

Precision Micropower, OVP, RRIO Operational Amplifier

Data Sheet

FEATURES

Single-supply operation: 3.0 V to 30 V Wide input voltage range Rail-to-rail output swing Low supply current: 200 µA/amplifier Wide bandwidth: 1.2 MHz Slew rate: 0.46 V/µs Low offset voltage: 250 µV maximum No phase reversal Overvoltage protection (OVP) 25 V above/below supply rails at ±5 V 12 V above/below supply rails at ±15 V

APPLICATIONS

Industrial process control Battery-powered instrumentation Power supply control and protection Telecommunications Remote sensors Low voltage strain gage amplifiers DAC output amplifiers

GENERAL DESCRIPTION

The ADA4091-2 dual and ADA4091-4 quad are micropower, single-supply, 1.2 MHz bandwidth amplifiers featuring rail-to-rail inputs and outputs. They are guaranteed to operate from a +3.0 V to +30 V single supply as well as from ± 1.5 V to ± 15 V dual supplies.

The ADA4091-2/ADA4091-4 features a unique input stage that allows the input voltage to exceed either supply safely without any phase reversal or latch-up; this is called overvoltage protection (OVP).

Applications for these amplifiers include portable telecommunications equipment, power supply control and protection, and interface for transducers with wide output ranges. Sensors requiring a rail-to-rail input amplifier include Hall effect, piezoelectric, and resistive transducers.

The ability to swing rail-to-rail at both the input and output enables designers, for example, to build multistage filters in single-supply systems and to maintain high signal-to-noise ratios (SNR).

The ADA4091-2/ADA4091-4 is specified over the extended industrial temperature range of -40°C to +125°C. The ADA4091-2/ ADA4091-4 is part of the growing selection of 36 V, low power operational amplifiers from Analog Devices, Inc., (see Table 1).

Rev. H

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADA4091-2/ADA4091-4

PIN CONFIGURATIONS

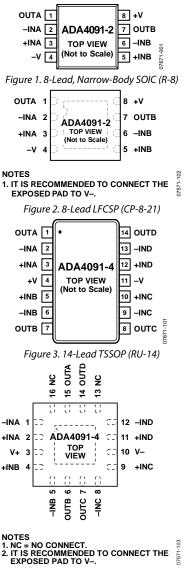


Figure 4. 16-Lead LFCSP (CP-16-17)

The ADA4091-2 is available in 8-lead, plastic SOIC and 8-lead LFCSP packages. The ADA4091-4 is available in 14–lead TSSOP and 16-lead LFCSP surface-mount packages.

Family	Rail-to-Rail I/O	PJFET	Low Noise
Single			OP1177
Dual	ADA4091-2	AD8682	OP2177
Quad	ADA4091-4	AD8684	OP4177

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2008–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Applications1
General Description1
Pin Configurations1
Revision History
Specifications
Electrical Specifications
Absolute Maximum Ratings6
Thermal Resistance

REVISION HISTORY

5/2016—Rev. G. to Rev. H	
Changed CP-8-9 to CP-8-21	Throughout
Changes to Figure 2	1
Updated Outline Dimensions	
Changes to Ordering Guide	

10/2013—Rev. F. to Rev. G

Changed Open-Loop Impedance to Closed-Loop Impedance	
(Throughout)	3
Updated Outline Dimensions 1	7

10/2010-Rev. E. to Rev. F

Changes to Features Section and General Description Section . 1	L
Changes to Outline Dimensions17	7

5/2010—Rev. D. to Rev. E

Changes to Data Sheet Title	1
Changes to Table 2, Input Characteristics, Offset Voltage	3
Changes to Table 3, Input Characteristics, Offset Voltage	4
Changes to Table 4, Input Characteristics, Offset Voltage	5

4/2010-Rev. C to Rev. D

Changes to Table 2, Added LFCSP to Input Characteristics 3
Changes to Table 3, Added LFCSP to Input Characteristics 4
Changes to Table 4, Added LFCSP to Input Characteristics 5

10/2009—Rev. B to Rev. C

Added 8-Lead LFCSP and 16-Lead LFCSP	Universal
Change to Features Section	1
Updated Outline Dimensions	16
Changes to Ordering Guide	

ESD Caution	6
Typical Performance Characteristics	7
Theory of Operation	14
Input Stage	14
Output Stage	14
Input Overvoltage Protection	15
Outline Dimensions	16
Ordering Guide	18

7/2009—Rev. A to Rev. B

Added New Part ADA4091-4Ui	niversal
Changes to Features Section, General Description Section	n, and
Figure 4	1
Added Figure 2, Renumbered Sequentially	1
Changes to Table 1	1
Changes to Table 2	3
Changes to Table 3	4
Changes to Table 4	5
Changes to Table 5	6
Changes to Table 6	6
Updated Outline Dimensions	16
Changes to Ordering Guide	16

7/2009—Rev. 0 to Rev. A

Changes to Data Sheet Title	1
Changes to Features	1
Changes to Table 2	3
Changes to Table 3	4
Changes to Table 4	
Added Input Current Parameter, Table 5	6
Added New Figure 12 and Figure 13, Renumbered	
Sequentially	8
Added New Figure 24 and Figure 25	10
Added New Figure 36 and Figure 37	
Added New Figure 43	13
Changes to Input Overvoltage Protection Section	
Changes to Ordering Guide	

10/2008—Revision 0: Initial Version

SPECIFICATIONS ELECTRICAL SPECIFICATIONS

 V_{SY} = ±1.5 V, V_{CM} = 0.0 V, T_{A} = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos		-250	-40	+250	μV
		ADA4091-4 LFCSP package	-400	-40	+400	μV
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$	-600		+600	μV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$			2.5		μV/°C
Input Bias Current	IB		-55	-44		nA
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$	-55		+55	nA
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$	-275		+275	nA
Input Offset Current	los		-3	0.5	+3	nA
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$	-5		+5	nA
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$	-75		+75	nA
Input Voltage Range			-1.5		+1.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -1.35 \text{ V to } +1.35 \text{ V}$	84	100		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	78			dB
Large Signal Voltage Gain	Avo	$R_L = 100 \text{ k}\Omega$, $V_O = -1.2 \text{ V}$ to $+1.2 \text{ V}$	106	113		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	101			dB
		$R_L = 10 \text{ k}\Omega$, $V_O = -1.2 \text{ V}$ to $+1.2 \text{ V}$	92	94		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	85			dB
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 100 \text{ k}\Omega \text{ to GND}$	1.490	1.495		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	1.490			V
		$R_L = 10 k\Omega$ to GND	1.475	1.485		V
		–40°C to +125°C	1.455			V
Output Voltage Low	Vol	$R_L = 100 \text{ k}\Omega \text{ to GND}$		-1.499	-1.495	V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			-1.495	V
		$R_L = 10 \text{ k}\Omega \text{ to GND}$		-1.495	-1.490	V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			-1.490	V
Short-Circuit Limit	lsc	Source/sink		±31		mA
Closed-Loop Impedance	Zout	$f = 1 MHz, A_V = 1$		102		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 2.7 V$ to 36 V	108	126		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	100			dB
Supply Current per Amplifier	lsy	$I_0 = 0 \text{ mA}$		165	200	μA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			300	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega, C_L = 30 \text{ pF}$		0.46		V/µs
Settling Time	ts	To 0.01%		22		μs
Gain Bandwidth Product	GBP			1.22		MHz
Phase Margin	Фм			69		Degree
NOISE PERFORMANCE	+ IVI					209.00
Voltage Noise	en p-p	0.1 Hz to 10 Hz		0.8		μV р-р
Voltage Noise Density	en p p	f = 1 kHz		24		nV/√Hz

 $V_{\text{SY}} = \pm 5.0$ V, $V_{\text{CM}} = 0.0$ V, $T_{\text{A}} = 25^{\circ}\text{C},$ unless otherwise noted.

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos		-250	-45	+250	μV
		ADA4091-4 LFCSP package	-400	-40	+400	μV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	-600		+600	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			2.5		μV/°C
Input Bias Current	IB		-60	-50		nA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	-80		+80	nA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	-350		+350	nA
Input Offset Current	los		-3	0.5	+3	nA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	-7		+7	nA
		$-40^{\circ}C \leq T_{A} \leq +125^{\circ}C$	-100		+100	nA
Input Voltage Range			-5		+5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -4.85 V \text{ to } +4.85 V$	95	113		dB
		$-40^\circ C \le T_A \le +125^\circ C$	88			dB
Large Signal Voltage Gain	Avo	$R_L = 100 \text{ k}\Omega, V_O = \pm 4.7 \text{ V}$	113	117		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	106			dB
		$R_L = 10 \text{ k}\Omega, V_O = \pm 4.7 \text{ V}$	98	100		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	90			dB
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 100 \text{ k}\Omega \text{ to GND}$	4.980	4.990		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	4.980			V
		$R_L = 10 \text{ k}\Omega \text{ to GND}$	4.950	4.960		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	4.900			V
Output Voltage Low	Vol	$R_L = 100 \text{ k}\Omega \text{ to GND}$		-4.998	-4.990	V
1 5		$-40^{\circ}C \le T_A \le +125^{\circ}C$			-4.980	V
		$R_L = 10 \text{ k}\Omega \text{ to GND}$		-4.990	-4.980	V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			-4.975	V
Short-Circuit Limit	Isc	Source/sink		±20		mA
Closed-Loop Impedance	Zout	$f = 1 MHz, A_V = 1$		77		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 2.7 V \text{ to } 36 V$	108	126		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	100			dB
Supply Current per Amplifier	Isy	$I_0 = 0 \text{ mA}$		180	225	μA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			300	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega, C_L = 30 \text{ pF}$		0.46		V/µs
Settling Time	ts	To 0.01%		22		μs
Gain Bandwidth Product	GBP			1.22		MHz
Phase Margin	Фм			70		Degrees
NOISE PERFORMANCE	₩ IVI					Degree
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.8		μV p-p
		0.1 112 10 10 112	1	0.0		⊢ μ∗ μ⁻μ

 V_{SY} = ±15.0 V, V_{CM} = 0.0 V, V_{O} = 0.0 V, T_{A} = 25°C, unless otherwise noted.

Table 4.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos		-250	-35	+250	μV
		ADA4091-4 LFCSP package	-400	-40	+400	μV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	-600		+600	μV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$			3.0		μV/°C
Input Bias Current	IB		-60	-50		nA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	-80		+80	nA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	-510		+510	nA
Input Offset Current	los		-3	0.5	+3	nA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	-10		+10	nA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	-140		+140	nA
Input Voltage Range			-15		+15	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -14.85 \text{ V}$ to $+14.85 \text{ V}$	104	121		dB
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$	95			dB
Large Signal Voltage Gain	Avo	$R_L = 100 \text{ k}\Omega$, $V_O = \pm 14.7 \text{ V}$	116	119		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	108			dB
		$R_L = 10 \text{ k}\Omega, V_O = \pm 14.7 \text{ V}$	102	104		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	93			dB
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{он}	$R_L = 100 \text{ k}\Omega \text{ to GND}$	14.975	14.980		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	14.950			V
		$R_L = 10 \text{ k}\Omega$ to GND	14.900	14.920		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	14.800			V
Output Voltage Low	Vol	$R_L = 100 \text{ k}\Omega \text{ to GND}$		-14.996	-14.990	v
. 5		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			-14.985	V
		$R_L = 10 k\Omega$ to GND		-14.975	-14.950	v
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			-14.940	v
Short-Circuit Limit	lsc	Source/sink		±20		mA
Closed-Loop Impedance	Z _{OUT}	$f = 1 MHz, A_V = 1$		71		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 2.7 V \text{ to } 36 V$	108	126		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	100			dB
Supply Current per Amplifier	lsy	$I_0 = 0 \text{ mA}$		200	250	μA
Supply current per rampimer	.51	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		200	350	μΑ
DYNAMIC PERFORMANCE						P
Slew Rate	SR	$R_L = 100 \text{ k}\Omega, C_L = 30 \text{ pF}$		0.46		V/µs
Settling Time	ts	To 0.01%		22		μs
Gain Bandwidth Product	GBP			1.27		MHz
Phase Margin	Φ _M			72		Degrees
Channel Separation	CS	f = 1 kHz		100		dB
NOISE PERFORMANCE				100		ub
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.8		μV p-p
Voltage Noise Density		f = 1 kHz		0.8 25		μν ρ-ρ nV/√Hz
voltage noise Delisity	en			23		Πν/γΠΖ

ABSOLUTE MAXIMUM RATINGS

Table 5.

1	
Parameter	Rating
Supply Voltage	36 V
Input Voltage	Refer to the Input Overvoltage Protection section
Differential Input Voltage ¹	±Vsγ
Input Current	±5 mA
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

¹ Input current must be limited to ± 5 mA.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the device soldered on a 4-layer JEDEC standard PCB with zero airflow. The exposed pad is soldered to the application board.

Table 6. Thermal Resistance

Package Type	θ _{JA}	θις	Unit
8-Lead SOIC (R-8)	155	45	°C/W
14-Lead TSSOP (RU-14)	112	35	°C/W
8-Lead LFCSP (CP-8-21)	75	12	°C/W
16-Lead LFCSP (CP-16-17)	55	14	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

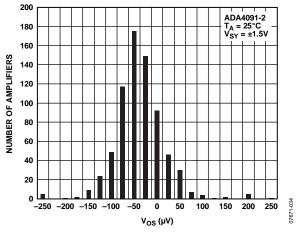
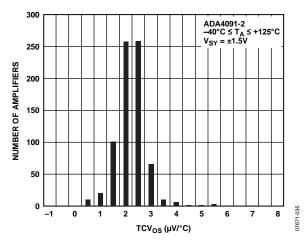
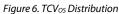




Figure 5. Input Offset Voltage Distribution

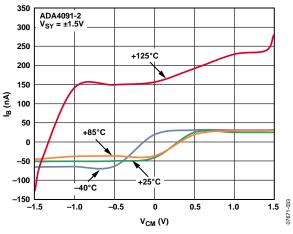


Figure 7. Input Bias Current vs. Common-Mode Voltage

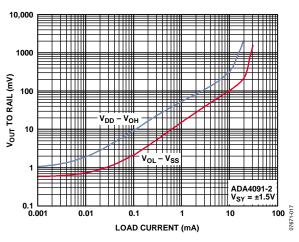
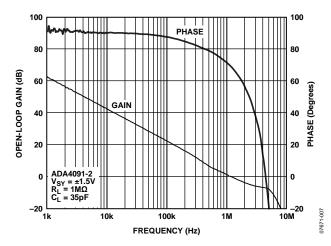
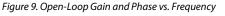




Figure 8. Dropout Voltage vs. Load Current

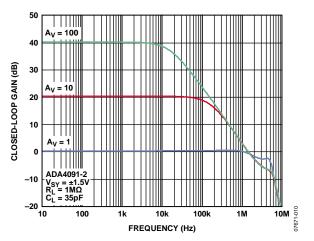


Figure 10. Closed-Loop Gain vs. Frequency

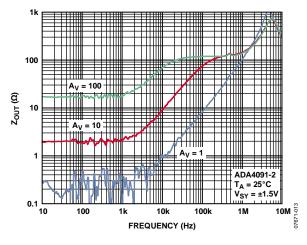


Figure 11. Output Impedance vs. Frequency

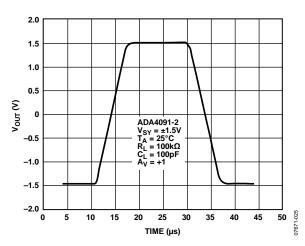


Figure 12. Large Signal Transient Response

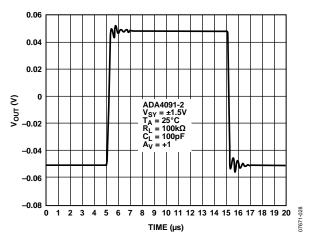
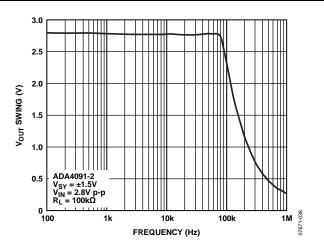
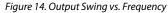
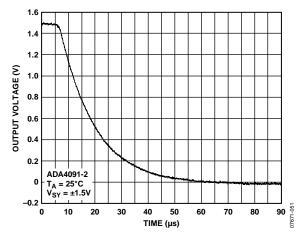
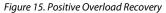






Figure 13. Small Signal Transient Response

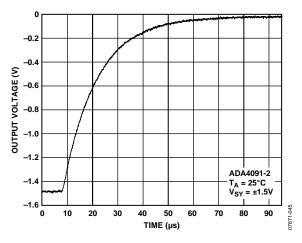
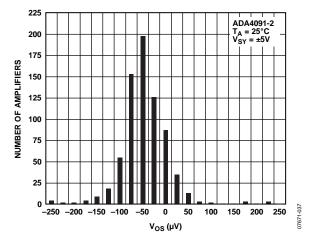
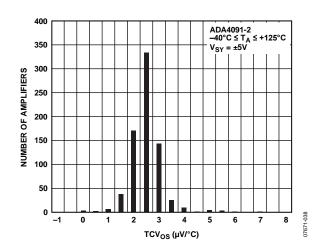




Figure 16. Negative Overload Recovery

Data Sheet

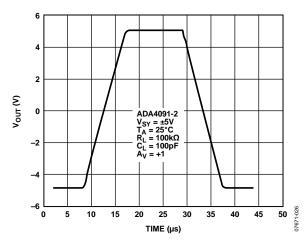


Figure 19. Large Signal Transient Response

ADA4091-2/ADA4091-4

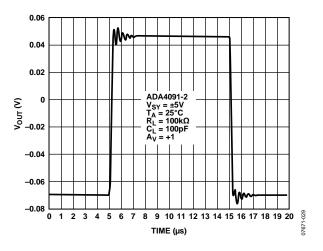
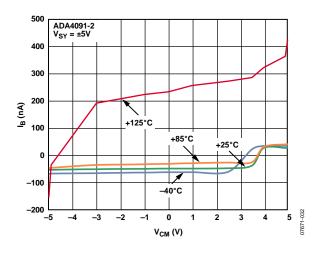
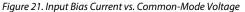




Figure 20. Small Signal Transient Response

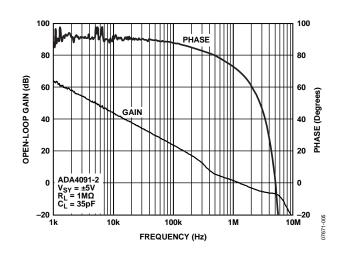
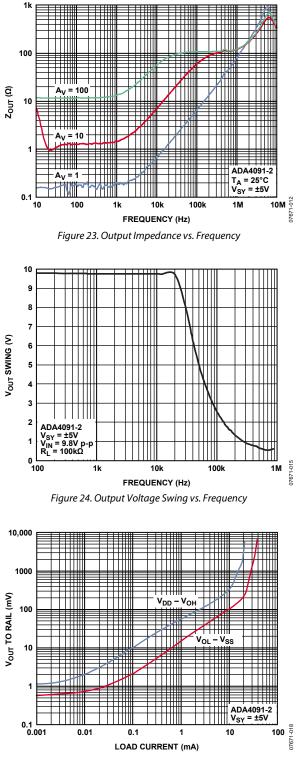
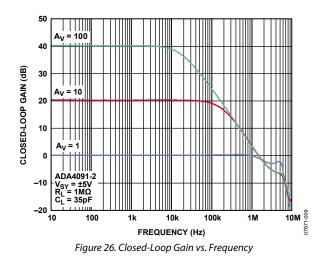
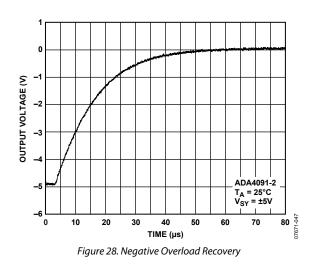
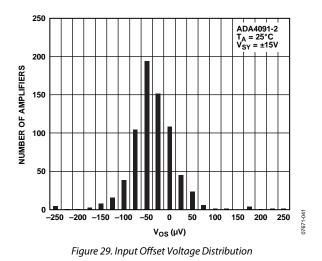
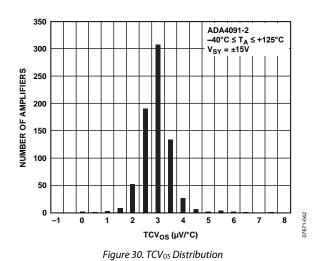


Figure 22. Open-Loop Gain and Phase vs. Frequency

Data Sheet


Figure 25. Dropout Voltage vs. Load Current



Data Sheet

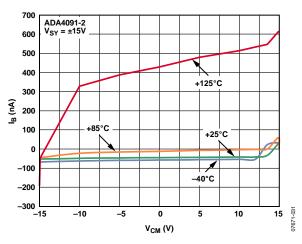
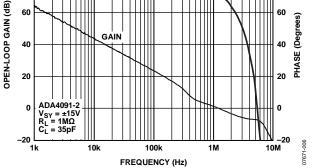
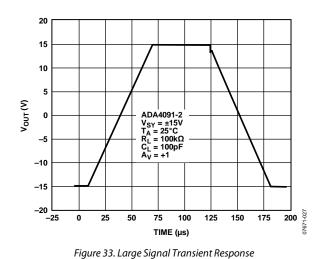



Figure 31. Input Bias Current vs. Common-Mode Voltage

ADA4091-2/ADA4091-4 100 PHASE 80 60 GAIN 40



100

80

60

Figure 32. Open-Loop Gain and Phase vs. Frequency

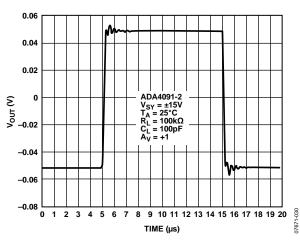
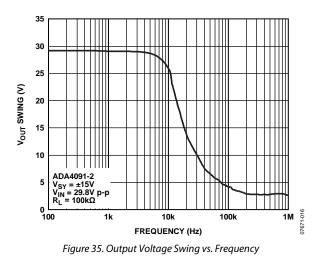



Figure 34. Small Signal Transient Response

Data Sheet

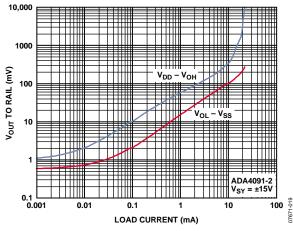


Figure 36. Dropout Voltage vs. Load Current

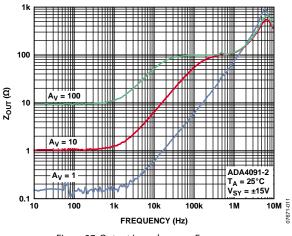
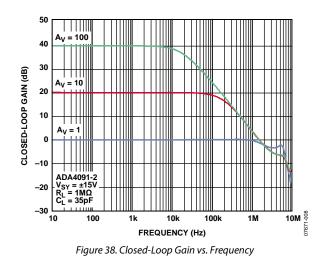
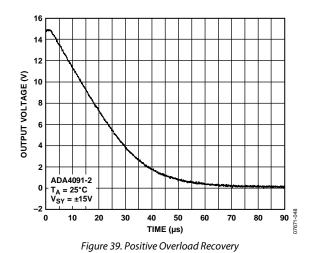




Figure 37. Output Impedance vs. Frequency

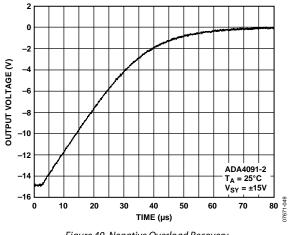
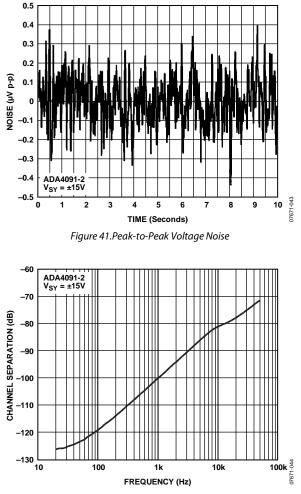
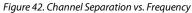




Figure 40. Negative Overload Recovery

Data Sheet

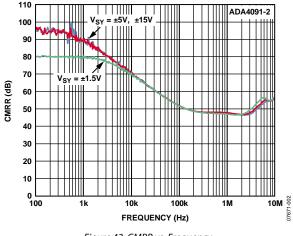
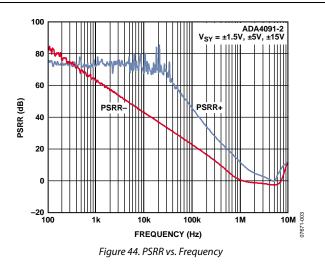
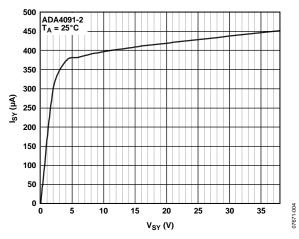
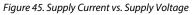





Figure 43. CMRR vs. Frequency

ADA4091-2/ADA4091-4

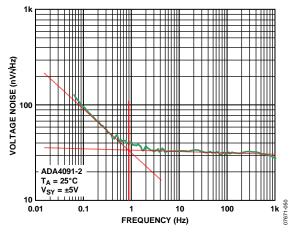


Figure 46. Voltage Noise Density

THEORY OF OPERATION

The ADA4091-2/ADA4091-4 is a single-supply, micropower amplifier featuring rail-to-rail inputs and outputs. To achieve wide input and output ranges, these amplifiers employ unique input and output stages.

INPUT STAGE

In Figure 47, the input stage comprises two differential pairs, a PNP pair (PNP input stage) and an NPN pair (NPN input stage). These input stages do not work in parallel. Instead, only one stage is on for any given input common-mode signal level. The PNP stage (Transistor Q1 and Transistor Q2) is required to ensure that the amplifier remains in the linear region when the input voltage approaches and reaches the negative rail. Alternatively, the NPN stage (Transistor Q5 and Transistor Q6) is needed for input voltages up to, and including, the positive rail.

For the majority of the input common-mode range, the PNP stage is active, as shown in Figure 7, Figure 21, and Figure 31. Notice that the bias current switches direction at approximately 1.5 V below the positive rail. At voltages below this level, the bias current flows out of the ADA4091-2/ADA4091-4 input, from the PNP input stage. Above this voltage, however, the bias current enters the device, due to the NPN stage. The actual mechanism within the amplifier for switching between the input stages comprises Transistor Q3, Transistor Q4, and Transistor Q7. As the input common-mode voltage increases, the emitters of Q1 and Q2 follow that voltage plus a diode drop.

Eventually, the emitters of Q1 and Q2 are high enough to turn on Q3, which diverts the tail current away from the PNP input stage, turning it off. The tail current of the PNP pair is diverted to the Q4/Q7 current mirror to activate the NPN input stage.

A common practice in bipolar amplifiers to protect the input transistors from large differential voltages is to include series resistors and differential diodes. See Figure 48 for the full input protection circuitry. These diodes turn on whenever the differential voltage exceeds approximately 0.6 V. In this condition, current flows between the input pins, limited only by the two 5 k Ω resistors. Evaluate each application carefully to make sure that the increase in current does not affect performance.

OUTPUT STAGE

The output stage in the ADA4091-2/ADA4091-4 device uses a PNP and an NPN transistor, as do most output stages. However, Q32 and Q33, the output transistors, connect with their collectors to the output pin to achieve the rail-to-rail output swing.

As the output voltage approaches either the positive or negative rail, these transistors begin to saturate. Thus, the final limit on output voltage is the saturation voltage of these transistors, which is about 50 mV. The output stage has inherent gain arising from the transistor output impedance, as well as any external load impedance; consequently, the open-loop gain of the operational amplifier is dependent on the load resistance and decreases when the output voltage is close to either rail.

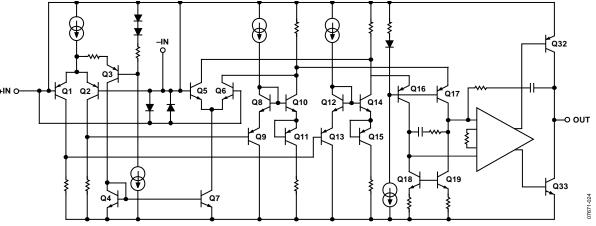


Figure 47. Simplified Schematic Without Input Protection (see Figure 48)

INPUT OVERVOLTAGE PROTECTION

The ADA4091-2/ADA4091-4 has two different ESD circuits for enhanced protection, as shown in Figure 48.

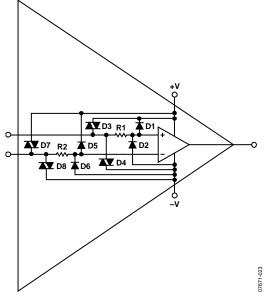


Figure 48. Complete Input Protection Network

One circuit is a series resistor of 5 k Ω to the internal inputs and diodes (D1 and D2 or D5 and D6) from the internal inputs to the supply rails. The other protection circuit is a circuit with two DIACs (D3 and D4 or D7 and D8) to the supply rails. A DIAC can be considered a bidirectional Zener diode with a transfer characteristic, as shown in Figure 49.

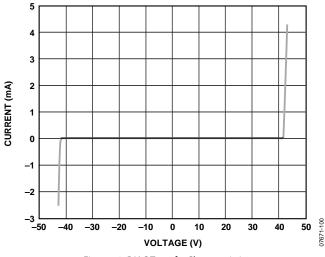
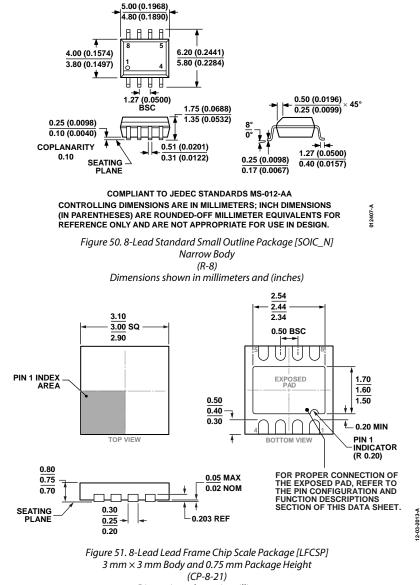


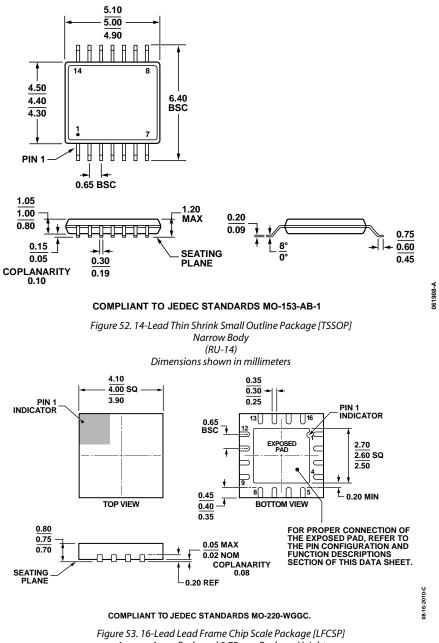
Figure 49. DIAC Transfer Characteristic

For a worst-case design analysis, consider two cases. The ADA4091-2/ADA4091-4 has a normal ESD structure from the internal operational amplifier inputs to the supply rails. In addition, it has 42 V DIACs from the external inputs to the rails, as shown in Figure 47.

Therefore, two conditions need to be considered to determine which case is the limiting factor.


- Condition 1. Consider, for example, that when operating on ±15 V, the inputs can go +42 V above the negative supply rail. With the -V pin equal to -15 V, +42 V above this supply (the negative supply) is +27 V.
- Condition 2. There is a restriction on the input current of 5 mA through a 5 kΩ resistor to the ESD structure to the positive rail. In Condition 1, +27 V through the 5 kΩ resistor to +15 V gives a current of 2.4 mA. Thus, the DIAC is the limiting factor. If the ADA4091-2/ADA4091-4 supply voltages are changed to ±5 V, then -5 V + 42 V = +37 V. However, +5 V + (5 kΩ × 5 mA) = 30 V. Thus, the normal resistor diode structure is the limitation when running on lower supply voltages.

Additional resistance can be added externally in series with each input to protect against higher peak voltages; however, the additional thermal noise of the resistors must be considered.


The flatband voltage noise of the ADA4091-2/ADA4091-4 is approximately 24 nV/ \sqrt{Hz} , and a 5 k Ω resistor has a noise of 9 nV/ \sqrt{Hz} . Adding an additional 5 k Ω resistor increases the total noise by less than 15% root sum square (rss). Therefore, maintain resistor values below this value (5 k Ω) when overall noise performance is critical.

Note that this represents input protection under abnormal conditions only. The correct amplifier operation input voltage range (IVR) is specified in Table 2, Table 3, and Table 4.

OUTLINE DIMENSIONS

Dimensions shown in millimeters

gure 53. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-17) Dimensions are millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADA4091-2ARZ	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADA4091-2ARZ-R7	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADA4091-2ARZ-RL	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADA4091-2ACPZ-R2	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-21	A1Z
ADA4091-2ACPZ-R7	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-21	A1Z
ADA4091-2ACPZ-RL	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-21	A1Z
ADA4091-4ARUZ	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14	
ADA4091-4ARUZ-RL	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14	
ADA4091-4ACPZ-R2	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-17	
ADA4091-4ACPZ-R7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-17	
ADA4091-4ACPZ-RL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-17	

 1 Z = RoHS Compliant Part.

NOTES

NOTES

©2008–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07671-0-5/16(H)

www.analog.com