
BOURNS®

- High Current Triacs
- 16 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- 125 A Peak Current
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT
TIC	246D		400	
Popositive peak off state valtage (see Nate 1)	246M		600	V
Repetitive peak off-state voltage (see Note 1)	246S	700 800	700	V
TIC	246N		800	
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)	. 7	I _{T(RMS)}	16	Α
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Not	e 3)	I _{TSM}	125	Α
Peak gate current		I _{GM}	±1	Α
Operating case temperature range		T _C	-40 to +110	°C
Storage temperature range		T _{stg}	-40 to +125	ç
Lead temperature 1.6 mm from case for 10 seconds		T_L	230	°C

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 400 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse volta ge and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER TEST CONDITIONS			IONS	MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V_D = rated V_{DRM}	I _G = 0	T _C = 110°C			±2	mA
I _{GT}		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		12	50	mA
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-19	-50	
	current	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-16	-50	шА
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		34		
V _{GT}		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		8.0	2	V
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.8	-2	
	voltage	$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.8	-2	
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		0.9	2	
V _T	On-state voltage	$I_{TM} = \pm 22.5 \text{ A}$	$I_G = 50mA$	(see Note 4)		±1.4	±1.7	V

[†] All voltages are with respect to Main Terminal 1.

NOTE 4: This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

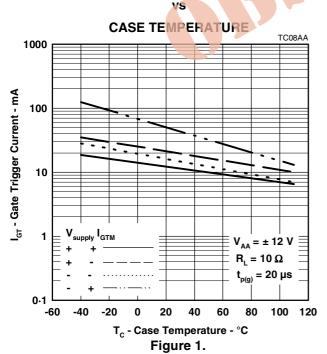
PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

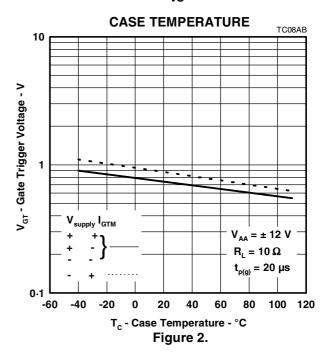
electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER	TER TEST CONDITIONS			MIN	TYP	MAX	UNIT
1	Holding current	V _{supply} = +12 V†	$I_G = 0$	Init' I _{TM} = 100 mA		22	40	mA
'н	riolang darient	$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$		-12	-40	IIIA
IL	Latching current	$V_{\text{supply}} = +12 \text{ V}\dagger$	(see Note 5)				80	mA
		$V_{\text{supply}} = -12 \text{ V}\dagger$					-80	1111
dv/dt	Critical rate of rise of	$V_D = Rated V_D$	$I_G = 0$	$T_{\rm C} = 110^{\circ}{\rm C}$		±400		V/µs
av, at	off-state voltage	V _D = riatou V _D	ig – v	16-1100		1100		ν/μο
dv/dt _(c)	Critical rise of	$V_D = Rated V_D$		T _C = 80°C	±1.2	±9		V/µs
	commutation voltage	$di/dt = 0.5 I_{T(RMS)}/ms$	$I_{T} = 1.4 I_{T(RMS)}$	11.2			ν/μ3	
di/dt	Critical rate of rise of	V_D = Rated V_D	I _{GT} = 50 mA	T _C = 110°C		±100		A/µs
	on -state current	di _G /dt = 50 mA/μs		1C = 110 O		±100		-Α/μδ

[†] All voltages are with respect to Main Terminal 1.

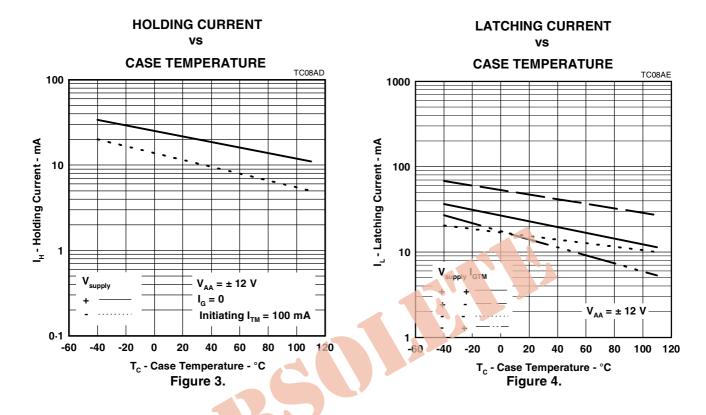

NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

thermal characteristics


PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.9	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

TYPICAL CHARACTERISTICS

GATE TRIGGER CURRENT


GATE TRIGGER VOLTAGE vs

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TYPICAL CHARACTERISTICS

