NLSF1174

Hex D Flip-Flop with Common Clock and Reset

This device consists of six D flip-flops with common Clock and Reset inputs. Each flip-flop is loaded with a low-to-high transition of the Clock input. Reset is asynchronous and active low. All inputs/outputs are standard CMOS compatible.

Features

- Output Drive Compatibility: 10 LSTTL Loads
- Outputs Directly Interface to CMOS
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- MSL Level 1
- Chip Complexity: 162 FET
- $\mathrm{Pb}-$ Free Package is Available*

Center pad on bottom may be connected to V_{CC} of device. This pad must be isolated or connected to V_{CC}.

Figure 1. PIN ASSIGNMENT (Top View)

[^0]ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

QFN-16
MN SUFFIX
CASE 485G

MARKING DIAGRAM

NLSF1174	$=$ Device Code
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	= Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE			
Inputs			
Reset	Clock	D	Q
L	X	X	L
H	-	H	H
H	-	L	L
H	L	X	No Change
H	L	X	No Change

ORDERING INFORMATION

Device	Package	Shipping †
NLSF1174MNR2	QFN-16	$3000 /$ Tape \& Reel
NLSF1174MNR2G	QFN-16 (Pb-Free)	3000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 2. LOGIC DIAGRAM
DESIGN/VALUE TABLE

Design Criteria	Value	
Internal Gate Count*	Unit	
Internal Gate Propagation Delay	40.5	ea
Internal Gate Power Dissipation	1.5	
Speed Power Product	5.0	ns

*Equivalent to a two-input NAND gate.

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
DC Supply Voltage (Referenced to GND)	V_{CC}	-0.5 to +7.0	V
DC Input Voltage (Referenced to GND)	$\mathrm{V}_{\text {IN }}$	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5$	V
DC Output Voltage (Referenced to GND) (Note 1)	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
DC Input Current, per Pin	In	± 20	mA
DC Output Current, per Pin	Iout	± 25	mA
DC Supply Current, V_{CC} and GND Pins	ICC	± 50	mA
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature, 1 mm from Case for 10 Seconds \quad PDIP, SOIC, TSSOP	T_{L}	260	${ }^{\circ} \mathrm{C}$
Junction Temperature Under Bias	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Thermal Resistance QFN	$\theta_{\text {JA }}$	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$ QFN	P_{D}	800	mW
Moisture Sensitivity	MSL	Level 1	
Flammability Rating Oxygen Index: 30 to 35	F_{R}	UL 94 V-0 @ 0.125 in	
ESD Withstand VoltageHuman Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\mathrm{V}_{\mathrm{ESD}}$	$\begin{aligned} & >2000 \\ & >100 \\ & >500 \end{aligned}$	V
Latchup Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	lıATCHUP	± 300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Io absolute maximum rating must be observed.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.
6. For high frequency or heavy load considerations, see the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

	Parameter		Symbol	Min	Max

7. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Parameter	Test Conditions	Symbol	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit	
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid l_{\text {OUT }} \leq 20 \mu \mathrm{~A} \end{aligned}$	V_{IH}	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	V	
Maximum Low-Level Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \mathrm{l}_{\text {OUT }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	V	
Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\text {IL }} \\ & \text { loutl } \leq 20 \end{aligned}$	V_{OH}	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V	
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\| \mathrm{IOUT} \mid \leq 4.0 \mathrm{~mA} \\ & \mid \text { lout } \leq 5.2 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{array}{r} 3.84 \\ 5.34 \end{array}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$		
Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\text {IL }} \\ & \mid \text { lout } \leq 2020 \end{aligned}$	V_{OL}	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \|\mathrm{louT}\| \leq 4.0 \mathrm{~mA} \\ & \mid \text { lout }^{2} \leq 5.2 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$		
Maximum Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	1 N	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { IOUT }=0 \mu \mathrm{~A} \end{aligned}$	I_{CC}	6.0	4.0	40	160	$\mu \mathrm{A}$	

8. Information on typical parametric values, along with high frequency or heavy load considerations, can be found in the ON Semiconductor High-Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Parameter	Symbol	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
Maximum Clock Frequency (50\% Duty Cycle) (Figures 4 and 7)	$\mathrm{f}_{\max }$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 30 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.8 \\ & 24 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 20 \\ & 24 \\ & \hline \end{aligned}$	MHz
Maximum Propagation Delay, Clock to Q (Figures 5 and 7)	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	$\begin{gathered} 140 \\ 28 \\ 24 \end{gathered}$	$\begin{gathered} 165 \\ 33 \\ 28 \\ \hline \end{gathered}$	ns
Maximum Propagation Delay, Reset to Q (Figures 2 and 7)	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 110 \\ 21 \\ 19 \end{gathered}$	$\begin{gathered} 140 \\ 28 \\ 24 \end{gathered}$	$\begin{gathered} 160 \\ 32 \\ 27 \end{gathered}$	ns
Maximum Output Transition Time, Any Output (Figures 4 and 7)	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns
Maximum Input Capacitance	$\mathrm{C}_{\text {in }}$		10	10	10	pF
Power Dissipation Capacitance, per Enabled Output (Note 10)	CPD	Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$				pF

9. For propagation delays with loads other than 50 pF , and information on typical parametric values, see the ON Semiconductor High-Speed CMOS Data Book (DL129/D).
10. Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2 f}+I_{C C} V_{C C}$. For load considerations, see the $O N$ Semiconductor High-Speed CMOS Data Book (DL129/D).

TIMING REQUIREMENTS ($C_{L}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Parameter	Figure	Symbol	v_{cc}	Guaranteed Limit						Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$		$\leq 85^{\circ} \mathrm{C}$		$\leq 125^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	Min	Max	
Minimum Setup Time, Data to Clock	6	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \\ & 9.0 \end{aligned}$		$\begin{aligned} & 65 \\ & 13 \\ & 11 \end{aligned}$		$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		ns
Minimum Hold Time, Clock to Data	6	$t_{\text {h }}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		ns
Minimum Recovery Time, Reset Inactive to Clock	5	$\mathrm{t}_{\text {rec }}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		ns
Minimum Pulse Width, Clock	4	$\mathrm{t}_{\text {w }}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		110 22 19		ns
Minimum Pulse Width, Reset	5	$\mathrm{t}_{\text {w }}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		110 22 19		ns
Maximum Input Rise and Fall Times	4	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$		$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$		$\begin{gathered} \hline 1000 \\ 500 \\ 400 \end{gathered}$		$\begin{aligned} & \hline 1000 \\ & 500 \\ & 400 \end{aligned}$	ns

Figure 3. Expanded Logic Diagram

Figure 4. Switching Waveform

Figure 6. Switching Waveform

Figure 5. Switching Waveform

Figure 7. Test Circuit

PIN1/PRODUCT ORIENTATION CARRIER TAPE

Figure 8.

QFN16 3x3, 0.5P
CASE 485G
ISSUE G
SCALE 2:1

SIDE VIEW

battam View

NDTES:

1. DIMENSIONING AND TQLERANCING PER ASME Y14.5M, 1994.
2. CINTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN 6 APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FRDM THE TERMINAL TIP.
4. CIPLANARITY APPLIES TD THE EXPISED PAD AS WELL AS. THE TERMINALS.

DETAIL B
CILTERTRUCTIONs

DETAIL A
alternate terminal CONSTRUCTIINS

DIM	MILLIMETERS				
	MIN.	NDM.	MAX.		
A	0.80	0.90	1.00		
A1	0.00	0.03	0.05		
A3	0.20 REF				
b	0.18	0.24			0.30
D	3.00 BSC				
D2	1.65	1.75	1.85		
E	3.00 BSC				
E2	1.65	1.75	1.85		
e	0.50 BSC				
k	0.18 TYP				
L	0.30	0.40	0.50		
L1	0.00	0.08	0.15		

GENERIC MARKING DIAGRAM*
${ }^{\circ} \mathrm{XXXXX}$
XXXXX
ALYW.
-
XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " \because ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

