74HC174-Q100; 74HCT174-Q100

Hex D-type flip-flop with reset; positive-edge trigger

Rev. 2 — 26 February 2021 Product data sheet

1. General description

The 74HC174-Q100; 74HCT174-Q100 are hex positive edge-triggered D-type flip-flops with individual data inputs (Dn) and outputs (Qn). The common clock (CP) and master reset ($\overline{\text{MR}}$) inputs load and reset all flip-flops simultaneously. The D-input that meets the set-up and hold time requirements on the LOW-to-HIGH clock transition is stored in the flip-flop and appears at the Q output. A LOW on $\overline{\text{MR}}$ causes the flip-flops and outputs to be reset LOW. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- · Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 2.0 to 6.0 V
- · CMOS low power dissipation
- High noise immunity
- Input levels:
 - For 74HC174-Q100: CMOS level
 - For 74HCT174-Q100: TTL level
- Six edge-triggered D-type flip-flops
- Asynchronous master reset
- Complies with JEDEC standards
 - JESD8C (2.7 V to 3.6 V)JESD7A (2.0 V to 6.0 V)
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)

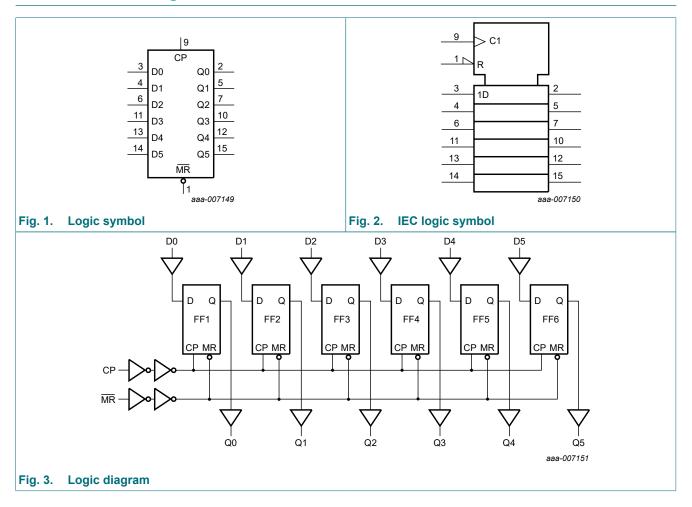
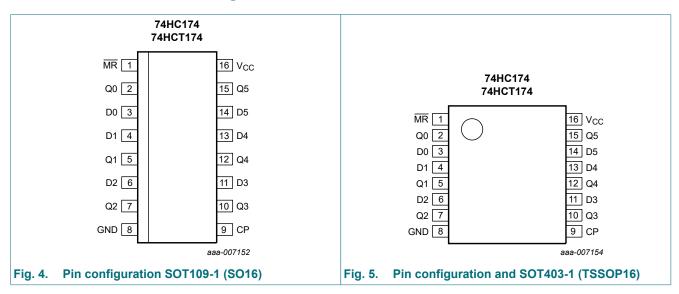

3. Ordering information

Table 1. Ordering information

Type number	Package											
	Temperature range Name Description Ve -40 °C to +125 °C SO16 plastic small outline package; 16 leads; body width 3.9 mm											
74HC174D-Q100	-40 °C to +125 °C	SO16		SOT109-1								
74HCT174D-Q100			body width 3.9 mm									
74HC174PW-Q100	-40 °C to +125 °C		plastic thin shrink small outline package; 16 leads;	SOT403-1								
74HCT174PW-Q100		body width 4.4 mm										



4. Functional diagram

5. Pinning information

5.1. Pinning

74HC_HCT174_Q100

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
MR	1	asynchronous master reset input (active LOW)
Q0, Q1, Q2, Q3, Q4, Q5	2, 5, 7, 10, 12, 15	flip-flop output
D0, D1, D2, D3, D4, D5	3, 4, 6, 11, 13, 14	data input
GND	8	ground (0 V)
СР	9	clock input (LOW-to-HIGH edge-triggered)
V _{CC}	16	positive supply voltage

6. Functional description

Table 3. Function table

H = HIGH voltage level; h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;

L = LOW voltage level; I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

 $X = don't care; \uparrow = LOW-to-HIGH clock transition.$

Operating modes	Inputs			Outputs
	MR	СР	Dn	Qn
reset (clear)	L	Х	X	L
load "1"	Н	↑	h	Н
load "0"	Н	↑	I	L

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
Io	output current	-0.5 V < V _O < V _{CC} + 0.5 V	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ [2]	-	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Downloaded from **Arrow.com**.

^[2] For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT403-1 (TSSOP16) package: P_{tot} derates linearly with 8.5 mW/K above 91 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74H	1C174-Q	100	74H	CT174-0	Q100	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC17	C174-Q100 HIGH-level input voltage LOW-level input voltage V _{CC} = 4.5 V V _{CC} = 6.0 V V _{CC} = 4.5 V V _{CC} = 4.5 V V _{CC} = 4.5 V V _{CC} = 6.0 V V _{CC} = 6.0 V V _{CC} = 6.0 V I _O = -20 μ I _O = -20 μ I _O = -20 μ I _O = -5.2 I LOW-level output voltage V _I = V _{IH} or V _I I _O = -5.2 I V _I = V _{IH} or V _I I _O = 20 μ									
V _{IH}	_	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}		V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}		V _I = V _{IH} or V _{IL}								
	output voltage	I _O = -20 μA; V _{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		I _O = -4.0 mA; V _{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		I _O = -5.2 mA; V _{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}		$V_I = V_{IH}$ or V_{IL}								
	output voltage	I _O = 20 μA; V _{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 6.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_1 = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ
I _{CC}	supply current $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$		-	-	8.0	-	80	-	160	μΑ
C _I	input capacitance		-	3.5	-	-	-	-	-	pF

input volta	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HCT1	74-Q100		'	'					<u>'</u>	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V		1.2	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	Ι _Ο = -20 μΑ	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 5.2 mA; V _{CC} = 5.5 V	-	0.15	0.26	-	0.33	-	0.4	V
I _I	input leakage v _I = V_{CC} or GND; V_{CC} = 5.5 V current		-	-	±0.1	-	±1	-	±1	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	8.0	-	80	-	160	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V								
		Dn input	-	25	90	-	112.5	-	122.5	μΑ
		CP input	-	130	468	-	585	-	637	μΑ
		MR input	-	125	450	-	562.5	-	612.5	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

Product data sheet

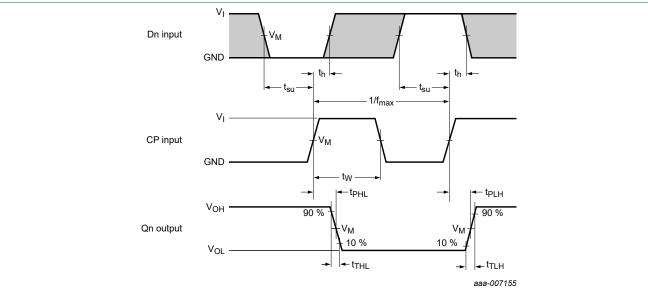
5 / 14

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit, see Fig. 8

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC17	propagation delay $ \begin{array}{c} \text{CP to Qn; see } \underline{\text{Fig. 6}} \\ V_{\text{CC}} = 2.0 \text{V} \\ V_{\text{CC}} = 4.5 \text{V} \\ V_{\text{CC}} = 6.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{MR to Qn; see } \underline{\text{Fig. 7}} \\ V_{\text{CC}} = 2.0 \text{V} \\ V_{\text{CC}} = 3.0 \text{V; CL} = 1 \\ V_{\text{CC}} = 3.0 \text{V; CL} = 1 \\ V_{\text{CC}} = 6.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ V_{\text{CC}} = 6.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ V_{\text{CC}} = 4.5 \text{V} \\ V_{\text{CC}} = 6.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ V_{\text{CC}} = 6.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ V_{\text{CC}} = 6.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ V_{\text{CC}} = 6.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ V_{\text{CC}} = 6.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ V_{\text{CC}} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ V_{\text{CC}} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 4.5 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 2.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ \end{array} $ $ \begin{array}{c} \text{Voc} = 3.0 \text{V} \\ $		'							
t _{pd}	propagation	CP to Qn; see Fig. 6 [1]								
	delay	V _{CC} = 2.0 V	-	55	165	-	205	-	250	ns
		V _{CC} = 4.5 V	-	20	33	-	41	-	50	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	17	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	16	28	-	35	-	43	ns
t _{PHL}	HIGH to LOW	MR to Qn; see Fig. 7								
		V _{CC} = 2.0 V	-	44	150	-	190	-	225	ns
	uciay	V _{CC} = 4.5 V	-	16	30	-	38	-	45	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	13	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	13	26	-	33	-	38	ns
t _t	transition time	Qn output; see Fig. 6 [2]								
		V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns
t _W	pulse width	CP input HIGH or LOW; see Fig. 6								
		V _{CC} = 2.0 V	80	17	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	6	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	5	-	17	-	20	-	ns
		MR input LOW; see Fig. 7								
		V _{CC} = 2.0 V	80	12	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	4	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	3	-	17	-	20	-	ns
t _{rec}	recovery time	MR to CP; see Fig. 7								
		V _{CC} = 2.0 V	5	-11	-	5	-	5	-	ns
		V _{CC} = 4.5 V	5	-4	-	5	-	5	-	ns
		V _{CC} = 6.0 V	5	-3	-	5	-	5	-	ns
t _{su}	set-up time	Dn to CP; see Fig. 6								
		V _{CC} = 2.0 V	60	6	-	75	-	90	-	ns
		V _{CC} = 4.5 V	12	2	-	15	-	18	-	ns
		V _{CC} = 6.0 V	10	2	-	13	-	15	-	ns
t _h	hold time	Dn to CP; see Fig. 6								
		V _{CC} = 2.0 V	3	-6	-	3	-	3	-	ns
		V _{CC} = 4.5 V	3	-2	-	3	-	3	-	ns
		V _{CC} = 6.0 V	3	-2	-	3	-	3	-	ns

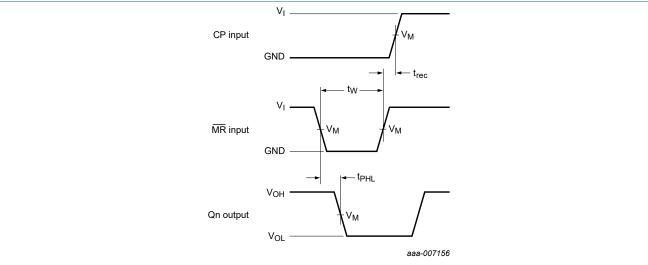

	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
f _{max}	maximum	CP input; see Fig. 6								
	frequency	V _{CC} = 2.0 V	6	30	-	5	-	4	-	MHz
		V _{CC} = 4.5 V	30	90	-	24	-	20	-	MHz
		V _{CC} = 6.0 V	35	107	-	28	-	24	-	MHz
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	99	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	per package; [3] $V_I = GND$ to V_{CC}	-	17	-	-	-	-	-	pF
74HCT1	74-Q100								-	
t _{pd}	propagation	CP to Qn; see Fig. 6 [1]								
	delay	V _{CC} = 4.5 V	-	21	35	-	44	-	53	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	18	-	-	-	-	-	ns
t _{PHL}	HIGH to LOW	MR to Qn; see Fig. 7								
	propagation delay	V _{CC} = 4.5 V	-	20	35	-	44	-	53	ns
	delay	$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	17	-	-	-	-	-	ns
t _t	transition time	Qn output; see Fig. 6 [2]								
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
t _W	pulse width	CP input; see Fig. 6								
		V _{CC} = 4.5 V	16	7	-	20	-	24	-	ns
		MR input LOW; see Fig. 7								
		V _{CC} = 4.5 V	20	7	-	25	-	30	-	ns
t _{rec}	recovery time	MR to CP; see Fig. 7								
		V _{CC} = 4.5 V	12	-3	-	15	-	18	-	ns
t _{su}	set-up time	Dn to CP; see Fig. 6								
		V _{CC} = 4.5 V	16	4	-	20	-	24	-	ns
t _h	hold time	Dn to CP; see Fig. 6								
		V _{CC} = 4.5 V	5	-3	-	5	-	5	-	ns
f _{max}	maximum	CP input; see Fig. 6								
	frequency	V _{CC} = 4.5 V	30	63	-	24	-	20	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF	-	69	-	-	-	-	-	MHz
C_{PD}	power dissipation capacitance	per package; [3] V _I = GND to V _{CC} - 1.5 V	-	17	-	-	-	-	-	pF

f_o = output frequency in MHz;

 Σ (C_L × V_{CC} ² × f_o) = sum of outputs; C_L = output load capacitance in pF;

V_{CC} = supply voltage in V.

10.1. Waveforms and test circuit

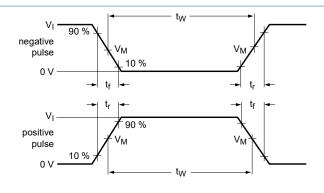


Measurement points are given in Table 8.

The shaded areas indicate when the input is permitted to change for predictable output performance.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig. 6. Input to output propagation delay, output transition time, clock input pulse width, set-up and hold times for data input and maximum frequency


Measurement points are given in Table 8.

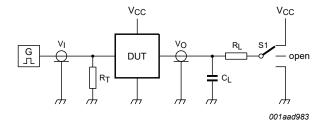

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig. 7. Master reset to output propagation delays, master reset pulse width and master reset to clock recovery time

Table 8. Measurement points

Туре	Input		Output
	VI	V _M	V _M
74HC174-Q100	V _{CC}	0.5V _{CC}	0.5V _{CC}
74HCT174-Q100	3 V	1.3 V	1.3 V

Test data is given in Table 9.

Definitions for test circuit:

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

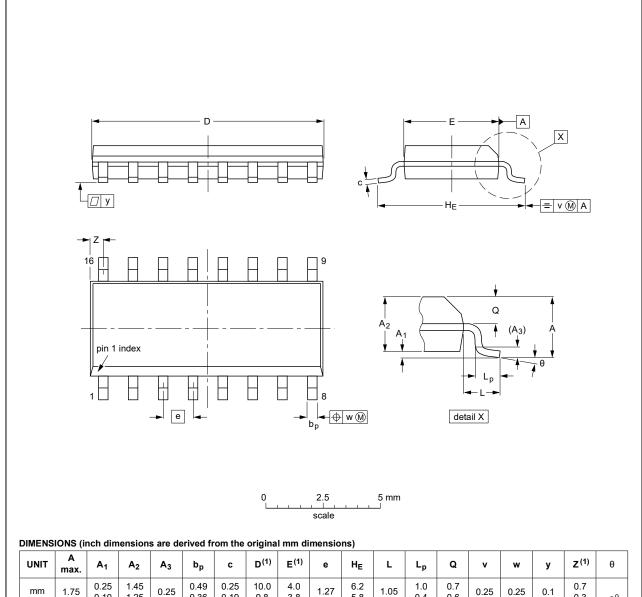
C_L = Load capacitance including jig and probe capacitance.

R_L = Load resistance.

S1 = Test selection switch

Fig. 8. Test circuit for measuring switching times

Table 9. Test data


Туре	Input	$\begin{array}{c cccc} \text{nput} & & \text{Loa} \\ \textbf{I}_{\text{I}} & & \textbf{t}_{\text{r}}, \textbf{t}_{\text{f}} & & \textbf{C}_{\text{L}} \end{array}$		oad				
	V _I	t _r , t _f	C _L	R_L	t _{PHL} , t _{PLH}			
74HC174-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open			
74HCT174-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open			

Downloaded from Arrow.com.

11. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNI	T A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mn	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inch	es 0.069	0.010 0.004	0.057 0.049	0.01	l	0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012				99-12-27 03-02-19

Fig. 9. Package outline SOT109-1 (SO16)

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

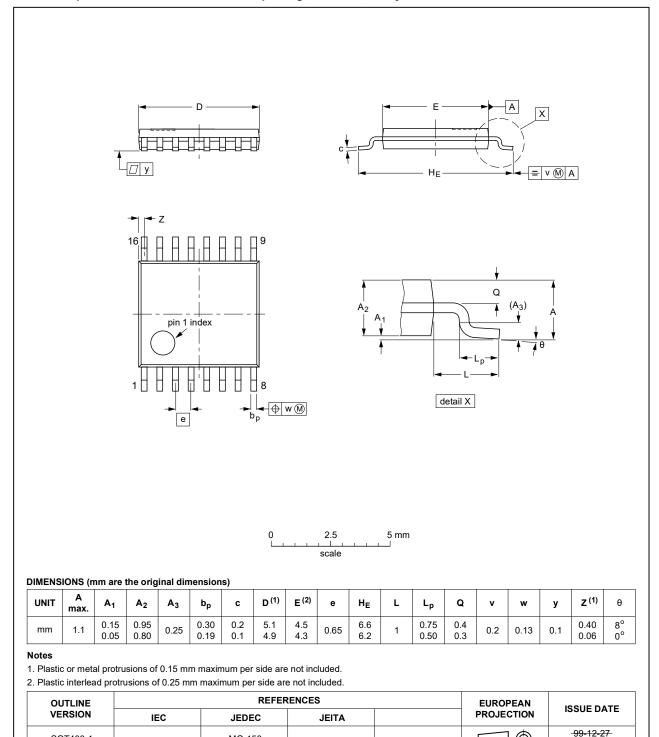


Fig. 10. Package outline SOT403-1 (TSSOP16)

MO-153

03-02-18

SOT403-1

12. Abbreviations

Table 10. Abbreviations

Table 1417 toxic viations				
Acronym	Description			
CMOS	Complementary Metal-Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MIL	Military			
MM	Machine Model			
TTL	Transistor-Transistor Logic			

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74HC_HCT174_Q100 v.2	20210226	Product data sheet	-	74HC_HCT174_Q100 v.1	
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Section 2 updated. Section 7: Derating values for Ptot total power dissipation updated. 				
74HC_HCT174_Q100 v.1	20130417	Product data sheet	-	-	

Product data sheet

12 / 14

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

Hex D-type flip-flop with reset; positive-edge trigger

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own rick.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74HC_HCT174_Q100

Product data sheet

Contents

1.	General description	1
2.	Features and benefits	. 1
3.	Ordering information	1
4.	Functional diagram	2
5.	Pinning information	2
5.1	Pinning	2
5.2	Pin description	3
6.	Functional description	. 3
7.	Limiting values	. 3
8.	Recommended operating conditions	4
9.	Static characteristics	4
10.	Dynamic characteristics	. 6
10.	Waveforms and test circuit	. 8
11.	Package outline	10
12.	Abbreviations	12
13.	Revision history	12
14.	Legal information	13

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 26 February 2021

Downloaded from Arrow.com.

[©] Nexperia B.V. 2021. All rights reserved