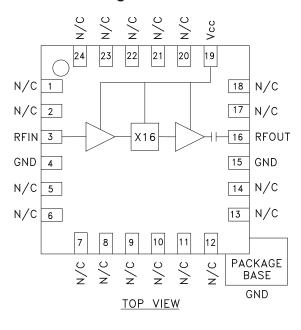


HMC445LP4 / 445LP4E

v04.0210


SMT GaAs HBT MMIC x16 ACTIVE FREQUENCY MULTIPLIER. 9.9 - 11.0 GHz OUTPUT

Typical Applications

Active Multiplier for X Band Applications:

- Fiber Optic
- Point-to-Point Radios
- Military Radar

Functional Diagram

Features

Output Power: +7 dBm

Sub-Harmonic Suppression: >25 dBc

SSB Phase Noise: -130 dBc/Hz

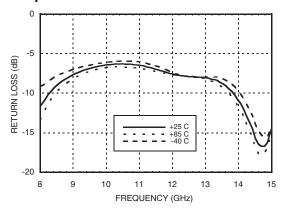
Single Supply: 5V @ 78 mA

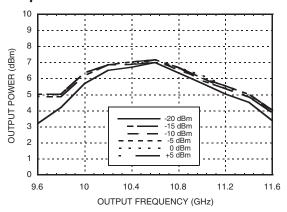
24 Lead 4x4 mm SMT Package: 16 mm²

General Description

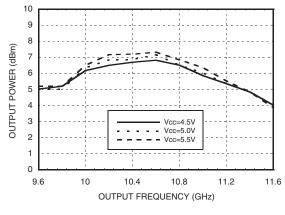
The HMC445LP4 & HMC445LP4E are active miniature x16 frequency multipliers utilizing InGaP GaAs HBT technology in 4x4 mm leadless surface mount packages. Power output is +7 dBm typical from a 5V supply voltage and varies little vs. input power, temperature and supply voltage. Suppression of undesired fundamental and sub-harmonics is >25 dBc typical with respect to output signal level. The low additive SSB phase noise of -130 dBc/Hz at 100 kHz offset helps the user maintain good system noise performance. The HMC445LP4 & HMC445LP4E are ideal for use in LO multiplier chains allowing reduced parts count vs. traditional approaches.

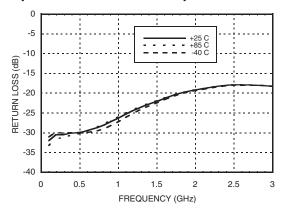
Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vcc=5V

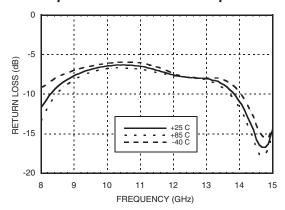

Parameter	Min.	Тур.	Max.	Units
Frequency Range, Input	618.75 - 687.50		MHz	
Frequency Range, Output	9.9 - 11.0		GHz	
Input Power Range	-15		5	dBm
Output Power	4	7		dBm
Sub-Harmonic Suppression		25		dBc
Input Return Loss		28		dB
Output Return Loss		7		dB
SSB Phase Noise (100 kHz Offset) Pin= 0 dBm		-130		dBc/Hz
Supply Current (Icc)		78	104	mA



SMT GaAs HBT MMIC x16 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 11.0 GHz OUTPUT

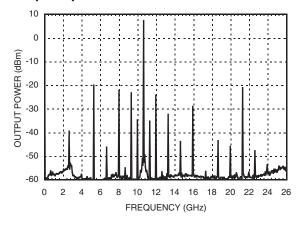

Output Power vs. Temperature @ -10 dBm Drive Level


Output Power vs. Drive Level

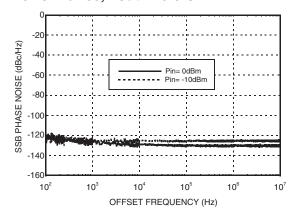

Output Power vs. Supply Voltage @ -10 dBm Drive Level

Input Return Loss vs. Temperature

Output Return Loss vs. Temperature


HMC445LP4 / 445LP4E

v04.0210



SMT GaAs HBT MMIC x16 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 11.0 GHz OUTPUT

Output Spectrum

SSB Phase Noise Performance, Fout= 10.5 GHz

ANALOGDEVICES

HMC445LP4 / 445LP4E

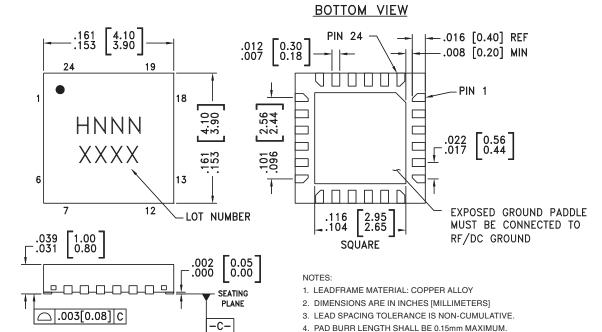
v04.0210

SMT GaAs HBT MMIC x16 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 11.0 GHz OUTPUT

Absolute Maximum Ratings

RF Input (Vcc = +5V)	+20 dBm
Vcc	+5.5V
Channel Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 11.5 mW/°C above 85 °C)	750 mW
Thermal Resistance (R _{th}) (junction to ground paddle)	87.2 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc


Vcc (V)	Icc (mA)	
4.5	75	
5.0	78	
5.5	80	

Note: Multiplier will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC445LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H445 XXXX
HMC445LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H445 XXXX

PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
6. ALL GROUND LEADS AND GROUND PADDLE MUST BE

7. REFER TO HITTITE APPLICATION NOT FOR SUGGESTED

SOLDERED TO PCB RF GROUND.

LAND PATTERN.

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

HMC445LP4 / 445LP4E

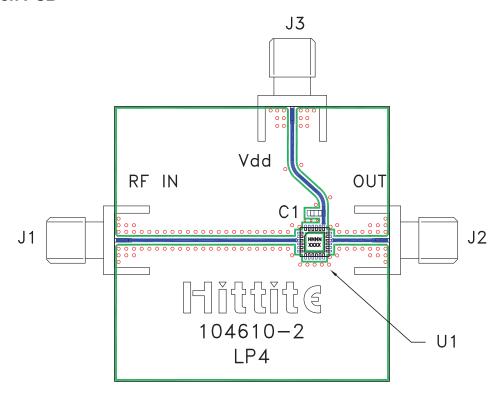
v04.0210

SMT GaAs HBT MMIC x16 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 11.0 GHz OUTPUT

Pin Description

Pin Number	Function	Description	Interface Schematic
1, 2, 5 - 14, 17, 18, 20 - 24	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3	RFIN	RF input needs to be DC blocked only if there is an external DC voltage applied to RF IN.	RFIN 0————————————————————————————————————
4, 15	GND	All ground leads and ground paddle must be soldered to PCB RF/DC ground.	○ GND =
16	RFOUT	Multiplied Output. AC coupled. No external DC blocks necessary.	— —○ RFOUT
19	Vcc	Supply voltage 5V ± 0.5V.	

ANALOGDEVICES


HMC445LP4 / 445LP4E

v04.0210

SMT GaAs HBT MMIC x16 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 11.0 GHz OUTPUT

Evaluation PCB

List of Materials for Evaluation PCB 106137 [1]

Item	Description	
J1 - J3	PCB Mount SMA Connector	
C1	1,000 pF Capacitor, 0603 Pkg.	
U1	HMC445LP4 / HMC445LP4E x16 Active Multiplier	
PCB [2]	104610 Eval Board	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350