

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees

DM74ALS174, DM74ALS175 Hex/Quad D-Type Flip-Flops with Clear

Features

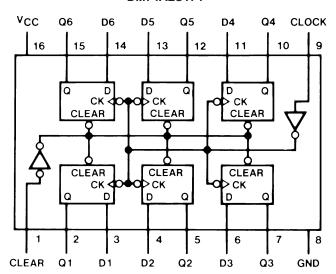
- Advanced oxide-isolated ion-implanted Schottky TTL process
- Pin and functional compatible with LS family counterpart
- Typical clock frequency maximum is 80MHz
- Switching performance guaranteed over full temperature and V_{CC} supply range

General Description

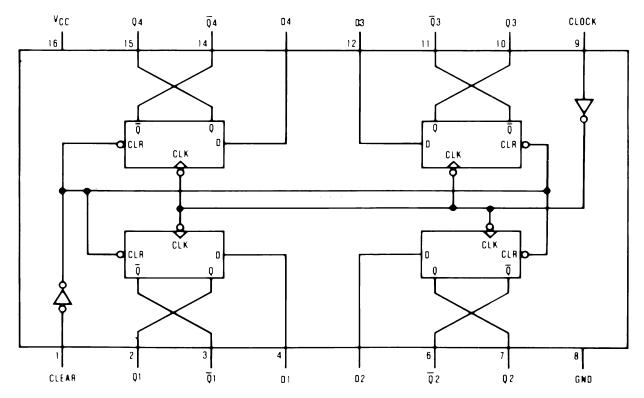
These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. Both have an asynchronous clear input, and the quad (DM74ALS175) version features complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or LOW level, the D input signal has no effect at the output.

Ordering Information


Ordering Code	Package Number	Package Description
DM74ALS174M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
DM74ALS174SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS175M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
DM74ALS175SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS175N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.


©1986 Fairchild Semiconductor Corporation DM74ALS174, DM74ALS175 Rev. 1.2

Connection Diagrams

DM74ALS174

DM74ALS175

Function Table

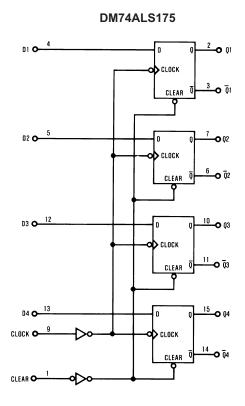
Inputs			Outputs		
Clear	Clock	D	Q	\overline{Q}^{(1)}	
L	X	Х	L	Н	
Н	1	Н	Н	L	
Н	1	L	L	Н	
Н	L	X	Q_0	\overline{Q}_0	

H = HIGH Level (steady state)

L = LOW Level (steady state)

X = Don't Care

↑ = Transition from LOW-to-HIGH Level


 Q_0 = the level of Q before the indicated steady-state input conditions were established.

Note:

1. Applies to DM74ALS175 only.

Logic Diagrams

DM74ALS174 CLOCK CLEAR CLOCK CLOCK CLOCK CLEAR CLOCK CLOCK CLEAR

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	7V
V _I	Input Voltage	7V
T _A	Operating Free Air Temperature Range 0°C to +70°	
T _{STG}	Storage Temperature Range -65°C to +1	
θ_{JA}	Typical Thermal Resistance	
	N Package	77.9°C/W
	M Package	107.3°C/W

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Min.	Nom.	Max.	Units
V _{CC}	Supply Voltage		4.5	5	5.5	V
V _{IH}	HIGH Level Inpu	t Voltage	2			V
V _{IL}	LOW Level Input	Voltage			0.8	V
I _{OH}	HIGH Level Outp	out Current			-0.4	mA
I _{OL}	LOW Level Output Current				8	mA
t _W	Pulse Width	Clock HIGH or LOW	10			ns
		Clear LOW	10			
t _{SETUP}	Setup Time ⁽²⁾	Data Input	10↑			ns
		Clear, Inactive State	6↑]
t _{HOLD}	Data Hold Time ⁽²⁾		0↑			ns
f _{CLOCK}	Clock Frequency		0		50	MHz
T _A	Free Air Operating Temperature		0		70	°C

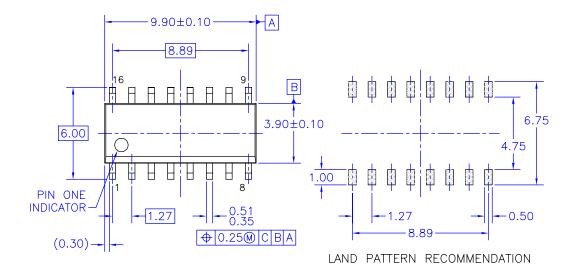
Note:

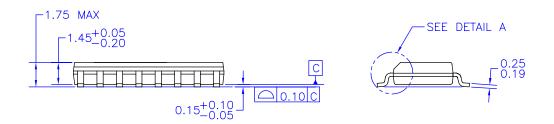
2. The symbol ↑ indicates that the rising edge of the clock is used as reference.

Electrical Characteristics

Over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V$, $I_{IN} = -18$ mA				-1.5	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -400 \mu A, V_{O}$	_{CC} = 4.5V to 5.5V	V _{CC} – 2	V _{CC} – 1.6		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = 4.5V, I_{OL} =$	8mA		0.35	0.5	V
I ₁	Input Current at Max. Input Voltage	$V_{CC} = 5.5V, V_{IN} = 7V$				0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μA
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IN} = 0.4V$				-0.1	mA
Io	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
I _{CC}	Supply Current	$V_{CC} = 5.5V$,	DM74ALS174		11	19	mA
		Clock = 4.5V, Clear = GND, D Input = GND	DM74ALS175		8	14	


Switching Characteristics


Over recommended operating free air temperature range.

Symbol	Parameter	Conditions	Min.	Max.	Units
f _{MAX}	Maximum Clock Frequency	$R_L = 500\Omega$,	50		MHz
t _{PLH}	Propagation Delay Time, LOW-to-HIGH Level Output From Clear (175 Only)	$C_L = 50pF,$ $V_{CC} = 4.5V \text{ to } 5.5V$	5	18	ns
t _{PHL}	Propagation Delay Time, HIGH-to-LOW Level Output From Clear		8	23	ns
t _{PLH}	Propagation Delay Time, LOW-to-HIGH Level Output From Clock		3	15	ns
t _{PHL}	Propagation Delay Time, HIGH-to-LOW Level Output From Clock		5	17	ns

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

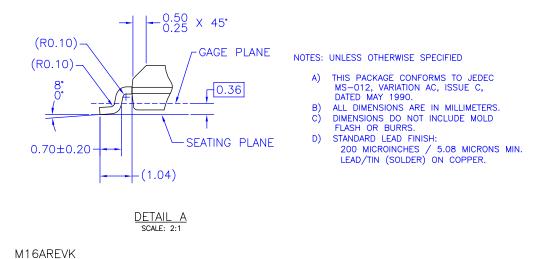
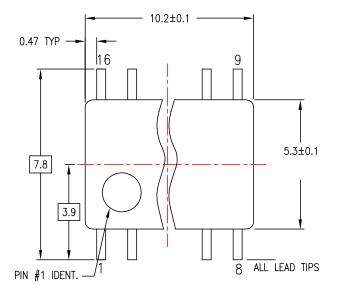
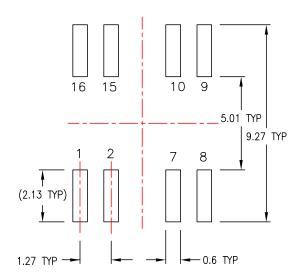
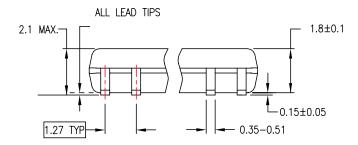
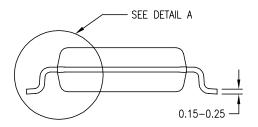
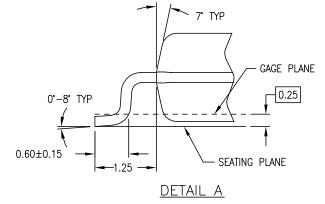




Figure 1. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A


Physical Dimensions (Continued)


Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION


DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION,
- ESTABLISHED IN DECEMBER, 1998.

 B. DIMENSIONS ARE IN MILLIMETERS.

 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M16DREVC

Figure 2. 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions (Continued)

Dimensions are in inches (millimeters) unless otherwise noted.

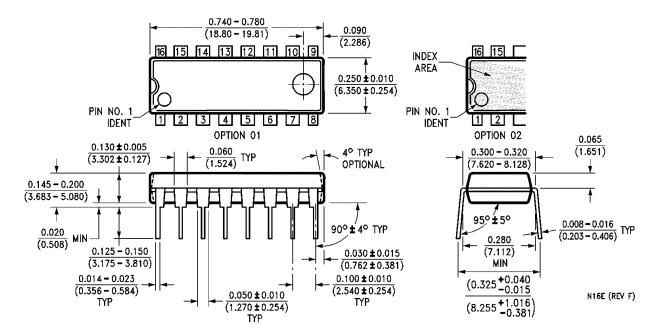


Figure 3. 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks

Build it Now™ GTO™ CorePLUS™ i - L o™ $CROSSVOLT$ ™ IntelliMA CTL™ ISOPLAN Current Transfer Logic™ MegaBuc	NAR™ QS™ Ck™ QT Optoelectronics™ COUPLER™ Quiet Series™ RapidConfigure™ PM™ SMART START™ OGIC® SPM® ANAR® STEALTH™ M™ SuperFET™ 0® SuperSOT™-3 7® SuperSOT™-6	SyncFET™ The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® UniFET™ VCX™
--	---	---

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I28

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com