94	-	-	3.80	-	3.70	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_O = 50 \mu A$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 8.0 \text{ mA}$	-	-	0.36	-	0.44	-	0.55	V
II	input leakage current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 0 \text{ V to 5.5 V}$	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	4.0	-	40	-	80	μΑ
ΔI_{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$; other pins at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
Cı	input capacitance	$V_I = V_{CC}$ or GND	-	3	10	-	10	-	10	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8.

Symbol	Parameter	arameter Conditions 25 °C			-40 °C to +85 °C		-40 °C to +125 °C		Unit	
			Min	Typ[1]	Max	Min	Max	Min	Max	
74AHC3	77									
t _{pd}	propagation	CP to Qn; see Figure 6								
	delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$								
		C _L = 15 pF	-	5.6	12.8	1.0	15.0	1.0	16.0	ns
		C _L = 50 pF	-	8.0	16.0	1.0	18.0	1.0	20.0	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$								
		C _L = 15 pF	-	3.9	9.0	1.0	10.5	1.0	11.5	ns
		$C_L = 50 pF$	-	5.6	10.5	1.0	12.0	1.0	13.5	ns
f_{max}	maximum	see Figure 6								
	frequency	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$								
		C _L = 15 pF	80	125	-	70	-	70	-	MHz
		C _L = 50 pF	50	75	-	45	-	45	-	MHz
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$								
		C _L = 15 pF	125	175	-	110	-	110	-	MHz
		C _L = 50 pF	85	120	-	75	-	75	-	MHz
t_W	pulse width	CP HIGH or LOW; see Figure 6								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	5.0	-	-	5.0	-	5.0	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	5.0	-	-	5.0	-	5.0	-	ns
t _{su}	set-up time	Dn, \overline{E} to CP; see Figure 7								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	5.0	-	-	5.0	-	5.0	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	4.5	-	-	4.5	-	4.5	-	ns
t _h	hold time	Dn, \overline{E} to CP; see Figure 7								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.5	-	-	1.5	-	1.5	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	2.0	-	2.0	-	ns
C_{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{CC}$ [3]	-	20	-	-	-	-	-	pF

74AHC_AHCT377_2 © Nexperia B.V. 2017. All rights reserved

Product data sheet Rev. 02 — 12 June 2008 8 of 16

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8.

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	–40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
74AHCT	377; V _{CC} = 4.5	5 V to 5.5 V		'						
t _{pd}	propagation	CP to Qn; see Figure 6 [2]								
delay	delay	C _L = 15 pF	-	4.0	9.0	1.0	10.5	1.0	11.5	ns
		$C_L = 50 pF$	-	5.7	10.5	1.0	12.0	1.0	13.5	ns
III CA	maximum	see Figure 6								
	frequency	C _L = 15 pF	90	140	-	80	-	80	-	MHz
		$C_L = 50 pF$	85	130	-	75	-	75	-	MHz
t_{VV}	pulse width	CP HIGH or LOW; see Figure 6	5.0	-	-	5.0	-	5.0	-	ns
t _{su}	set-up time	Dn, \overline{E} to CP; see Figure 7	4.5	-	-	4.5	-	4.5	-	ns
t _h	hold time	Dn, \overline{E} to CP; see Figure 7	2.0	-	-	2.0	-	2.0	-	ns
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}$; $V_i = \text{GND to } V_{CC}$ [3]	-	23	-	-	-	-	-	pF

^[1] Typical values are measured at nominal supply voltage ($V_{CC} = 3.3 \text{ V}$ and $V_{CC} = 5.0 \text{ V}$).

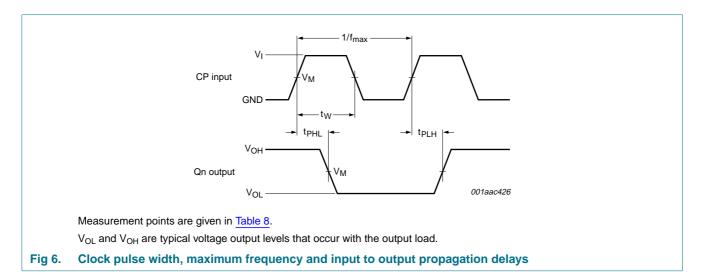
[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;


 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

11. Waveforms

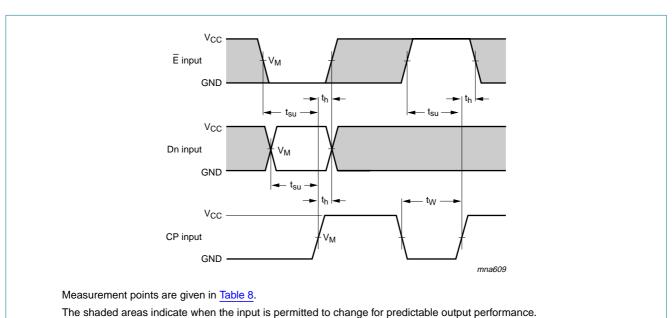
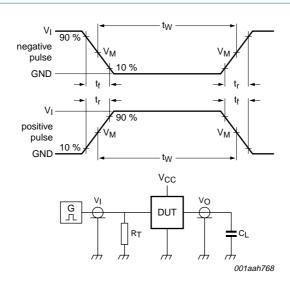



Fig 7. Data set-up and hold times

Table 8. Measurement points

Туре	Input	Output	
	V _M	V _M	
74AHC377	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	
74AHCT377	1.5 V	$0.5 \times V_{CC}$	

Test data is given in Table 9.

Definitions test circuit:

 R_T = termination resistance should be equal to output impedance Z_o of the pulse generator.

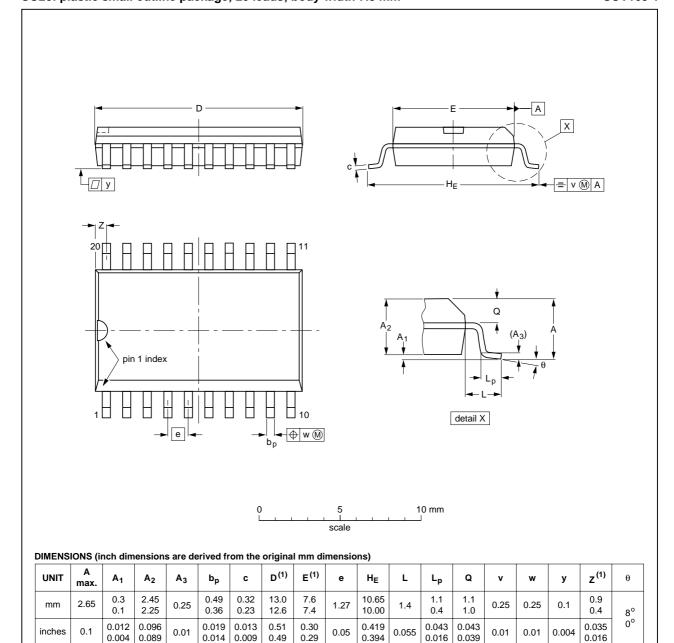
 C_L = load capacitance including jig and probe capacitance.

Fig 8. Load circuitry for measuring switching times

Table 9. **Test data**

Туре	Input L		Load	Test
	VI	t _r , t _f	CL	
74AHC377	V _{CC}	≤ 3.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}
74AHCT377	3.0 V	≤ 3.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}

74AHC_AHCT377_2 © Nexperia B.V. 2017. All rights reserved Rev. 02 — 12 June 2008


11 of 16

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

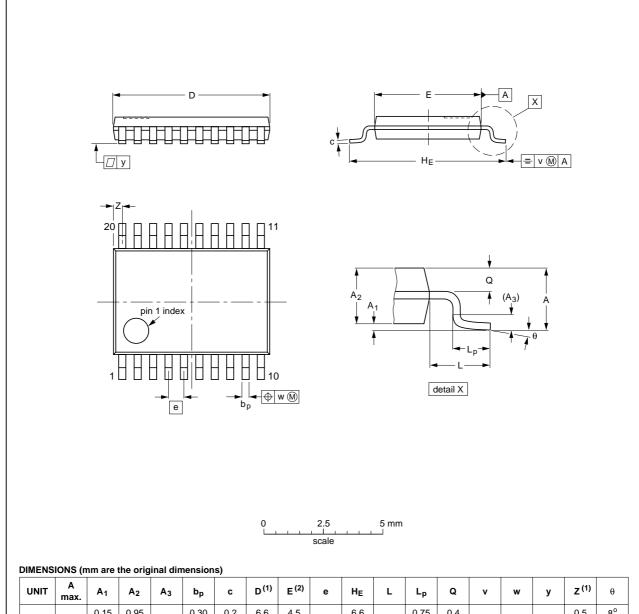
12 of 16

Note

Product data sheet

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC JEITA		PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013				99-12-27 03-02-19


Package outline SOT163-1 (SO20) Fig 9.

74AHC_AHCT377_2 © Nexperia B.V. 2017. All rights reserved Rev. 02 — 12 June 2008

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

13 of 16

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

Product data sheet

Downloaded from Arrow.com.

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

	OUTLINE		REFER	EUROPEAN	ISSUE DATE		
	VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
	SOT360-1		MO-153				99-12-27 03-02-19

Fig 10. Package outline SOT360-1 (TSSOP20)

74AHC_AHCT377_2 © Nexperia B.V. 2017. All rights reserved Rev. 02 — 12 June 2008

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
LSTTL	Low-power Schottky Transistor-Transistor Logic
MM	Machine Model

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
74AHC_AHCT377_2	20080612	Product data sheet	-	74AHC_AHCT377_1				
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 							
	 Legal texts have been adapted to the new company name where appropriate. 							
	• <u>Table 6</u> : the	conditions for input leakag	e current have been cha	nged.				
74AHC_AHCT377_1	20000815	Product specification	-	-				

74AHC_AHCT377_2

Product data sheet
Rev. 02 — 12 June 2008
14 of 16

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

17. Contents

1	General description	1
2	Features	. 1
3	Ordering information	2
4	Functional diagram	2
5	Pinning information	4
5.1	Pinning	4
5.2	Pin description	4
6	Functional description	. 5
7	Limiting values	5
8	Recommended operating conditions	6
9	Static characteristics	6
10	Dynamic characteristics	8
11	Waveforms	10
12	Package outline	12
13	Abbreviations	14
14	Revision history	14
15	Legal information	15
15.1	Data sheet status	15
15.2	Definitions	15
15.3	Disclaimers	
15.4	Trademarks	
16	Contact information	
17	Contonts	16

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 12 June 2008