LTC5596

 Linduino Shield 100MHz to 40 GHz

 Linduino Shield 100MHz to 40 GHz RMS Power Detector

 RMS Power Detector}

DESCRIPTION

Demonstration circuit DC2870A is a Linduino ${ }^{\circledR}$ shield for Mean-Squared Power Detector LTC®5596. It is set up for quick evaluation of RMS RF power measurement using the Arduino/Linduino compatible platform and software download available here. When connected to PC with USB cable, accurate power level can be monitored using the graphic user interface.
The LTC5596 is a wide dynamic range linear-in-dB Mean Squared RF Power Detector, operational from 100MHz to 40GHz. The Linduino (DC2026C) platform provides 10-bit ADC at $4.9 \mathrm{mV} / \mathrm{LSB}$ resolution with 5 V default reference voltage. Input dynamic range with 1 dB accuracy is up to 35 dB depending on frequency. The detector output slope is normally $6 \mathrm{LSB} / \mathrm{dB}$. The DC2870A Demo Circuit is optimized for wide operational frequency signals up to 40 GHz using the 2.9 mm SMK edge mount connector. Input impedance is internally matched to 50Ω. It is suitable for RMS measurements of high crest factor waveforms up to 12 dB peak-to-average. No external coupling capacitor is necessary if DC voltage at $R F_{I N}$ pin is kept below 1.0V. On board 3.3 V regulator provides power to

All registered trademarks and trademarks are the property of their respective owners.
the shield by jumper JP1. Contact applications support for more information.

Design files for this circuit board are available.

ABSOLUTE MAXIMUUM InPUT RATINGS

(Note 1)
Supply Voltage $\left(\mathrm{V}_{\text {C }}\right)$: $\quad+3.8 \mathrm{~V}$
DC Voltage at RFIN: $\quad-0.3 \mathrm{~V}$ to 1.0 V
DC Voltage at FLTR:
-0.3 V to 0.4 V
DC Voltage at EN:
-0.3 V to 3.8 V
RF ${ }_{\text {IN }}$ Input Power-Average:
$+15 \mathrm{dBm}$
TJMAX
$150^{\circ} \mathrm{C}$
Case Operating Temperature Range $\quad-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Note 1: Voltage on all pins must not exceed $V_{C C}+0.3 \mathrm{~V}$ or be less than -0.3 V .

CAUTION: This part is sensitive to electrostatic discharge (ESD). Observe proper ESD precautions when handling the LTC5596.

TEST SGTUP

Figure 1. Test Setup for RF Performance Measurements

DEMO MANUAL DC2870A

nOTES On TEST ЄQUIPMEnT AnD SETUP

- Use a high performance signal generator with accurate output power levels up to 40 GHz , such as Rohde Schwarz SMF100A.
- Demo Board DC2870A includes the SMK 2.9mm connector for best performance up to 40GHz.
- Connecting cable for RF signal should be rated up to 40 GHz for the best performance.
- Optional input attenuation can be used to improve return loss, but also shifts the log intercept point accordingly.

PUICK START PROCEDURE

1. Remove the DC2870A from its protective packaging in an ESD-safe working area, connect USB cable to PC(see Figure 1).
2. Set JP1 which provides the 3.3 V to $\mathrm{V}_{C C}$ by the on board regulator.
3. Go to www.analog.com, download and install QuikEval if it's not yet installed.
4. The Eval Kit comes with a Linduino board pre-loaded with firmware. Follow Figure 2 to re-load the firmware if necessary, which can be downloaded from www. analog.com.
5. Download LTC5596 GUI, and install all necessary drivers onto PC from the LTC5596 product page. Follow instruction from QuikEval which will automatically download the GUI.
6. Connect USB cable from PC to Linduino board. Connect the RF input to the signal generator at the 2.92 mm connector
7. Set the frequency and power level (less than +10 dBm) of the signal generator.
8. Open LTC5596 GUI, and set the frequency of signal to be measured. Push "READ" to measure RF power. Using the default calibration would be loading the nominal slope and intercept from LTC5596 data sheet values. See Figure 3.
9. Forhigher accuracy, Calibration can be performed using the GUI at various frequency with two point calibration. Set input power level to the corresponding calibration points on the GUI, and calibrate accordingly by clicking the corresponding button.
10. Read RF power using the GUI.

DEMO BOARD USAGE חOTES

1. Demo Board DC2870A has provisions for inter-stage filter cap. Additional capacitor (C3) can be added to slow down the transient response to reduce the output ripple. The range for C 3 is 10 pF to 1 nF .
2. Output power is calculated using slope and intercept.
3. ADC count • $4.9 \mathrm{mV} /$ slope + intercept $=$ output power. Slope is derived from two point calibration in the linear region of transfer function.
4. A minimum two point calibration is necessary for most applications. Additional calibration points will improve the accuracy of the power detection.

DEMO BOARD USAGE חOTES

Figure 2. Firmware Re-Load (Only If Necessary)

Figure 3. GUI

Figure 4. Calibration

DEMO MANUAL DC2870A

PARTS UST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	C1	CAP., CX Series, (16kHz to 40GHz), 0.1 $\mu \mathrm{F}, \mathrm{YD}, 16 \mathrm{~V}$, 10\%, 0402	AVX, CX02YD104KAT2
2	2	C3, C14	CAP., $0.01 \mu \mathrm{~F}, \mathrm{X7R}, 16 \mathrm{~V}, 10 \%, 0402$	MURATA, GRM155R71C103KA01D NIC, NMC0402X7R103K16TRPF
3	1	C4	CAP., 14F, X5R, 10V, 10\%, 0402	MURATA, GRM155R61A105KE15D AVX, 0402ZD105KAT2 TDK, C1005X5R1A105K050BB
4	1	C8	CAP., 10pF, NP0, 50V, 10\%, 0402	AVX, 04025A100KAT2A
5	0	C10	CAP., OPTION, 0402	
6	2	C11, C15	CAP., 0.1 FF, X7R, 16V, 10\%, 0402	AVX, 0402YC104KAT2A Taiyo Yuden, EMK105B7104KV-F TDK, C1005X7R1C104K050BC
7	2	C12, C13	CAP CER 10UF 6.3V X5R 0402	TDK Corporation, C1005X5R0J106M050BC
8	5	E1, E2, E3, E4, E5	TEST POINT, TURRET, 0.064", MTG. HOLE	MILL-MAX, 2308-2-00-80-00-00-07-0
9	1	J1	CONN., SMA, 2.9mm, JACK TO EDGE LUNCH, DC-40GHz	SRI CONNECTOR GAGE, 25-146-1000-93
10	1	J2	CONN., HDR, FEMALE, $1 \times 10,2.54 \mathrm{~mm}$, THT, STR	SULLINS CONNECTOR SOLUTIONS, PPPC101LFBN-RC
11	2	J3, J4	CONN., HDR, FEMALE, 1x8, 2.54mm, STR, THT	SULLINS CONNECTOR SOLUTIONS, PPPCO81LFBN-RC
12	1	J5	CONN., HDR., FEMALE, $1 \times 6,2.54 \mathrm{~mm}$, THT, STR	SULLINS CONNECTOR SOLUTIONS, PPPCO61LFBN-RC
13	1	J6	CONN., TERM. BLOCK, RCPT, $1 \times 2,5 \mathrm{~mm}$, SIDE ENTRY, THT	TE CONNECTIVITY, 282836-2
14	2	JP1, JP2	CONN., HDR, MALE, 1x2, 2mm, VERT, STR, THT, 10u" AU	SAMTEC, TMM-102-02-L-S
15	1	LB1	LABEL SPEC, DEMO BOARD SERIAL NUMBER	BRADY, THT-96-717-10
16	1	PCB1	PCB, DC2870A	ANALOG DEVICES INC., 600-DC2870A
17	1	R1	RES., AEC-Q200, 2k OHMS, 1\%, 1/16W, 0402	VISHAY, CRCW04022K00FKED NIC, NRC04F2001TRF
18	1	R2	RES., 1 OHM, 1\%, 1/16W, 0402	VISHAY, CRCW04021R00FKED
19	0	R8, R14	RES., OPTION, 0402	
20	3	R9, R10, R11	RES., 4.99k OHMS, 1\%, 1/16W, 0402	NIC, NRCO4F4991TRF VISHAY, CRCW04024K99FKED YAGEO, RC0402FR-074K99L
21	1	R12	RES., 100 OHMS, 1\%, 1/16W, 0402	NIC, NRC04F1000TRF YAGEO, RCO402FR-07100RL
22	1	R13	RES., 3k OHMS, 5\%, 1/16W, 0402	VISHAY, CRCW04023K00JNED
23	1	STNCL1	TOOL, STENCIL, 700-DC2870A	ANALOG DEVICES INC., 830-DC2870A
24	1	U1	IC, 100MHz to 40 GHz Linear-in-dB RMS Power Detector with 35dB Dynamic Range	LINEAR TECH, LTC5596_DC\#PBF
25	1	U2	IC, LOW NOISE, LDO MICROPOWER REG., TSOT23-5	LINEAR TECH., LT1761ES5-3.3\#PBF LINEAR TECH., LT1761ES5-3.3\#TRPBF
26	1	U3	IC, MEMORY, EEPROM, 2Kb (256x8), TSSOP-8, 400kHz	MICROCHIP, 24LCO25-I/ST MICROCHIP, 24LC025T-I/ST

SCHEMATIC DIAGRAM

[^0]
Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($\$ 100.00$). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed

[^0]: A

 ## ESD Caution

 ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

