450° ANALOG PHASE SHIFTER, 2-4 GHz

Typical Applications

The HMC928LP5E is ideal for:

- EW Receivers
- Military Radar
- Test Equipment
- Satellite Communications
- Beamforming Modules

Functional Diagram

Features

Octave Bandwidth: 2-4 GHz
450° Phase Shift
Low Insertion Loss: 3.5 dB
Low Phase Error: ± 5 Typical
Single Positive Voltage Control
32 Lead 5x5 mm SMT Package: $25 \mathrm{~mm}^{2}$

General Description

The HMC928LP5E is an Analog Phase Shifter which is controlled via an analog control voltage from 0 to +13 V . The HMC928LP5E provides a continuously variable phase shift of 0 to 450 degrees from 2 to 4 GHz , with extremely consistent low insertion loss versus phase shift and frequency. The high accuracy HMC928LP5E is monotonic with respect to control voltage and features a typical low phase error of ± 5 degrees over an octave bandwidth. The HMC928LP5E is housed in an RoHS compliant $5 \times 5 \mathrm{~mm}$ QFN leadless package.

Electrical Specifications, $\boldsymbol{T}_{A}=+\mathbf{2 5}$ C, $\mathbf{5 0}$ Ohm System

Parameter	Frequency (GHz)	Min.	Typ.	Max.	Units
Phase Shift Range	2-4 GHz		450		deg
Insertion Loss	2-4 GHz		3.5		dB
Return Loss (Input \& Output)	2-4 GHz		15		dB
Control Voltage Range	2-4GHz	0		13	V
Control Current Range	2-4GHz			± 1.0	mA
Maximum Input Power for Linear Operation	2-4 GHz			10	dBm
Phase Voltage Sensitivity	2-4GHz		35		deg/V
Phase Error *	2-4 GHz		± 5		deg
Phase Error (average)	2-4GHz		3		deg
Modulation Bandwidth	2-4GHz		20		MHz
Insertion Phase Temperature Sensitivity	2-4GHz		0.10		$\mathrm{deg} /{ }^{\circ} \mathrm{C}$

* Up to a phase shift range of 400 degrees.

450º ANALOG PHASE SHIFTER， 2－4 GHz

Insertion Loss vs．Frequency

Phase Shift vs．Vctl

Phase Shift vs．Frequency
（Relative to Vctl $=0 \mathrm{~V}$ ）Vctl $=0.5$ to 13 V

Phase Error vs．
Frequency，Fmean $=3$ GHz ${ }^{[1]}$

Phase Shift vs．Frequency＠Vctl＝6V
（Relative to $\mathrm{Vctl}=0 \mathrm{~V}$ ）

Insertion Loss vs．Vctl，F＝ $\mathbf{3} \mathbf{~ G H z}$

Input IP3 vs. Vctl, F=3 GHz

Third Harmonics vs. Vctl, F = $\mathbf{3} \mathbf{G H z}$

Insertion Loss vs. Pin @ 2 GHz

Insertion Loss vs. Pin @ 3 GHz

Insertion Loss vs. Pin @ 4 GHz

Phase Shift vs．Pin＠ 2 GHz

Phase Shift vs．Pin＠ 4 GHz

Output Return Loss vs．
Frequency，Vctl $=0$ to +13 V

450º ANALOG PHASE SHIFTER， 2－4 GHz

Phase Shift vs．Pin＠ 3 GHz

Input Return Loss vs．
Frequency，Vctl $=0$ to +13 V

Reliability Information

Junction Temperature（Tj）	$150^{\circ} \mathrm{C}$
Nominal Junction Temperature $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right.$ and Pin $\left.=10 \mathrm{dBm}\right)$	$87^{\circ} \mathrm{C}$
Thermal Resistance （Junction to GND paddle）	$45^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Input Power（RFIN）	+27 dBm
Control Voltage（Vctl）	-0.5 V to +15 V
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
ESD Sensitivity（HBM）	Class 1 B

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

. 007

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY
2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
3. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15 mm PER SIDE.
4. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25 mm PER SIDE.
5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
6. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[1]}$
HMC928LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[2]}$	$\underline{\mathrm{H} 928}$

[1] 4-Digit lot number XXXX
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
$1-5,8-13$, $15-17,20-32$	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
6	RFIN	Port is DC blocked.	
7,8	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.	
14	Vctl	Phase shift control pin. Application of a voltage between 0 and 13 volts causes the transmission phase to change. The DC equivalent circuit is a series connected diode and resistor.	
19	RFOUT		

Evaluation PCB

［1］Reference this number when ordering complete evaluation PCB
［2］Circuit Board Material：Rogers 4350

The circuit board used in the application should use RF circuit design techniques．Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown．A sufficient number of via holes should be used to connect the top and bottom ground planes．The evaluation board should be mounted to an appropriate heat sink．The evaluation circuit board shown is available from Hittite upon request．

