Dual D-Type Positive Edge-Triggered Flip-Flop

The MC74AC74/74ACT74 is a dual D-type flip-flop with Asynchronous Clear and Set inputs and complementary (Q,\overline{Q}) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.

Asynchronous Inputs:

LOW input to \overline{S}_D (Set) sets Q to HIGH level LOW input to \overline{C}_D (Clear) sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Features

- Outputs Source/Sink 24 mA
- 'ACT74 Has TTL Compatible Inputs
- These are Pb–Free Devices

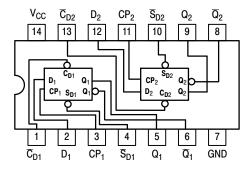
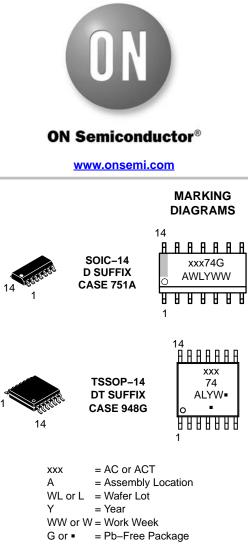



Figure 1. Pinout: 14–Lead Packages Conductors (Top View)

PIN ASSIGNMENT

PIN	FUNCTION			
D ₁ , D ₂	Data Inputs			
CP ₁ , CP ₂	Clock Pulse Inputs			
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs			
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs			
$\frac{Q_1,\overline{Q}_1,Q_2,}{\overline{Q}_2}$	Outputs			

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

[©] Semiconductor Components Industries, LLC, 2015 January, 2015 – Rev. 8

TRUTH TABLE (Each Half)

	Inp	Outj	outs		
<u></u> S _D	\overline{C}_{D}	СР	D	Q	Q
L	Н	Х	Х	Н	L
н	L	Х	Х	L	н
L	L	Х	Х	Н	Н
Н	н		Н	Н	L
Н	н		L	L	Н
Н	Н	L	Х	Q_0	\overline{Q}_0

NOTE: H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial;

 $\Box = LOW-to-HIGH Clock Transition$ $Q_0(\overline{Q}_0) = Previous Q(\overline{Q}) before LOW-to-HIGH$

Transition of Clock

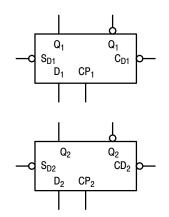
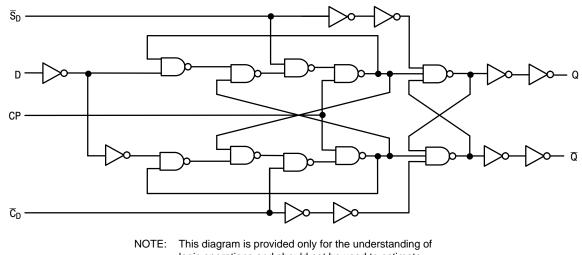



Figure 2. Logic Symbol

logic operations and should not be used to estimate propagation delays.

Figure 3. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit		
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V		
VI	DC Input Voltage		$-0.5 \leq V_I \leq V_{CC} + 0.5$	V		
Vo	DC Output Voltage	(Note 1)	$-0.5 \le V_O \le V_{CC} + 0.5$	V		
I _{IK}	DC Input Diode Current		±20	mA		
I _{OK}	DC Output Diode Current		±50	mA		
I _O	DC Output Sink/Source Current		±50	mA		
I _{CC}	DC Supply Current per Output Pin		±50	mA		
I _{GND}	DC Ground Current per Output Pin		±50			
T _{STG}	Storage Temperature Range		-65 to +150	°C		
TL	Lead temperature, 1 mm from Case for 10 Sec	onds	260	°C		
TJ	Junction temperature under Bias		+ 150	°C		
θ_{JA}	Thermal Resistance (Note 2)	SOIC TSSOP	125 170	°C/W		
P _D	Power Dissipation in Still Air at 85°C	SOIC TSSOP	125 170	mW		
MSL	Moisture Sensitivity		Level 1			
F _R	Flammability Rating Ox	kygen Index: 30% – 35%	UL 94 V-0 @ 0.125 in			
V _{ESD}	, i i i i i i i i i i i i i i i i i i i	nan Body Model (Note 3) Machine Model (Note 4) d Device Model (Note 5)	> 2000 > 200 > 1000	V		
I _{Latch-Up}	Latch–Up Performance Above V _{CC} and Belo	w GND at 85°C (Note 6)	±100	mA		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I_O absolute maximum rating must be observed.

The package thermal impedance is calculated in accordance with JESD51–7.
Tested to EIA/JESD22–A114–A.

4. Tested to EIA/JESD22-A115-A.

5. Tested to JESD22-C101-A.

6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
N/		'AC	2.0	5.0	6.0	N
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V
			-	150	_	
t _r , t _f	Input Rise and Fall Time (Note) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	_	40	_	ns/V
		V _{CC} @ 5.5 V	_	25	_	
	Input Rise and Fall Time (Note)	V _{CC} @ 4.5 V	_	10	_	τ ο Δ /
t _r , t _f	ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	_	8.0	_	ns/V
TJ	Junction Temperature (PDIP)	•	_	_	140	°C
T _A	Operating Ambient Temperature Range			25	85	°C
I _{OH}	Output Current – High		-	-	-24	mA
I _{OL}	Output Current – Low		-	-	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 1. V_{in} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC		
Symbol	Parameter	Parameter V_{CC} $V_A = +25^{\circ}C$		T _A = –40°C to +85°C	Unit	Conditions	
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = –50 μA
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -12 mA I_{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	I _{OUT} = 50 μA
		3.0 4.5 5.5	- -	0.36 0.36 0.36	0.44 0.44 0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 12 mA I_{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_{I} = V_{CC}, GND$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	4.0	40	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC CHARACTERISTICS

				74AC		74	AC		
Symbol	Parameter	V_{CC}^{*} $T_{A} = +25^{\circ}C$ (V) $C_{L} = 50 \text{ pF}$				Unit	Fig. No.		
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	3.3 5.0	100 140	125 160	-	95 125	-	MHz	3–3
t _{PLH}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.3 5.0	5.0 3.5	8.0 6.0	12.5 9.0	4.0 3.0	13.0 10.0	ns	3–6
t _{PHL}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.3 5.0	4.0 3.0	10.5 8.0	12.0 9.5	3.5 2.5	13.5 10.5	ns	3–6
t _{PLH}	Propagation Delay C_{Pn} to Q_n or \overline{Q}_n	3.3 5.0	4.5 3.5	8.0 6.0	13.5 10.0	4.0 3.0	16.0 10.5	ns	3–6
t _{PHL}	Propagation Delay C_{Pn} to Q_n or \overline{Q}_n	3.3 5.0	3.5 2.5	8.0 6.0	14.0 10.0	3.5 2.5	14.5 10.5	ns	3–6

*Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

AC OPERATING REQUIREMENTS

				74AC	74AC		
Symbol	Parameter			₄ = +25°C ∟ = 50 pF	T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guaranteed Minimum			
t _s	Set-up Time, HIGH or LOW D _n to CP _n	3.3 5.0	1.5 1.0	4.0 3.0	4.5 3.0	ns	3–9
t _h	Hold Time, HIGH or LOW D _n to CP _n	3.3 5.0	-2.0 -1.5	0.5 0.5	0.5 0.5	ns	3–9
t _w	C _{Pn} or C _{Dn} or S _{Dn} Pulse Width	3.3 5.0	3.0 2.5	5.5 4.5	7.0 5.0	ns	3–6
t _{rec}	Recovery TIme C _{Dn} or S _{Dn} to CP	3.3 5.0	-2.5 -2.0	0 0	0 0	ns	3–9

*Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			744	СТ	74ACT		
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = –40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -24 mA I_{OH} -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA I_{OL} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_{I} = V_{CC}, GND$
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 V$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	_	4.0	40	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS

				74ACT		74A	СТ		
Symbol	Parameter	V_{CC}^{*} $T_{A} = +25^{\circ}C$ (V) $C_{L} = 50 \text{ pF}$				Unit	Fig. No.		
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	5.0	145	210	-	125	-	MHz	3–3
t _{PLH}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	5.0	3.0	5.5	9.5	2.5	10.5	ns	3–6
t _{PHL}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	5.0	3.0	6.0	10.0	3.0	11.5	ns	3–6
t _{PLH}	Propagation Delay C_{Pn} to Q_n or \overline{Q}_n	5.0	4.0	7.5	11.0	4.0	13.0	ns	3–6
t _{PHL}	Propagation Delay C_{Pn} to Q_n or \overline{Q}_n	5.0	3.5	6.0	10.0	3.0	11.5	ns	3–6

*Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

AC OPERATING REQUIREMENTS

			74ACT		74ACT								
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF								T _A = −40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guarantee	d Minimum								
t _s	Set-up Time, HIGH or LOW D _n to CP _n	5.0	1.0	3.0	3.5	ns	3–9						
t _h	Hold Time, HIGH or LOW D _n to CP _n	5.0	-0.5	1.0	1.0	ns	3–9						
t _w	C _{Pn} or C _{Dn} or S _{Dn} Pulse Width	5.0	3.0	5.0	6.0	ns	3–6						
t _{rec}	Recovery Time \overline{C}_{Dn} or \overline{S}_{Dn} to CP	5.0	-2.5	0	0	ns	3–9						

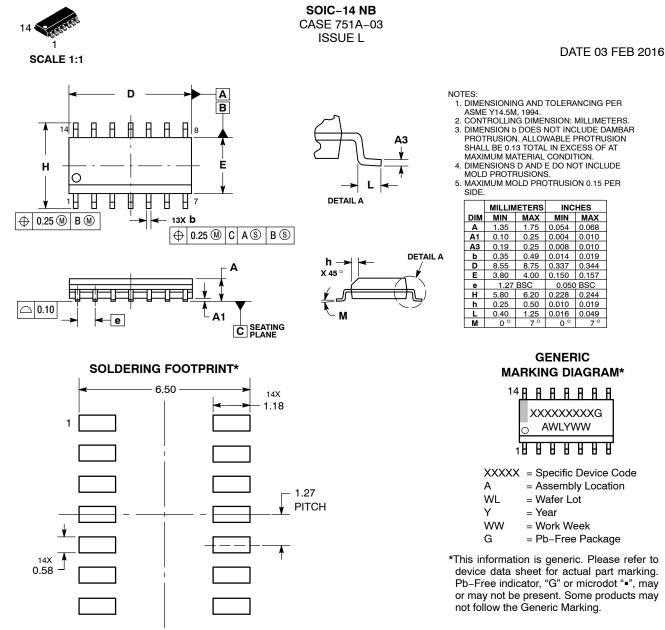
*Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0 V$
C _{PD}	Power Dissipation Capacitance	35	pF	$V_{CC} = 5.0 V$

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74AC74DG	SOIC-14 (Pb-Free)	55 Units/Rail
MC74AC74DR2G	SOIC-14 (Pb-Free)	2500/Tape & Reel
MC74AC74DTR2G	TSSOP-14 (Pb-Free)	2500/Tape & Reel
MC74ACT74DG	SOIC-14 (Pb-Free)	55 Units/Rail
MC74ACT74DR2G	SOIC-14 (Pb-Free)	2500/Tape & Reel
MC74ACT74DTR2G	TSSOP-14 (Pb-Free)	2500/Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DUSEM

0.068

0.019

0.344

DIMENSIONS: MILLIMETERS

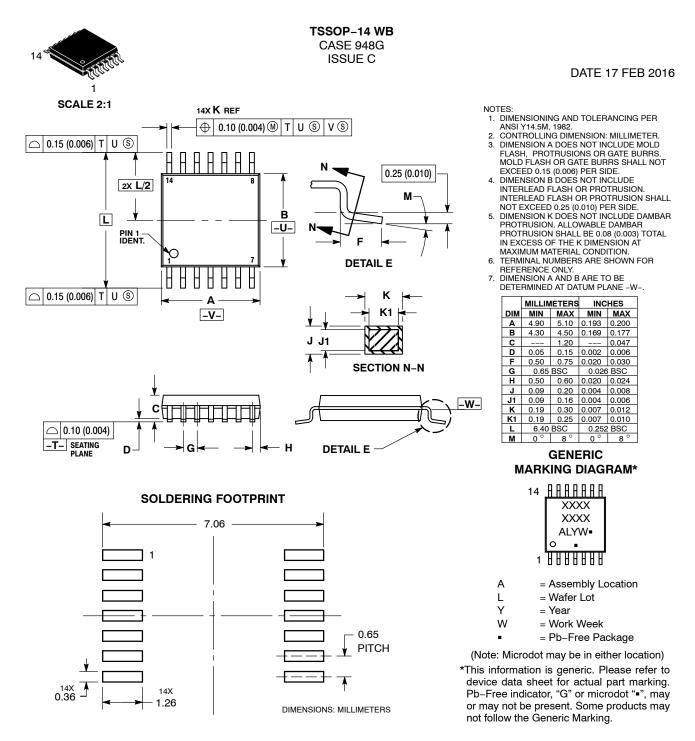
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016


STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANDDE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemí

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1		
onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation					

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥