Dual-Channel Digital Isolator

Data Sheet

FEATURES

Narrow body, RoHS-compliant, 8-lead SOIC

Low power operation
5 V operation
1.1 mA per channel maximum @ 0 Mbps to 2 Mbps
3.7 mA per channel maximum @ 10 Mbps

3 V operation
0.8 mA per channel maximum @ 0 Mbps to 2 Mbps
2.2 mA per channel maximum @ 10 Mbps
$3 \mathrm{~V} / 5 \mathrm{~V}$ level translation
High temperature operation: $105^{\circ} \mathrm{C}$
High data rate: dc to 10 Mbps (NRZ)
Precise timing characteristics
3 ns maximum pulse width distortion
3 ns maximum channel-to-channel matching
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Safety and regulatory approvals
UL recognition
2500 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE certificate of conformity
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12
$V_{\text {IORM }}=560$ V peak

APPLICATIONS

Size-critical multichannel isolation

 SPI interface/data converter isolationRS-232/RS-422/RS-485 transceiver isolation
Digital field bus isolation
Gate drive interface

GENERAL DESCRIPTION

The ADuM1210 ${ }^{1}$ is a dual-channel, digital isolator based on Analog Devices, Inc., i Coupler ${ }^{\circledR}$ technology. Combining high speed CMOS and monolithic transformer technology, this isolation component provides outstanding performance characteristics superior to alternatives such as optocoupler devices.

By avoiding the use of LEDs and photodiodes, i Coupler devices remove the design difficulties commonly associated with optocouplers. The concerns of the typical optocoupler regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple i Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with i Coupler products. Furthermore, i Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM1210 isolator provides two independent isolation channels operable with the supply voltage on either side, ranging from 2.7 V to 5.5 V . This provides compatibility with lower voltage systems and enables voltage translation functionality across the isolation barrier. In addition, the ADuM1210 provides low pulse width distortion ($<3 \mathrm{~ns}$) and tight channel-to-channel matching ($<3 \mathrm{~ns}$). Unlike other optocoupler alternatives, the ADuM1210 isolator has a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions. Furthermore, as an alternative to the ADuM1200 dual-channel digital isolator that defaults to an output high condition, the ADuM1210 outputs default to a logic low state when input power is off.
${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; 7,075,329.

FUNCTIONAL BLOCK DIAGRAM

Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Operation 3
Electrical Characteristics-3 V Operation. 5
Electrical Characteristics-Mixed 5 V/3 V or 3 V/5 V Operation 7
Package Characteristics 9
Regulatory Information 9
Insulation and Safety-Related Specifications 9
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12
Insulation Characteristics 10
REVISION HISTORY
3/12—Rev. C to Rev. D
Created Hyperlink for Safety and Regulatory Approvals Entry in Features Section 1
Change to PC Board Layout Section 14
6/07—Rev. B to Rev. C
Updated VDE Certification Throughout 1
Changes to Features, Applications, and Note 1 1
Changes to DC Specifications in Table 1 3
Changes to DC Specifications in Table 2 5
Changes to DC Specifications in Table 3 7
Added Endnote 2 to Table 4 9
Changes to Regulatory Information Section 9
Changes to Table 7 10
Added Table 10 11
Added Insulation Lifetime Section 15
Recommended Operating Conditions 10
Absolute Maximum Ratings 11
ESD Caution 11
Pin Configuration and Function Descriptions 12
Typical Performance Characteristics 13
Applications Information 14
PC Board Layout 14
Propagation Delay-Related Parameters. 14
DC Correctness and Magnetic Field Immunity 14
Power Consumption 15
Insulation Lifetime 15
Outline Dimensions 17
Ordering Guide 17
3/07-Rev. A to Rev. B
Changes to Table 1 3
2/06—Rev. 0 to Rev. A
Updated Format. Universal
Added Note 1 1
Changes to Absolute Maximum Ratings 11
Changes to DC Correctness and Magnetic Field Immunity Section 14
7/05—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. All voltages are relative to their respective ground.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
Input Supply Current, per Channel, Quiescent	IDDI (0)		0.50	0.60	mA		
Output Supply Current, per Channel, Quiescent	IDDO (0)		0.19	0.25	mA		
Total Supply Current, Two Channels ${ }^{1}$							
$V_{\text {DD } 1}$ Supply Current	IDD1 (0)		1.1	1.4	mA	DC to 1 MHz logic signal frequency	
$V_{\text {DD2 }}$ Supply Current	ldD2 (e)		0.5	0.8	mA	DC to 1 MHz logic signal frequency	
10 Mbps							
$V_{\text {DD } 1}$ Supply Current	IDD1 (10)		4.3	5.5	mA	5 MHz logic signal frequency	
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{ldD2} \mathrm{(10)}$		1.3	2.0	mA	5 MHz logic signal frequency	
Input Currents	I_{A}, I_{B}	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\mathrm{IB}} \leq \mathrm{V}_{\mathrm{DD} 1}$	
Logic High Input Threshold	V_{1}	$0.7 \times \mathrm{V}_{\mathrm{DD} 1}$			V		
Logic Low Input Threshold	VIL			$0.3 \times \mathrm{V}_{\text {DD } 1}$	V		
Logic High Output Voltages	Vоан, $\mathrm{V}_{\text {овн }}$	$V_{\text {DD2 }}-0.1$	5.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {IxH }}$	
		$V_{\text {DD2 } 2}-0.5$	4.8		V	$\mathrm{l}_{\text {ox }}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \times}=\mathrm{V}_{\text {IXH }}$	
Logic Low Output Voltages	Voal, Vobl		0.0	0.1	V	$\mathrm{l}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {l }}=\mathrm{V}_{\text {IxL }}$	
			0.04	0.1	V	$\mathrm{l}_{\mathrm{ox}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$	
SWITCHING SPECIFICATIONS							
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{3}$		10			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay ${ }^{4}$	$t_{\text {PHL, }}$ tpLH	20		50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\mid \mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHLL }}{ }^{4}$	PWD			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{5}$	tpsk			15	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	tpskco			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	tpskod			15	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CML	25	35		kV/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cm}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.2		Mbps		
Input Dynamic Supply Current, per Channel ${ }^{8}$	$1 \mathrm{IDII}_{(D)}$		0.19		mA/Mbps		
Output Dynamic Supply Current, per Channel ${ }^{8}$	IDDO (D)		0.05		mA/Mbps		

[^0]${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS-3 V OPERATION

$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. All voltages are relative to their respective ground.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
Input Supply Current, per Channel, Quiescent	IDDI(0)		0.26	0.35	mA		
Output Supply Current, per Channel, Quiescent	IDDo (Q)		0.11	0.20	mA		
Total Supply Current, Two Channels ${ }^{1}$ DC to 2 Mbps							
$V_{\text {DD } 1}$ Supply Current	IDD1 (0)		0.6	1.0	mA	DC to 1 MHz logic signal frequency	
$V_{\text {DD2 }}$ Supply Current	ldD2 (0)		0.2	0.6	mA	DC to 1 MHz logic signal frequency	
10 Mbps							
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{IDD1}_{(10)}$		2.2	3.4	mA	5 MHz logic signal frequency	
VDD2 Supply Current	$\operatorname{ldD2}$ (10)		0.7	1.1	mA	5 MHz logic signal frequency	
Input Currents	$l_{\text {A }}, l_{\text {IB }}$	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~A}}, \mathrm{~V}_{\mathrm{IB}}, \leq \mathrm{V}_{\mathrm{DD} 1}$	
Logic High Input Threshold	V_{IH}	$0.7 \times \mathrm{V}_{\mathrm{DD} 1}$			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			$0.3 \times \mathrm{VDD1}$	V		
Logic High Output Voltages	$\mathrm{V}_{\text {оан, }} \mathrm{V}_{\text {ов }}$	$V_{\text {DD2 } 2}-0.1$	3.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{lH}}$	
		$V_{D D 2}-0.5$	2.8		V	$\mathrm{l}_{\text {ox }}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{l}}=\mathrm{V}_{\text {IXH }}$	
Logic Low Output Voltages	$\mathrm{V}_{\text {oal, }} \mathrm{V}_{\text {obl }}$		0.0	0.1	V	$\mathrm{l}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxL }}$	
			0.04	0.1	V	$\mathrm{l}_{\text {ox }}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$	
SWITCHING SPECIFICATIONS							
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{3}$		10			Mbps	$C_{L}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		60	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHLL }}\right\|^{4}$	PWD			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	tPSKOD			22	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CMH		25	35		kV/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	$\left\|C M_{L}\right\|$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.1		Mbps		
Input Dynamic Supply Current, per Channel ${ }^{8}$	$\mathrm{ldDI}(\mathrm{D})$		0.10		mA/Mbps		
Output Dynamic Supply Current, per Channel ${ }^{8}$	IDDo (D)		0.03		mA/Mbps		

[^1]${ }^{5} \mathrm{t}_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ and/or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION

$5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} .3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/ maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$; or $\mathrm{V}_{\mathrm{DD} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. All voltages are relative to their respective ground.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current, per Channel, Quiescent	IDDI (0)				mA	
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.50	0.6	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.26	0.35	mA	
Output Supply Current, per Channel, Quiescent	IDDo (Q)				mA	
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.11	0.20	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.19	0.25	mA	
Total Supply Current, Two Channels ${ }^{1}$ DC to 2 Mbps						
$V_{\text {DD1 }}$ Supply Current	$\operatorname{ldD1~(0)~}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.1	1.4	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.6	1.0	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	ldD2 (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.2	0.6	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.5	0.8	mA	DC to 1 MHz logic signal frequency
10 Mbps						
$V_{\text {DD } 1}$ Supply Current	$\operatorname{ldD1}(10)$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			4.3	5.5	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.2	3.4	mA	5 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current	$\mathrm{IDD2}$ (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.7	1.1	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.3	2.0	mA	5 MHz logic signal frequency
Input Currents	$\mathrm{lia}_{\text {a }}$ lib	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\mathrm{IB}} \leq \mathrm{V}_{\mathrm{DD} 1}$
Logic High Input Threshold	V_{H}	$0.7 \times \mathrm{V}_{\mathrm{DD} 1}$			V	
Logic Low Input Threshold	VIL			$0.3 \times \mathrm{V}_{\text {DD } 1}$	V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAH, }} \mathrm{V}_{\text {OBH }}$	$V_{\text {DD2 } 2-0.1 ~}^{\text {- }}$	$V_{\text {DD2 }}$		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{lxH}}$
		$V_{\text {DD2 }}-0.5$	$V_{D D 2}-0.2$		V	$\mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{IXH}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {oal }}, \mathrm{V}_{\text {obl }}$		0.0		V	$\mathrm{l}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{IxL}}$
			0.04	0.1	V	$\mathrm{I}_{\mathrm{ox}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$
				0.4		
SWITCHING SPECIFICATIONS						
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$C_{L}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	15		55	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, \|tpLH - tphl ${ }^{4}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		ps $/{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			22	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	tPSKCD			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKOD }}$			22	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			3.0		ns	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5		ns	

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CM ${ }_{\text {L }}$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V} \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.2		Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.1		Mbps		
Input Dynamic Supply Current, per Channel ${ }^{8}$	IDDI (D)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.19		mA/Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.10		mA/Mbps		
Output Dynamic Supply Current, per Channel ${ }^{8}$	I DDO (D)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.03		mA/Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.05		mA/Mbps		

${ }^{1}$ The supply current values are for both channels combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{\text {Ix }}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. tpLH propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the Vox signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-to-Output) ${ }^{1}$	R.-O		10^{12}		Ω	
Capacitance (Input-to-Output) ${ }^{1}$	$\mathrm{Cl}_{1-\mathrm{O}}$		1.0		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	Cl_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance Side 1 Side 2	$\begin{aligned} & \theta_{\mathrm{\jmath cı}} \\ & \theta_{\mathrm{\jmath co}} \end{aligned}$		$\begin{aligned} & 46 \\ & 41 \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	Thermocouple located at center of package underside

${ }^{1}$ The device is considered a 2-terminal device; Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM1210 is approved by the organizations listed in Table 5. See Table 10 and the Insulation Lifetime section for recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 5.

UL	CSA	VDE
Recognized Under 1577 Component Recognition Program ${ }^{1}$	Approved under CSA Component Acceptance Notice \#5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12²
Single/Basic 2500 V rms Isolation Voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 peak) maximum working voltage Functional insulation per CSA 60950-1-03 and IEC 60950-1, 800 V rms (1131 V peak) maximum working voltage	Reinforced insulation, 560 V peak
File E214100	File 205078	File 2471900-4880-0001

INSULATION AND SAFETY-RELATED SPECIFICATIONS
Table 6.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(101)	4.90 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	4.01 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

ADuM1210

DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 INSULATION CHARACTERISTICS

This isolator is suitable for reinforced isolation within the safety limit data only. Maintenance of the safety data is ensured by protective circuits. Note that the asterisk $\left.{ }^{*}\right)$ marked on the package denotes DIN V VDE V 0884-10 approval for a 560 V peak working voltage.

Table 7.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			Ito IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		VIorm	560	V peak
Input-to-Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input-to-Output Test Voltage, Method A	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$		
After Environmental Tests Subgroup 1			896	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\mathrm{TR}}=10$ seconds	$V_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure; see Figure 2			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		I_{51}	160	mA
Side 2 Current		IS_{5}	170	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 2. Thermal Derating Curve, Dependence of Safety-Limiting Values on Case Temperature, per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages 1	$\mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	2.7	5.5	V
Input Signal Rise and Fall Times			1.0	ms

${ }^{1}$ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 9.

Parameter	Rating
Storage Temperature ($\mathrm{Tst}^{\text {) Range }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature (T_{A}) Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages ($\left.\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1}$	-0.5 V to +7.0 V
Input Voltage ($\left.\mathrm{V}_{1 \mathrm{~A}}, \mathrm{~V}_{1 B}\right)^{1}$	-0.5 V to $\mathrm{V}_{\text {DII }}+0.5 \mathrm{~V}$
Output Voltage ($\left.\mathrm{V}_{\text {OA }}, \mathrm{V}_{\text {OB }}\right)^{1}$	-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5 \mathrm{~V}$
Average Output Current, Per Pin (Io) ${ }^{2}$	-35 mA to +35 mA
Common-Mode Transients ($\left.\mathrm{CML}_{\mathrm{L}}, \mathrm{CMH}\right)^{3}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ See Figure 2 for maximum rated current values for various temperatures.
${ }^{3}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum rating may cause latch-up or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 10. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
Functional Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Basic Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
Functional Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Basic Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

[^2]
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 11. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{~V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side $1,2.7 \mathrm{~V}$ to 5.5 V.
2	$\mathrm{~V}_{\mathrm{IA}}$	Logic Input A.
3	$\mathrm{~V}_{\mathrm{IB}}$	Logic Input B.
4	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
5	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
6	$\mathrm{~V}_{\mathrm{OB}}$	Logic Output B.
7	$\mathrm{~V}_{\mathrm{OA}}$	Logic Output A.
8	$\mathrm{~V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side $2,2.7 \mathrm{~V}$ to 5.5 V.

Table 12. ADuM1210 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	V_{18} Input	$\mathrm{V}_{\text {DD } 1}$ State	$\mathrm{V}_{\text {DD } 2}$ State	VoA Output	Vob Output	Description
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	X	Unpowered	Powered	L	L	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $V_{\text {DDI }}$ power restoration.
X	X	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDO }}$ power restoration.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation

Figure 5. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 6. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 7. Typical VDDI Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 8. Typical VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

APPLICATIONS INFORMATION

PC BOARD LAYOUT

The ADuM1210 digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm .
See the AN-1109 Application Note for board layout guidelines.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high output.

Figure 9. Propagation Delay Parameters
Pulse width distortion is the maximum difference between the two propagation delay values and is an indication of how accurately the input signal's timing is preserved.
Channel-to-channel matching refers to the maximum amount that the propagation delay differs between channels within a single ADuM1210 component.
Propagation delay skew refers to the maximum amount that the propagation delay differs between multiple ADuM120x components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is therefore either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions of more than $\sim 1 \mu \mathrm{~s}$ at the input, a periodic set of refresh pulses indicative of the correct input state is sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than about $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 12) by the watchdog timer circuit.

The ADuM1210 is extremely immune to external magnetic fields. The limitation on the ADuM1210 magnetic field immunity is set by the condition in which induced voltage in the transformer's receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM1210 is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where:
β is the magnetic flux density (gauss).
r_{n} is the radius of the nth turn in the receiving coil (cm). N is the number of turns in the receiving coil.
Given the geometry of the receiving coil in the ADuM1210 and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 10.

Figure 10. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurred during a transmitted pulse (and had the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , still well above the 0.5 V sensing threshold of the decoder.
The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM1210 transformers. Figure 11 expresses these allowable current magnitudes as a function of frequency for selected distances. As seen in Figure 11, the ADuM1210 is extremely immune and can be affected only by extremely large currents operated at high frequency and very close to the component. For the 1 MHz example, a 0.5 kA current would have to be placed 5 mm away from the ADuM1210 to affect the component's operation.

Figure 11. Maximum Allowable Current for Various Current-to-ADuM1210 Spacings

Note that, at combinations of strong magnetic fields and high frequencies, any loops formed by printed circuit board traces can induce sufficiently large error voltages to trigger the threshold of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM1210 isolator is a function of the supply voltage, the channel data rate, and the channel output load.
For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{array}{rr}
I_{D D O}=I_{D D O(Q)} & f \leq 0.5 f_{r} \\
I_{D D O}=\left(I_{D D O}(D)+\left(0.5 \times 10^{-3}\right) \times C_{L} V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O}(Q) \\
& f>0.5 f_{r}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz , half the input data rate, NRZ signaling).
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q)}, I_{D D O}(Q)$ are the specified input and output quiescent
supply currents (mA).

To calculate the total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current, the supply currents for each input and output channel corresponding to $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ are calculated and totaled. Figure 4 and Figure 5 show per-channel supply currents as a function of data rate for an unloaded output condition. Figure 6 shows per-channel supply current as a function of data rate for a 15 pF output condition. Figure 7 and Figure 8 show total $V_{D D 1}$ and $V_{D D 2}$ supply current as a function of data rate.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM1210.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Table 10 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than 50 -year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.

The insulation lifetime of the ADuM1210 depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 12, Figure 13, and Figure 14 illustrate these different isolation voltage waveforms.
Bipolar ac voltage is the most stringent environment. The goal of a 50 -year operating lifetime under the ac bipolar condition determines the Analog Devices recommended maximum working voltage.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 10 can be applied while maintaining the 50-year minimum lifetime provided the voltage conforms to either the unipolar ac or dc voltage case. Any crossinsulation voltage waveform that does not conform to Figure 13 or Figure 14 should be treated as a bipolar ac waveform, and its peak voltage should be limited to the 50 -year lifetime voltage value listed in Table 10.

Note that the voltage presented in Figure 13 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .

rated peak voltage

Figure 13. Unipolar AC Waveform

RATED PEAK VOLTAGE
ov
Figure 14. DC Waveform

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 15. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model ${ }^{1}$	Number of Inputs, $V_{D D 1}$ Side	Number of Inputs, $V_{D D 2}$ Side	Maximum Data Rate	Maximum Propagation Delay, 5 V	Maximum Pulse Width Distortion	Temperature Range	Package Description	Package Option
ADuM1210BRZ	2	0	10 Mbps	50 ns	3 ns	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1210BRZ-RL7	2	0	10 Mbps	50 ns	3 ns	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8

[^3]NOTES
Data Sheet ADuM1210

NOTES

NOTES

[^0]: ${ }^{1}$ Supply current values are for both channels running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate.
 ${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
 ${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.

[^1]: ${ }^{1}$ The supply current values are for both channels combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate.
 ${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
 ${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
 ${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{\text {Ix }}$ signal to the 50% level of the falling edge of the $V_{0 \times}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \times}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \times}$ signal.

[^2]: ${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.

