

VNH7100AS-E

Datasheet - preliminary data

Automotive fully integrated H-bridge motor driver

Description

switches.

Features

Туре	R _{DS(on)}	I _{out}	V _{CCmax}
VNH7100AS-E	100 mΩ typ (per leg)	12 A	41 V

- Automotive qualified
- Output current: 15 A
- 3 V CMOS-compatible inputs
- Undervoltage shutdown
- Overvoltage clamp
- Thermal shutdown
- Cross-conduction protection
- Current and power limitation
- · Very low standby power consumption
- Protection against loss of ground and loss of V_{CC}
- PWM operation up to 20 KHz
- Multisense diagnostic functions
 - Analog motor current feedback
 - Output short to ground detection
 - Thermal shutdown indication
 - OFF-state open-load detection
 - Output short to V_{CC} detection
- Output protected against short to ground and short to V_{CC}
- Standby Mode
- Half Bridge Operation
- Package: ECOPACK[®]

allows superior manufacturability at board level. The input signals $\rm IN_A$ and $\rm IN_B$ can directly

Moreover, its fully symmetrical mechanical design

The VNH7100AS-E is a full bridge motor driver

STMicroelectronics' well known and proven proprietary VIPower[®] M0 technology that allows to efficiently integrate on the same die a true

signal/protection circuitry. The three dies are assembled in SO-16N package on electrically

intended for a wide range of automotive applications. The device incorporates a dual monolithic high-side driver and two low-side

Both switches are designed using

Power MOSFET with an intelligent

isolated leadframes.

interface to the microcontroller to select the motor direction and the brake condition. A SEL0 pin is available to address to the microcontroller the information available on the Multisense. The Multisense pin allows to monitor the motor current by delivering a current proportional to the motor current value. The normal operating condition is explained in the truth table.

The PWM, up to 20 KHz, allows to control the speed of the motor in all possible conditions. In all cases, a low level state on the PWM pin turns off both the LS_A and LS_B switches.

Table	1.	Device	summary
labio	•••	201100	ournury

Package	Order codes	
Fackage	Tube	Tape and reel
SO-16N	VNH7100AS-E	VNH7100ASTR-E

June 2015

DocID025227 Rev 8

1/27 www.st.com

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

Contents

1	Bloc	ck diagram and pin description5		
2	Elec	trical specifications7		
	2.1	Absolute maximum ratings 7		
	2.2	Thermal data		
	2.3	Electrical characteristics 9		
	Арр	lication information		
	3.1	Reverse battery protection 20		
	3.2	GND protection network against reverse battery		
		3.2.1 Diode (DGND) in the ground line		
	3.3	Immunity against transient electrical disturbances		
4	Pacl	age and packing information 22		
	4.1	ECOPACK [®]		
	4.2	SO-16N mechanical data 22		
5	Revi	sion history		

List of tables

Table 1.	Device summary	 . 1
Table 2.	Block description	 . 5
Table 3.	Pin definitions and functions	 . 6
Table 4.	Absolute maximum ratings	 . 7
Table 5.	Thermal data	 . 8
Table 6.	Power section	 . 9
Table 7.	Logic inputs (IN _A , IN _B , PWM) (V_{CC} = 7 V up to 28 V; -40°C < T _i < 150°C)	 10
Table 8.	Switching (V_{CC} = 13 V; R_{LOAD} = 5.2 Ω)	 10
Table 9.	Protections and diagnostics (V_{CC} = 7 V up to 18 V; -40°C < T_j < 150°C)	 11
Table 10.	CS (7 V < V _{CC} < 18 V; -40 °C < T _i < 150 °C)	 12
Table 11.	Operative condition - truth table	
Table 12.	On-state fault conditions- truth table	 18
Table 13.	Off-state -truth table	 19
Table 14.	ISO 7637-2 - electrical transient conduction along supply line	 21
Table 15.	SO-16N mechanical data	 23
Table 16.	Document revision history	 24

List of figures

Block diagram
Configuration diagram (top view)
Current and voltage conventions
T _{DSTKON}
Definition of the low-side switching times
Definition of the high-side switching times14
Low-side turn-on delay time
Time to shutdown for the low-side driver
Input Reset time for HSD -fault unlatch
Input Reset time for LSD -fault unlatch
OFF-state diagnostic delay time from rising edge of V _{OUT} (t _{D VOL})17
SO-16N package dimensions

1 Block diagram and pin description

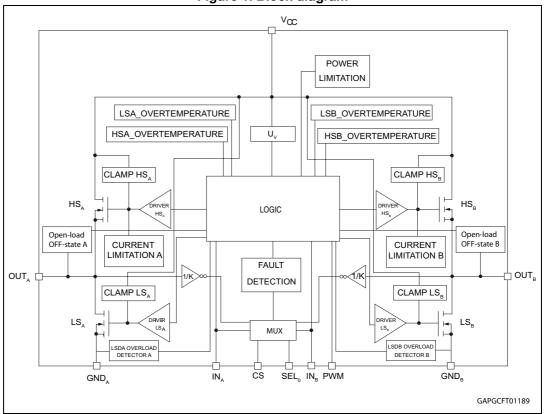
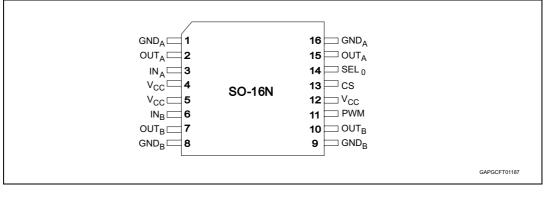


Figure 1. Block diagram


Name	Description
Logic control	Allows the turn-on and the turn-off of the high-side and the low-side switches according to the truth table.
Undervoltage	Shuts down the device for battery voltage lower than 4 V.
High-side and low-side clamp voltage	Protect the high-side and the low-side switches from the high voltage on the battery line.
High-side and low-side driver	Drive the gate of the concerned switch to allow a proper R_{on} for the leg of the bridge.
Current limitation	Limits the motor current in case of short circuit.
High-side and low-side overtemperature protection	In case of short-circuit with the increase of the junction temperature, it shuts down the concerned driver to prevent degradation and to protect the die.
Low-side overload detector	Detects when low side current exceeds shutdown current and latches off the concerned Low side.

Name	Description
Fault detection	Signalizes the abnormal behavior of the switch through Multisense pin.
Power limitation	Limits the power dissipation of the high-side driver inside safe range in case of short to ground condition.

Table 2. Block description (continued)

Pin N°	Symbol	Function
1, 16	GND _A	Source of low-side switch A
2, 15	OUT _A	Source of high-side switch A / drain of low-side switch A
3	IN _A	Clockwise input
4, 5, 12	V _{CC}	Power supply voltage
6	IN _B	Counter clockwise input
7, 10	OUT _B	Source of high-side switch B / drain of low-side switch B
8, 9	GND _B	Source of low-side switch B
11	PWM	Voltage controlled input pin with hysteresis, CMOS compatible. Gates of low-side FETS get modulated by the PWM signal during their on phase allowing speed control of the motor. Active high.
13	CS	Multiplexed analog sense output pin; it delivers a current proportional to the motor current.
14	SEL ₀	Active high compatible with 3 V and 5 V CMOS outputs pin; n combination with IN_A , IN_B , it addresses the Multisense information delivered to the micro.

Table 3. Pin definitions and functions

2 Electrical specifications

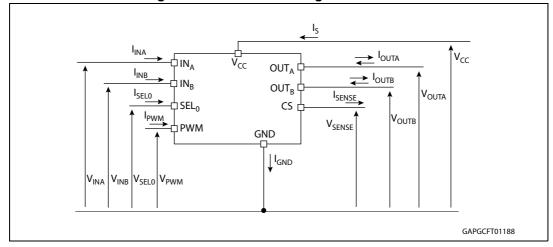


Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 4: Absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	38	V
-V _{CC}	Reverse DC Supply Voltage	0.3	V
I _{max}	Maximum output current (continuous)	Internally limited	А
I _R	Reverse output current (continuous)	TBD	А
V _{CCPK}	Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40 V; RL = 4 Ω)	40	V
V _{CCJS}	Maximum jump start voltage for single pulse short circuit protection	28	V
I _{IN}	Input current (IN _A and IN _B pins)	-1 to 10	mA
I _{SEL0}	SEL ₀ DC input current	-1 to 10	mA
I _{PWM}	PWM input current	-1 to 10	mA
-I _{GND}	DC reverse ground pin current	200	mA
I _{SENSE}	CS pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	m۸
	CS pin DC output current in reverse ($V_{CC} < 0 V$)	-20	- mA

Table 4.	Absolute	maximum	ratings

Symbol	Parameter	Value	Unit
V _{ESD}	Electrostatic discharge (Human body model: R = 1.5 k Ω C = 100 pF) – IN _A ,IN _B , PWM – SEL ₀ – CS – V _{CC} – Output	2 2 2 4 4	kV
V_{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
T _c	Junction operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

Table 4. Absolute maximum ratings (continued)

2.2 Thermal data

Table	5.	Thermal	data
	•••		

Symbol	Parameter	Max. value	Unit
R _{thj-pin}	Thermal resistance junction-case (per leg) (JEDEC JESD 51-5) ⁽¹⁾	TBD	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) ⁽²⁾	TBD	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽¹⁾	TBD	°C/W

1. Device mounted on four-layers 2s2p PCB.

2. Device mounted on two-layers 2s0p PCB with 2 \mbox{cm}^2 heatsink copper trace.

2.3 Electrical characteristics

Values specified in this section are for V_{CC} = 7 V up to 28 V; -40°C < T_j < 150°C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4		28	V
		$\begin{array}{l} \mbox{Off-state (standby)} \\ \mbox{IN}_A = \mbox{IN}_B = 0; \mbox{ SEL}_0 = 0; \\ \mbox{PWM} = 0; \mbox{T}_j = 25 \ ^{\circ}C; \ \mbox{V}_{CC} = 13 \ \mbox{V}; \end{array}$			1	μA
		$\begin{array}{l} \text{Off-state (standby)} \\ \text{IN}_{\text{A}} = \text{IN}_{\text{B}} = 0; \ \text{SEL}_{0} = 0; \\ \text{PWM} = 0; \ \text{V}_{\text{CC}} = 13 \ \text{V}; \ \text{T}_{\text{j}} = 85^{\circ}\text{C} \end{array}$			1	μA
١ _S	Supply current	$ \begin{array}{l} \mbox{Off-state (standby)} \\ \mbox{IN}_A = \mbox{IN}_B = 0; \mbox{ SEL}_0 = 0; \\ \mbox{PWM} = 0; \mbox{ V}_{CC} = 13 \mbox{ V}; \mbox{ T}_j = 125 \mbox{ °C} \end{array} $			3	μA
		Off-state (no standby) $IN_A = IN_B = 0$; $SEL_0 = 5 V$; PWM= 0		2	4	mA
		On-state: IN_A or $IN_B = 5 V$; PWM = 0 or PWM = 5; $SEL_0 = X$		3.5	6	mA
t _{D_STBY} ⁽¹⁾	Standby mode blanking time	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 13 \; V; \\ IN_{A} = IN_{B} = PMW = 0 \; V; \\ V_{SEL0} \; from \; 5 \; V \; to \; 0 \; V \end{array}$	0.2	1	1.8	ms
Б	Static high-side	I _{OUT} = 2.5 A; T _j = 25°C		60		mΩ
R _{ONHS}	resistance	$I_{OUT} = 2.5 \text{ A}; T_j = -40 \text{ to } 150^{\circ}\text{C}$			120	mΩ
Р	Static low-side	I _{OUT} = 2.5 A; T _j = 25°C		40		mΩ
R _{ONLS}	resistance	I _{OUT} = 2.5 A; T _j = -40°C to 150°C			80	mΩ
V _f	High-side free-wheeling diode forward voltage	I _{OUT} = -2.5 A; T _j = 150°C		0.7	0.9	V
h	Off-state output current	$ IN_A = IN_B = 0; PWM = 0; V_{CC} = 13 V; T_j = 25 \ ^{\circ}C $	0		0.5	μA
I _{L(off)}	of one leg	$ IN_A = IN_B = 0; PWM = 0; V_{CC} = 13 V; T_j = 125 °C $	0		3	μA
I _{L(off_h)}	Off-state output current of one leg with other HSD on	IN _A = 0; IN _B = 5 V; PWM = 0; V _{CC} = 13 V	20		60	μA

Table 6.	Power	section
----------	-------	---------

1. To power on the device from the standby, it is recommended to toggle IN_A or IN_B from 0 to 1 first and then PWM from 0 to 1 to avoid any over-stress on the device in case of short-to-battery.y.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level voltage				0.9	V
V _{IH}	Input high level voltage		2.1			V
V _{IHYST}	Input hysteresis voltage		0.2			V
M		I _{IN} = 1 mA	5.3		7.2	V
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
I _{INL}	Input current	V _{IN} = 0.9 V	1			μA
I _{INH}	Input current	V _{IN} = 2.1 V			10	μA
SEL ₀ (V _{CC} :	= 7 V up to 18 V; -40°C < T _j	< 150°C)	•			
V _{SELL}	Input low level voltage				0.9	V
I _{SELL}	Low level input current	V _{SEL} = 0.9 V	1			μA
V _{SELH}	Input high level voltage		2.1			V
I _{SELH}	High level input current	V _{SEL} = 2.1 V			10	μA
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V
M		I _{SEL} = 1 mA	5.3		7.5	V
V _{SELCL}	Input clamp voltage	I _{SEL} = -1 mA		-0.8		V
PWM (V _{CC}	= 7 V up to 28 V; -40°C < T _j	< 150°C)	·			
V _{PWM}	Input low level voltage				0.9	V
I _{PWM}	Low level input current	V _{PWM} = 0.9 V	1			μA
V _{PWM}	Input high level voltage		2.1			V
I _{PWMH}	High level input current	V _{PWM} = 2.1 V			10	μA
V _{PWM(hyst)}	Input hysteresis voltage		0.2			V
V		I _{PWM} = 1 mA	5.3		7.2	V
V _{PMWCL}	Input clamp voltage	I _{PWM} = -1 mA		-0.7		V

Table 7. Logic inputs (IN_A, IN_B, PWM) ($V_{CC} = 7$ V up to 28 V; -40°C < T_i < 150°C)

Table 8. Switching (V_{CC} = 13 V; R_{LOAD} = 5.2 Ω)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
f ⁽¹⁾	PWM frequency		0		20	kHz
t _{d(on)}	Turn-on delay time	Input rise time < 1µs (see Figure 6)		20		μs
t _{d(off)}	Turn-off delay time	Input rise time < 1µs (see Figure 6)		13		μs
t _r	Rise time	See Figure 5		1	2	μs
t _f	Fall time	See Figure 5		1	2	μs
t _{cross}	Low-side turn-on delay time	Input rise time < 1 µs (see <i>Figure 7</i>)	40	140	240	μs

1. Parameter guaranteed by design and characterization; not subjected to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{USD}	Undervoltage shutdown				4	V
V _{USDreset}	Undervoltage shutdown reset				5	V
V _{USDHyst}	Undervolatge shutdown Hysteresis			0.4		V
I _{LIM_H}	High-side current limitation		12	18	24	A
I _{SD_LS}	Shutdown LS current		15	22	30	А
t _{SD_LS}	Time to shutdown for the low-side	V _{INA} = V _{INB} = 0 V; PWM = 5 V (see <i>Figure 8</i>)		5		μs
V _{CL_HSD}	High-side clamp voltage (V_{CC} to $OUT_A = 0$ or $OUT_B = 0$)	I _{OUT} = 100 mA; t _{CLAMP} = 1 ms	38	46		V
V _{CL_LSD}	Low-side clamp voltage (OUT _A = V_{CC} or OUT _B = V_{CC} to GND)	I _{OUT} = 100 mA; t _{CLAMP} = 1 ms	38	46		V
T _{TSD_HS}	High-side thermal shutdown temperature	IN _x = 2.1 V	150	175	200	°C
T _{TR_HS}	High-side thermal reset temperature		135			°C
T _{HYST_HS}	High-side thermal hysteresis (T _{SD_HS} - T _{R_HS})			7		°C
T _{TSD_LS}	Low-side thermal shutdown temperature	IN _x = 0 V	150	175	200	°C
V _{CL}	Total clamp voltage $(V_{CC} \text{ to GND})$	I _{OUT} = 100 mA; t _{CLAMP} = 1 ms	38	46	52	V
V _{OL}	OFF-state open-load voltage detection threshold	$\label{eq:stars} \begin{array}{l} \text{IN}_{\text{A}} = \text{IN}_{\text{B}} = 0; \ \text{PWM} = 0; \\ \text{V}_{\text{SEL0}} = 5 \ \text{V} \ \text{for CHA}; \\ \text{V}_{\text{SEL0}} = 0 \ \text{V} \ \text{and within} \\ \text{t}_{\text{D}_{\text{STBY}}} \ \text{for CHB} \end{array}$	2	3	4	V
I _{L(off2)}	OFF-state output sink current	$\label{eq:NA} \begin{split} &\text{IN}_{\text{A}} = \text{IN}_{\text{B}} = 0; \ \text{V}_{\text{OUTx}} = \text{V}_{\text{OL}}; \\ &\text{PWM} = 0 \ \text{V}; \ \text{V}_{\text{SEL0}} = 5 \ \text{V} \ \text{for} \\ &\text{CHA}; \ \text{V}_{\text{SEL0}} = 0 \ \text{V} \ \text{and} \ \text{within} \\ &\text{t}_{\text{D}_\text{STBY}} \ \text{for} \ \text{CHB} \end{split}$	-100		-15	μA
^t DSTKON	OFF-state diagnostic delay time from falling edge of INPUT (see <i>Figure 4</i>)	$ IN_A = 5 V to 0 V; IN_B = 0 V; V_{SEL0} = 5 V; I_{OUT} = 0 A; V_{OUTA} = 4 V; PWM = 0 V $	40	140	240	μs
t _{D_VOL} ⁽¹⁾	OFF-state diagnostic delay time from rising edge of V _{OUT} (see <i>Figure 11</i>)	$\begin{split} & \text{IN}_{\text{A}} = \text{IN}_{\text{B}} = 0 \text{ V}; \text{ PWM} = 0 \text{ V}; \\ & \text{V}_{\text{OUTx}} = 0 \text{ V} \text{ to } 4 \text{ V}; \\ & \text{V}_{\text{SEL0}} = 5 \text{ V} \text{ for CHA}; \\ & \text{V}_{\text{SEL0}} = 0 \text{ V} \text{ and within} \\ & \text{t}_{\text{D}_{\text{STBY}}} \text{ for CHB} \end{split}$		5	30	μs

Table 9. Protections and diagnostics ($V_{CC} = 7 V$ up to 18 V; -40°C < T_i < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{Latch_RST_HD} ⁽¹⁾	Input reset time for high- side fault unlatch (see <i>Figure 9</i>)	V _{INx} = 5 V to 0 V; HSDx faulting	3	10	20	μs
t _{Latch_RST_LS} ⁽¹⁾	Input reset time for low- side fault unlatch (see <i>Figure 10</i>)	V _{INx} = 0 V to 5 V; LSDx faulting	3	10	20	μs

Table 9. Protections and diagnostics (V_{CC} = 7 V up to 18 V; -40°C < T_i < 150°C)

1. Parameter guaranteed by design and characterization; not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Verver ev	MultiSense clamp	V _{CC} = 18 V; I _{SENSE} = -5 mA		11		V
V _{SENSE_CL}	voltage	V _{CC} = 18 V; I _{SENSE} = 5 mA	-13		-9	V
κ _o	I _{OUT} /I _{SENSE}	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; T _j = -40°C to 150°C	420			
K ₁	I _{OUT} /I _{SENSE}	I _{OUT} = 0.2 A; V _{SENSE} = 0.5 V; T _j = - 40°C to 150°C	710	1190	1670	
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 2.5 A; V _{SENSE} = 4 V; T _j = -40°C to 150°C	1010	1120	1230	
K ₃	I _{OUT} /I _{SENSE}	$I_{OUT} = 4 \text{ A}; V_{SENSE} = 4 \text{ V};$ $T_j = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	1030	1120	1210	
dK ₀ /K ₀ ⁽¹⁾⁽²⁾	Analog sense current drift	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; T _j = -40°C to 150°C	-25		25	%
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Analog sense current drift	I _{OUT} = 0.2 A; V _{SENSE} = 0.5 V; T _j = - 40°C to 150°C	-21		21	%
dK ₂ /K ₂ ⁽¹⁾⁽²⁾	Analog sense current drift	I _{OUT} = 2.5 A; V _{SENSE} = 4 V; T _j = -40°C to 150°C	-5		5	%
dK ₃ /K ₃ ⁽¹⁾⁽²⁾	Analog sense current drift	I _{OUT} = 4 A; V _{SENSE} = 4 V; T _j = -40°C to 150°C	-4		4	%
V _{SENSE_SAT}	Max analog sense output voltage	$V_{CC} = 7 \text{ V}; \text{ R}_{\text{SENSE}} = 10 \text{ k}\Omega;$ $V_{\text{SEL0}} = 5 \text{ V}; \text{ I}_{\text{OUTA}} = 4 \text{ A};$ $V_{\text{INA}} = 5 \text{ V}; \text{ PWM} = 0; \text{ T}_{j} = 150 \text{ °C}$	5			V
		$I_{OUT} = 0 \text{ A}; \text{ V}_{SENSE} = 0 \text{ V};$ IN _x = 0 V; SEL ₀ = 0; T _j = -40°C to 150°C (standby)	0		0.5	μΑ
I _{SENSE0}	Multisense leakage current	$I_{OUT} = 0 \text{ A}; \text{ V}_{SENSE} = 0 \text{ V};$ IN _x = 0 V; SEL ₀ = 5 V; T _j = -40°C to 150°C (no standby)	0		0.5	μA
		$IN_x = 5 V; PWM = 5 V:$ T _j = -40°C to 150°C; I _{OUT} = 0 A	0		5	μA

Table 10	$CS(7V < V_{cc})$	< 18 V: -40 °C	; < T _i < 150 °C)
		, , , , , , , , , , , , , , , , , , ,	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SENSEH}	Multisense output voltage in fault condition		5		7	v
V _{OUT_MSD} ⁽²⁾	Output Voltage for MultiSense shutdown	$V_{\text{INA}} = 5 \text{ V}; V_{\text{INB}} = 0 \text{ V};$ $V_{\text{SEL0}} = 5 \text{ V}; R_{\text{SENSE}} = 2.7 \text{ k}\Omega$ $I_{\text{OUT}} = 2.5 \text{ A}$		5		V
I _{SENSE_SAT} ⁽²⁾	MultiSense saturation current	$V_{CC} = 13 V; V_{SENSE} = 4 V;$ $V_{INA} = 5 V; V_{INB} = 0 V;$ $V_{SEL0} = 5 V; T_j = 150 °C$	6			mA
I _{OUT_SAT} ⁽²⁾	Output saturation current		7			A
I _{SENSEH}	Multisense output voltage in fault condition	V _{CC} = 13 V; V _{SENSE} = V _{SENSEH}	7	20	30	mA

Table 10. CS (7 V < V_{CC} < 18 V; -40 °C < T_i < 150 °C) (continued)

1. Analog sense current drift is deviation of factor K for a given device over (-40 °C to 150 °C and 9 V < V_{CC} < 18 V) with respect to its value measured at T_j = 25 °C, V_{CC} = 13 V.

2. Parameter guaranteed by design and characterization; not subject to production test.

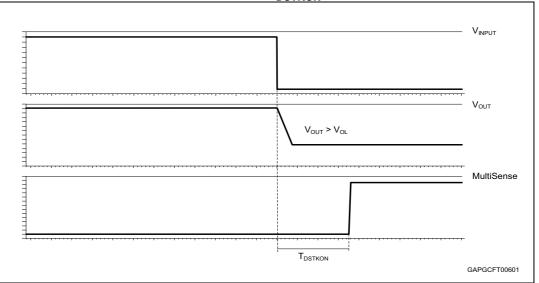
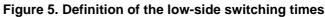
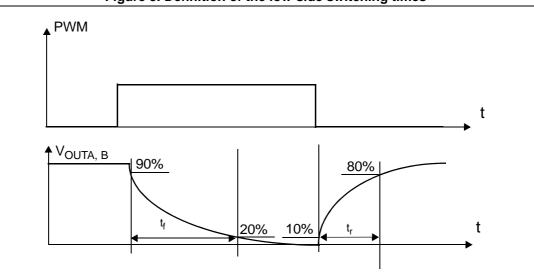




Figure 4. T_{DSTKON}

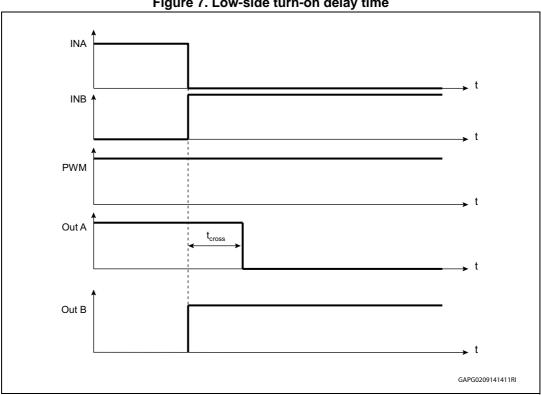
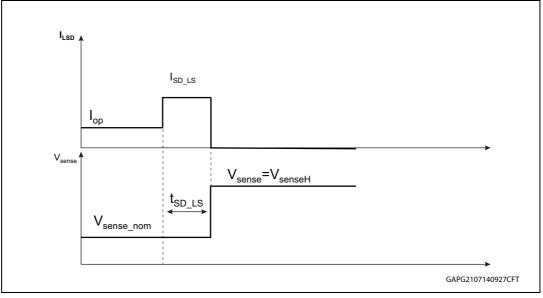



Figure 7. Low-side turn-on delay time

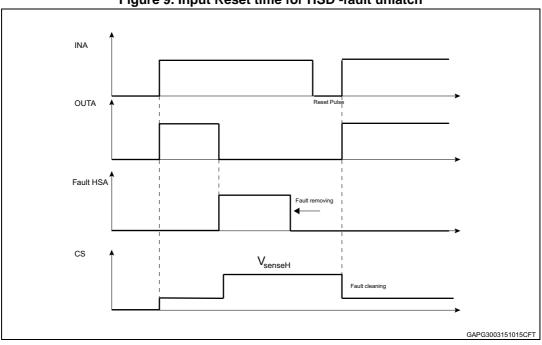
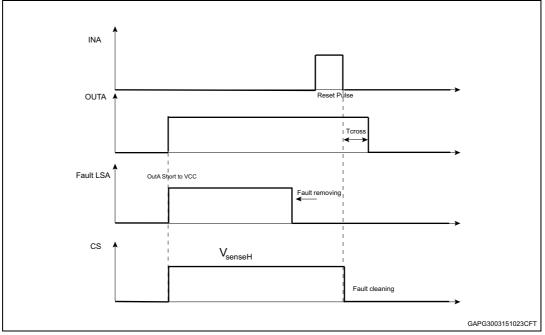



Figure 9. Input Reset time for HSD -fault unlatch

DocID025227 Rev 8

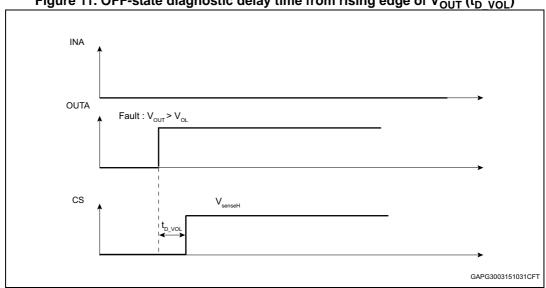


Figure 11. OFF-state diagnostic delay time from rising edge of V_{OUT} (t_{D_VOL})

		Pin status			HSDs and	LDSs Statu		
IN _A	IN _B	Sel ₀	PWM	CS	HSDA	LSDA	HSDB	LSDB
		1		Current Monitoring HSDA	0.7	0"	0-	0"
1	1	0	x	Current Monitoring HSDB	On	Off	On	Off
			1	Current	On	Off	Off	On
1	0	1	0	Monitoring HSDA	On	Off	Off	Off
1	0	0	1	Hi-Z	On	Off	Off	On
I	U	0	0		On	Off	Off	Off
0	1	1	1	Hi-Z	Off	On	On	Off
0	1	I	0		Off	Off	On	Off
			1	Current	Off	On	On	Off
0	1	0	0	Monitoring HSDB	Off	Off	On	Off
0	0	1 0	1	Hi-Z	Off	On	Off	On
0	0	1	0	x ⁽¹⁾	Off	Off	Off	Off
0	0	0 ⁽²⁾	0	Α` ΄	Off	Off	Off	Off

Table 11. Operative condition - truth table	Table 11.	Operative	condition	- truth table
---	-----------	-----------	-----------	---------------

1. Refer to Table 13: Off-state -truth table

2. For IN_A =IN_B=SEL₀ = PWM = 0, the device enters in standby after t_{D_STBY}

IN _A	IN _B	SEL ₀	PWM	Out _A	Out _B	CS	Fault description		
	On state diagnostic								
0	0	0	1	Х	Н	V _{SENSEH}	Short to V _{BATT} an Leg B		
0	0	1	1	Н	Х	V _{SENSEH}	Short to V _{BATT} an Leg A		
0	1	0	Х	Х	L	V _{SENSEH}	Out B short to GND		
0	1	1	1	Н	Н	V _{SENSEH}	Out A short to V _{CC}		
1	0	0	1	Н	Н	V _{SENSEH}	Out B short to V _{CC}		
1	0	1	Х	L	L	V _{SENSEH}	Out A short to GND		
1	1	0	Х	Х	L	V _{SENSEH}	Short to GND an Leg B		
1	1	1	Х	L	Х	V _{SENSEH}	Short to GND an Leg A		

Table 12. On-state fault conditions- truth table

INA	IN _B	SEL ₀	PWM	Out _A	Out _B	CS	Description
Off-stat	e diagno	ostic					
	1		V _{outA} >V _{OL}	x	V _{SENSEH}	Case 1. Out_A shorted to V_{CC} if no pull-up is applied Case 2. No open-load in full bridge configuration with an external pull- up on Out_B Case 3. open-load in half bridge configuration with an external pull- up on Out_A (motor connected between Out_A and Ground)	
			V _{outA} <v<sub>OL</v<sub>	x	Hi-Z	Case 1. Open-load in full Bridge configuration with an external pull- up on Out_B Case 2. No open-load in half Bridge configuration with external pull-up on Out_A (motor connected between Out_A and Ground)	
0		0 0 ⁽¹⁾⁽²⁾	Х	V _{outB} >V _{OL}	V _{SENSEH}	Case 1. Out_B shorted to V_{CC} if no pull-up is applied Case 2. No open-load in full bridge configuration with external pull-up on Out_A Case 3. Open-load in half bridge configuration with external pull-up on Out_B (motor connected between Out_B and Ground)	
			Х	V _{outB} <v<sub>OL</v<sub>	Hi-Z	Case1. Open-load in full Bridge configuration with an external pullup on Out_A Case 2. No open-load in half Bridge configuration with external pull-up on Out_B (motor connected between Out_B and Ground)	

Table	13.	Off-state	-truth	table
-------	-----	-----------	--------	-------

1. The device enters standby mode after $t_{\mbox{D_STBY}}$

2. To power on the device from the standby, it is recommended to toggle IN_A or IN_B from 0 to 1 first and then PWM from 0 to 1 to avoid any over-stress on the device in case of short-to-battery.

3 Application information

3.1 Reverse battery protection

Three possible solutions can be considered:

- A Schottky diode D connected to V_{CC} pin
- An N-channel MOSFET connected to the GND pin
- A P-channel MOSFET connected to the V_{CC} pin

The device sustains no more than -15 A in reverse battery conditions because of the two Body diodes of the Power MOSFETs. Additionally, in reverse battery condition the I/Os of the devise is pulled down to the V_{CC} line (approximately -1.5 V).

Series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If I_{Rmax} is the maximum target reverse current through microcontroller I/Os, series resistor is:

$$R = \frac{V_{IOs} - V_{CC}}{I_{Rmax}}$$

3.2 **GND** protection network against reverse battery

3.2.1 Diode (D_{GND}) in the ground line

A resistor (typ. R_{GND} = 4.7 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

3.3 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in Table 14.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through V_{CC} and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test Pulse 2011(E)	Test pulse severity level with Status II functional performance status		Minimum number of pulses or test time	-	le / pulse on time	Pulse duration and pulse generator internal impedance	
	Level	U _S ⁽¹⁾	une	min max			
1		-112 V	500 pulses	0,5 s		2ms, 10 Ω	
2a	III	+55 V	500 pulses	0,2 s	5 s	50μs, 2 Ω	
3a	IV	-220 V	1h	90 ms	100 ms	0.1µs, 50 Ω	
3b	IV	+150 V	1h	90 ms	100 ms	0.1µs, 50 Ω	
4 ⁽²⁾	IV	-7 V	1 pulse			100ms, 0.0 1Ω	
Load dump according to ISO 16750-2:2010							
Test B ⁽³⁾		40 V	5 pulse	1 min		400 ms, 2 Ω	

Table 14. ISO 7637-2 - electrical transient conduction along supply line

1. U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

2. Test pulse from ISO 7637-2:2004(E).

3. With 40 V external suppressor referred to ground (-40°C < T_{j} < 150°C).

Package and packing information 4

ECOPACK[®] 4.1

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK[®] is an ST trademark.

4.2 SO-16N mechanical data

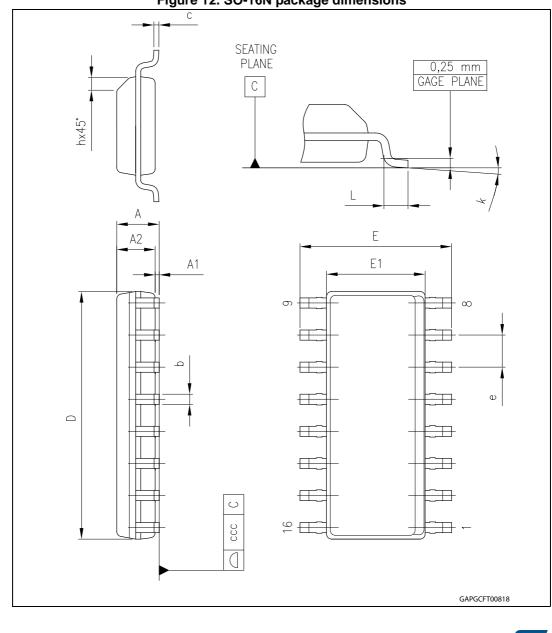


Figure 12. SO-16N package dimensions

DocID025227 Rev 8

Cumb al		Millimeters					
Symbol	Min.	Тур.	Max.				
A			1.75				
A1	0.10		0.25				
A2	1.25						
b	0.31		0.51				
С	0.17		0.25				
D	9.80	9.90	10.00				
E	5.80	6.00	6.20				
E1	3.80	3.90	4.00				
e		1.27					
h	0.25		0.50				
L	0.40		1.27				
k	0		8				
ссс			0.10				

Table 15. SO-16N mechanical data

5 Revision history

Data	Revision	Table 16. Document revision history
Date	Revision	Changes
19-May-2014	1	Initial release.
30-Jun-2014	2	Updated <i>Features</i> list Updated <i>Figure 1: Block diagram</i> and <i>Figure 2: Configuration diagram</i> (top view) Table 3: Pin definitions and functions: – Pin 13: updated symbol Table 4: Absolute maximum ratings – I _{SENSE} , V _{ESD} : updated parameter Table 6: Power section – I _S : updated values – T _{D_stby} , R _{ONLS} , R _{ONLS} , V _f , I _{L(off)} : updated test conditions – I _{L(off_h)} : added row Table 7: Logic inputs (INA, INB, PWM) (VCC = 7 V up to 28 V; -40°C < Tj < 150°C) – I _{PWMM} , I _{PWMH} , V _{PWMCL} : updated test conditions Table 8: Switching (VCC = 13 V; RLOAD = 5.2 Ω): – t _{d(on)} , t _{d(off)} : updated values – t _{cross} : added row Table 9: Protections and diagnostics (VCC = 7 V up to 18 V; -40°C < Tj < 150°C) – I _{SD_LS} : updated value – t _{SD_LS} : updated value – t _{SD_LS} : updated value and test conditions – Renamed parameter V _{CLPHsd} into V _{CL_HSD} , V _{CLPLSD} into V _{CL_LSD} and V _{CLP} into V _{CL} ; updated test conditions – V _{OL} , I _{L(off2}), t _{DSTKON} , t _{D_VOL} : updated test conditions Table 10: CS (7 V < VCC < 18 V; -40 °C < Tj < 150 °C) – K ₂ , K ₃ , dK ₂ /K ₂ : updated test conditions – I _{SENSE0} : updated parameter, test conditions and value – Renamed V _{SENSE} parameter into V _{SENSEH} : updated value Table 11: Operative condition - truth table, Table 12: On-state fault conditions- truth table and Table 13: Off-state -truth table: – Changed Multisense with CS

Table 16. Document revision history

Table 16. Document revision history (continued)					
Date	Revision	Changes			
28-Jul-2014	3	Table 4: Absolute maximum ratings: $- V_{ESD}$: updated valueTable 6: Power section: $- t_{D_STBY}$: updated test conditionTable 7: Logic inputs (INA, INB, PWM) (VCC = 7 V up to 28 V; -40°C <			
30-Oct-2014	4	Table 6: Power section: - t _{D_STBY} : updated test condition Table 10: CS (7 V < VCC < 18 V; -40 °C < Tj < 150 °C):			
15-Dec-2014	5	Table 6: Power section: $-I_S$ @ on-state: updated typical value $-I_{D_STBY}$: added note $-I_{L(off_h)}$: updated valuesTable 7: Logic inputs (INA, INB, PWM) (VCC = 7 V up to 28 V; -40°C <			

Table 16. Document revision history (continued)

Date	Revision	Changes
		-
01-Apr-2015	6	Updated Figure 1: Block diagram Table 3: Pin definitions and functions: – PWM: updated function description Table 9: Protections and diagnostics (VCC = 7 V up to 18 V; -40°C < Tj < 150°C): – $V_{USDHyst}$: updated typical value – V_{CL_HSD} : updated test condition and values Table 10: CS (7 V < VCC < 18 V; -40 °C < Tj < 150 °C): – K_3 , dK ₃ /K ₃ , I _{SENSE_SAT} : updated test conditions – I_{OUT_SAT} : updated test conditions and value Added following figures: – Figure 9: Input Reset time for HSD -fault unlatch – Figure 10: Input Reset time for LSD -fault unlatch – Figure 11: OFF-state diagnostic delay time from rising edge of VOUT (fD_VOL)
19-May-2015	7	 (tD_VOL) Updated Table 12: On-state fault conditions- truth table and Table 15: SO-16N mechanical data Added Section 3.1: Reverse battery protection Table 9: Protections and diagnostics (VCC = 7 V up to 18 V; -40°C < Tj<<150°C): V_{CL_HSD}, V_{CL_LSD}: updated test conditions
09-Jun-2015	8	CL_INDPORT CL_EDD ITTable 8: Switching (VCC = 13 V; RLOAD = 5.2 Ω):- f: added noteTable 9: Protections and diagnostics (VCC = 7 V up to 18 V; -40°C < Tj

Table 16.	Document	revision	history	(continued)
	Dooument	101131011	motory	(ooninaca)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

DocID025227 Rev 8