

0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz

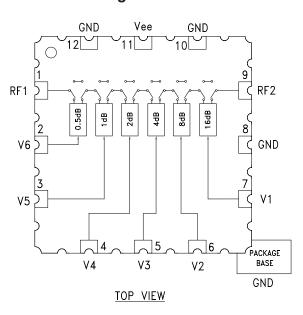
Typical Applications

The HMC424ALH5 is ideal for:

- Telecom Infrastructure
- Military Radio, Radar & ECM
- Space Systems
- Test Instrumentation

Features

0.5 dB LSB Steps to 31.5 dB


Single Control Line Per Bit

± 0.3 dB Typical Bit Error

Hermetic SMT Package, 25mm²

Screening to MIL-PRF-38535 (Class B or S) Available

Functional Diagram

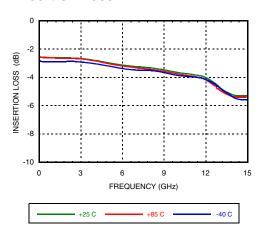
General Description

The HMC424ALH5 is a broadband 6-bit GaAs MMIC digital attenuator housed in a hermetic SMT leadless package. Covering DC to 13 GHz, the insertion loss is less than 3.5 dB typical. The attenuator bit values are 0.5 (LSB), 1, 2, 4, 8, and 16 dB for a total attenuation of 31.5 dB. Attenuation accuracy is excellent at ±0.5 dB typical step error with an IIP3 of +34 dBm. Six control voltage inputs, toggled between 0 and -5V, are used to select each attenuation state. A single Vee bias of -5V allows operation at frequencies down to DC. The HMC424ALH5 is compatible with standard and lead free surface mount manufacturing techniques and is suitable for high reliability military, industrial and space applications.

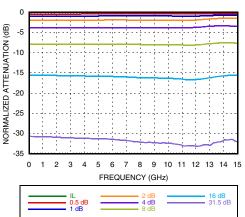
Electrical Specifications, $T_A = +25^{\circ}$ C, With Vee = -5V & VCTL= 0/-5V

Parameter		Frequency (GHz)	Min.	Тур.	Max.	Units
Insertion Loss		DC - 4 GHz 4.0 - 8.0 GHz 8.0 - 12.0 GHz 12.0GHz - 13.0 GHz		2.7 3.3 4.2 4.7	3.2 3.8 4.7 5.2	dB dB dB
Attenuation Range		DC - 13.0 GHz		31.5		dB
Return Loss (RF1 & RF2, All Atten. States)		DC - 13.0 GHz		12		dB
Attenuation Accuracy: (Referenced to Insertion Loss)	0.5 - 16.5 dB States 17 - 31.5 dB States	DC - 13.0 GHz DC - 13.0 GHz	± 0.4 + 4% of Atten. Setting Max ± 0.5 + 5% of Atten. Setting Max		dB dB	
Input Power for 0.1 dB Compression		1.0 - 13.0 GHz		27		dBm
Input Third Order Intercept Point (Two-Tone Input Power= 0 dBm Each Tone)	REF State All Other States	1.0 - 13.0 GHz		40 34		dBm dBm
Switching Characteristics		DC - 13.0 GHz				
tRISE, tFALL (10/90% RF) tON/tOFF (50% CTL to 10/90% RF)				30 55		ns ns

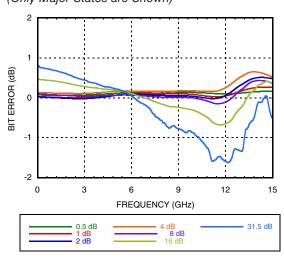
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

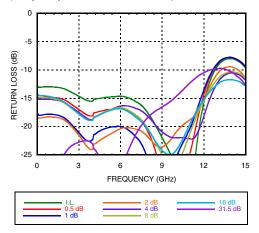
00 0416


0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz

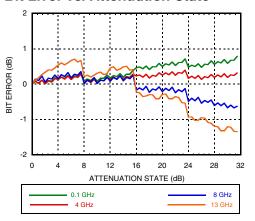
Insertion Loss


Normalized Attenuation

(Only Major States are Shown)

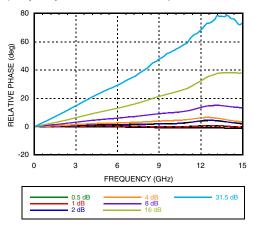

Bit Error vs. Frequency

(Only Major States are Shown)



Return Loss RF1, RF2

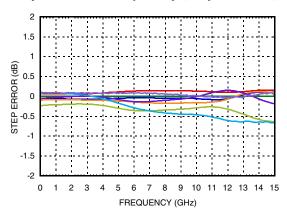
(Only Major States are Shown)



Bit Error vs. Attenuation State

Relative Phase vs. Frequency

(Only Major States are Shown)



v00 0416

0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz

Step Error vs. Frequency (Major States)

Truth Table

Control Voltage Input					Attenuation		
V1 16 dB	V2 8 dB	V3 4 dB	V4 2 dB	V5 1 dB	V6 0.5 dB	State RF1 - RF2	
Low	Low	Low	Low	Low	Low	Reference I.L.	
Low	Low	Low	Low	Low	High	0.5 dB	
Low	Low	Low	Low	High	Low	1 dB	
Low	Low	Low	High	Low	Low	2 dB	
Low	Low	High	Low	Low	Low	4 dB	
Low	High	Low	Low	Low	Low	8 dB	
High	Low	Low	Low	Low	Low	16 dB	
High	High	High	High	High	High	31.5 dB	

Any Combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

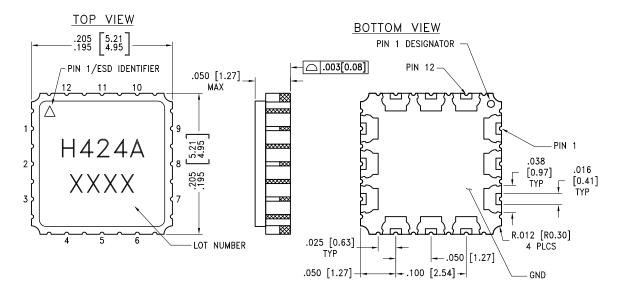
Bias Voltage & Current

Vee Range= -5 Vdc ± 10%		
Vee (VDC)	lee (Typ.) (mA)	lee (Max.) (mA)
-3.0	2.2	5
-5.0	2.3	5

Control Voltage

State	Bias Condition
Low	0 to -3V @ 35 μA Typ.
High	Vee to Vee +0.8V @ <1 μA Typ.

v00.0416


0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz

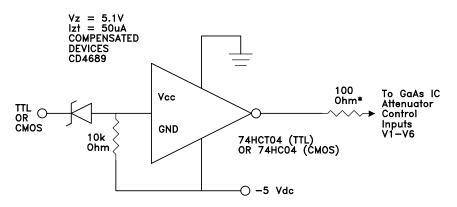
Absolute Maximum Ratings

Control Voltage (V1 to V6)	Vee - 0.5 Vdc
3 ()	
Bias Voltage (Vee)	-7 Vdc
Channel Temperature	150 °C
Thermal Resistance (T= 85 °C) Pin = +23 dBm, @ max. atten. Pin = +23dBm, @ 4dB atten.	100 °C/W 374 °C/W
Continuous Pdiss (T= 85 °C)	0.174 W
Storage Temperature	-65 to + 150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (0.5 - 13 GHz)	+25 dBm
ESD Sensitivity (HBM)	Class 1A

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: CERAMIC & KOVAR
- 2. LEAD AND GROUND PADDLE PLATING: GOLD 40 80 MICROINCHES.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PAD BURR LENGTH 0.15mm MAX. PAD BURR HEIGHT 0.25mm MAX.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.


00 0/16

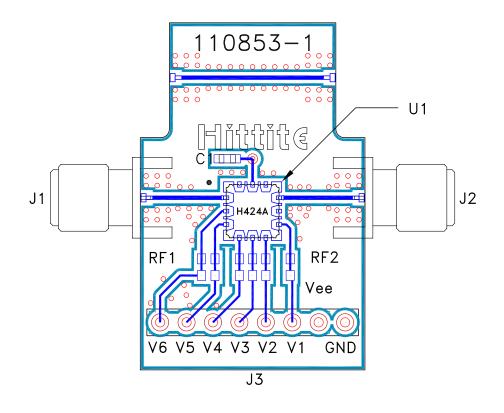
0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz

Pin Description

Pad Number	Function	Description	Interface Schematic
1, 9	RF1, RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required if RF line potential is not equal to 0V.	
2 - 7	V6 - V1	See truth table and control voltage table.	100K Vee
8, 10, 12	GND	Package base must also be connected to RF ground	GND =
11	Vee	Supply Voltage -5V ± 10%	

Suggested Driver Circuit (One Circuit Required Per Bit Control Input)

Simple driver using inexpensive standard logic ICs provides fast switching using minimum DC current.


* Recommended value to suppress unwanted RF signals at V1 - V6 control lines.

00 0416

0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC424ALH5 [1]

Item	Description
J1 - J2	PCB Mount SMA SRI Connector
J3	8 Pin DC Connector .1" Thruhole
C1	0.01 μF Capacitor, 0603 Pkg.
U1	HMC424ALH5 Digital Attenuator
PCB [2]	110853 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request.