INDUCTORS

Inductors for power circuits Thin-film metal magnetic material TFM-ALMA series (for automotive)

AEC-Q200

TFM322512ALMA type

FEATURES

- O By using metal magnetic material with high Saturation magnetic flux density the excellent DC bias characteristics needed for inductors for power circuits can be achieved.
- With the same product shape and terminal structure as general chip parts it has excellent mounting stability characteristics and can also be mounted to general-purpose land patterns.
- O By using a closed magnetic circuit structure leakage flux is minimized.
- O Compliant with AEC-Q200

APPLICATION

ADAS ECU, in-Vehicle camera (view camera, sensing camera), radar, meter cluster, automotive communication module Other power supply circuit uses

PART NUMBER CONSTRUCTION

TFM	322512	ALM	Α	1R0	М	Т	AA
Series name	L×W×H dimensions 3.2×2.5×1.2 mm	Characteristic type	Automotive use	Inductance (µH)	Inductance tolerance	Packaging style	Internal code

CHARACTERISTICS SPECIFICATION TABLE

	L measuring frequency	DC resistar	ice	Rated cu	rrent*			Rated voltage	Part No.
				Isat		Itemp			
Tolerance	(MHz)	(m Ω)max.	(m Ω)typ.	(A)max.	(A)typ.	(A)max.	(A)typ.	(V)max.	
±20%	1	9	5	12	14	8.0	11	20	TFM322512ALMAR15MTAA
±20%	1	11	6	10	12	7.0	9.5	20	TFM322512ALMAR22MTAA
±20%	1	15	10	8.6	9.5	6.0	7.3	20	TFM322512ALMAR33MTAA
±20%	1	21	16	6.9	7.6	5.3	6.1	20	TFM322512ALMAR47MTAA
±20%	1	30	23	5.5	6.1	4.4	5.0	20	TFM322512ALMAR68MTAA
±20%	1	37	30	4.6	5.1	4.0	4.4	20	TFM322512ALMA1R0MTAA
±20%	1	57	46	4.0	4.5	3.2	3.5	20	TFM322512ALMA1R5MTAA
±20%	1	77	64	3.3	3.6	2.7	3.0	20	TFM322512ALMA2R2MTAA
±20%	1	113	97	2.5	2.8	2.3	2.5	20	TFM322512ALMA3R3MTAA
±20%	1	151	127	2.2	2.5	1.9	2.1	20	TFM322512ALMA4R7MTAA
±20%	1	260	220	1.8	2.1	1.4	1.6	20	TFM322512ALMA6R8MTAA
±20%	1	360	305	1.6	1.8	1.2	1.4	20	TFM322512ALMA100MTAA
	+20% +20% +20% +20% +20% +20% +20% +20%	Tolerance (MHz) ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1 ±20% 1	Tolerance (MHz) (mΩ)max. ±20% 1 9 ±20% 1 11 ±20% 1 15 ±20% 1 21 ±20% 1 30 ±20% 1 37 ±20% 1 57 ±20% 1 77 ±20% 1 113 ±20% 1 151 ±20% 1 260 ±20% 1 360	Tolerance(MHz)($m\Omega$)max.($m\Omega$)typ. $\pm 20\%$ 195 $\pm 20\%$ 1116 $\pm 20\%$ 11510 $\pm 20\%$ 12116 $\pm 20\%$ 13023 $\pm 20\%$ 15746 $\pm 20\%$ 15746 $\pm 20\%$ 17764 $\pm 20\%$ 1151127 $\pm 20\%$ 1260220	Tolerance (MHz) (mΩ)max. (mΩ)typ. Isat (A)max. ±20% 1 9 5 12 ±20% 1 11 6 10 ±20% 1 15 10 8.6 ±20% 1 21 16 6.9 ±20% 1 30 23 5.5 ±20% 1 37 30 4.6 ±20% 1 57 46 4.0 ±20% 1 77 64 3.3 ±20% 1 151 127 2.5 ±20% 1 151 127 2.2 ±20% 1 260 220 1.8 ±20% 1 360 305 1.6	Tolerance (MHz) (mΩ)max. (mΩ)typ. Isat (A)max. (A)typ. ±20% 1 9 5 12 14 ±20% 1 11 6 10 12 ±20% 1 15 10 8.6 9.5 ±20% 1 21 16 6.9 7.6 ±20% 1 30 23 5.5 6.1 ±20% 1 37 30 4.6 5.1 ±20% 1 57 46 4.0 4.5 ±20% 1 77 64 3.3 3.6 ±20% 1 151 127 2.2 2.5 ±20% 1 151 127 2.2 2.5 ±20% 1 260 220 1.8 2.1 ±20% 1 360 305 1.6 1.8	Tolerance (MHz) (mΩ)max. (mΩ)typ. Isat (A)max. Itemp (A)max. ±20% 1 9 5 12 14 8.0 ±20% 1 11 6 10 12 7.0 ±20% 1 15 10 8.6 9.5 6.0 ±20% 1 21 16 6.9 7.6 5.3 ±20% 1 30 23 5.5 6.1 4.4 ±20% 1 37 30 4.6 5.1 4.0 ±20% 1 57 46 4.0 4.5 3.2 ±20% 1 777 64 3.3 3.6 2.7 ±20% 1 151 127 2.2 2.5 1.9 ±20% 1 260 220 1.8 2.1 1.4 ±20% 1 360 305 1.6 1.8 1.2	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

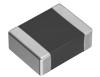
* Rated current: smaller value of either lsat or Itemp.

Isat: When based on the inductance change rate (30% below the initial L value)

Itemp: When based on the temperature increase (temperature increase of 40°C by self heating)

Please contact us for the rated current vs. temperature characteristics (derating) at a product temperature of 85°C or higher.

Measurement equipment


Measurement item	Product No.	Manufacturer	
L	4294A	Keysight Technologies	
DC resistance	Digital Milliohm Meter		
Rated current Isat	4285A+42841A+42842C	Keysight Technologies	
de Elevelen beneficie elevene	and a subsequence of the state of the		

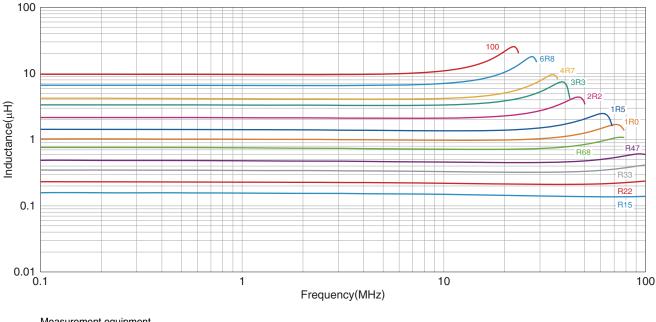
* Equivalent measurement equipment may be used.

TEMPERATURE RANGE, INDIVIDUAL WEIGHT

Operating temperature range*	Storage temperature range**	Individual weight			
–55 to +150 °C	–55 to +150 °C	0.052 g			
* Operating temperature range includes self-temperature rise.					

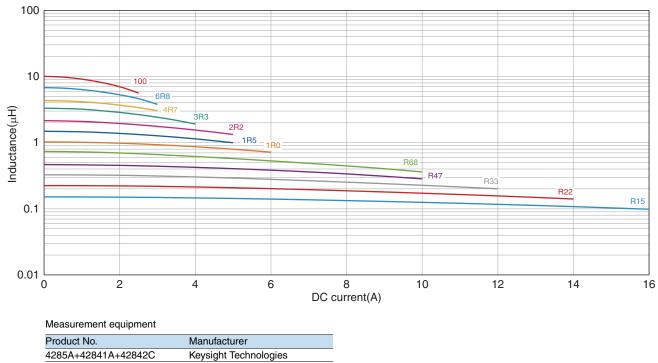
** The storage temperature range is for after the assembly.

A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. (1/4) Please note that the contents may change without any prior notice due to reasons such as upgrading.


20211226

INDUCTORS

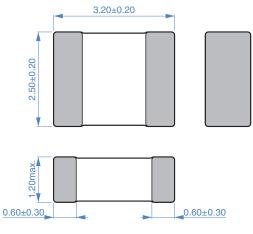
⊗TDK


TFM322512ALMA type

L FREQUENCY CHARACTERISTICS

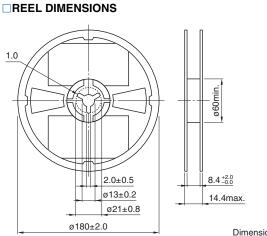
Measurement equipment	t		
Product No.	Manufacturer		
4294A Keysight Technologies			
* Equivalent measurement equipment may be used.			

■ INDUCTANCE VS. DC BIAS CHARACTERISTICS

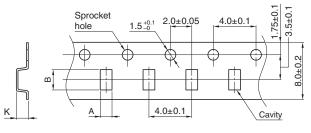

* Equivalent measurement equipment may be used.

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use.
 (2/4)
 Please note that the contents may change without any prior notice due to reasons such as upgrading.
 20211226

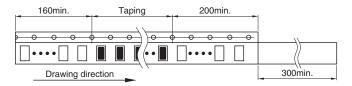
INDUCTORS


TFM322512ALMA type

SHAPE & DIMENSIONS


Dimensions in mm

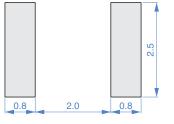
PACKAGING STYLE


Dimensions in mm

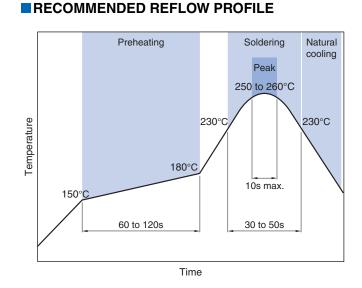
TAPE DIMENSIONS

Dimensions in mm

Туре	А	В	К
TFM322512ALMA	2.8	3.5	1.4



Dimensions in mm


PACKAGE QUANTITY

Package quantity 2000 pcs/reel

Dimensions in mm

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use.
 (3/4)
 Please note that the contents may change without any prior notice due to reasons such as upgrading.
 20211226

REMINDERS FOR USING THESE PRODUCTS

Before using these products, be sure to request the delivery specifications.

SAFETY REMINDERS

Please pay sufficient attention to the warnings for safe designing when using this products.

The storage period is within 6 months. Be sure to follow the storage conditions (temperature: 5 to 40°C, humidity: 20 to 75% RH o less).					
If the storage period elapses, the soldering of the terminal electrodes may deteriorate.					
Do not use or store in locations where there are conditions such as gas corrosion (salt, acid, alkali, etc.).					
Before soldering, be sure to preheat components. The preheating temperature should be set so that the temperature difference between the solder temperature and chip temperatur does not exceed 150°C.					
 Soldering corrections after mounting should be within the range If overheated, a short circuit, performance deterioration, or lifes 	-				
When embedding a printed circuit board where a chip is mounted to a set, be sure that residual stress is not given to the chip due to the overall distortion of the printed circuit board and partial distortion such as at screw tightening portions.					
Self heating (temperature increase) occurs when the power is turned ON, so the tolerance should be sufficient for the set therma design.					
Carefully lay out the coil for the circuit board design of the non-magnetic shield type. A malfunction may occur due to magnetic interference.					
OUse a wrist band to discharge static electricity in your body thro	bugh the grounding wire.				
\bigcirc Do not expose the products to magnets or magnetic fields.					
O Do not use for a purpose outside of the contents regulated in the	ne delivery specifications.				
telecommunications equipment, home appliances, amusemer ment, measurement equipment, industrial robots) and to be use is mounted in a vehicle) or standard applications as general el as general electronic equipment in automotive applications in a while the said automotive or general electronic equipment inclu usage methods, respectively. Other than automotive or automot the applications listed below, whose performance and/or qualit malfunction or defect could cause serious damage to society, p Please understand that we are not responsible for any damage below or for any other use exceeding the range or conditions so	ge or liability caused by use of the products in any of the applications				
 (1) Aerospace/aviation equipment (2) Transportation equipment (electric trains, ships, etc.) (3) Medical equipment (4) Power-generation control equipment (5) Atomic energy-related equipment (6) Seabed equipment (7) Transportation control equipment When designing your equipment even for general-purpose applicate tection circuit/device or providing backup circuits in your equipment	 (8) Public information-processing equipment (9) Military equipment (10) Electric heating apparatus, burning equipment (11) Disaster prevention/crime prevention equipment (12) Safety equipment (13) Other applications that are not considered general-purpose applications 				

A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. (4/4) Please note that the contents may change without any prior notice due to reasons such as upgrading.