

PRELIMINARY

S6BP501A, S6BP502A

3ch DC/DC Converter IC for Automotive Cluster

S6BP501A/S6BP502A is a three channel output power management IC. This IC includes one high voltage buck DC/DC controller (DD3V), one buck DC/DC converter with built-in FETs (DD1V) and one boost DC/DC converter with built-in FETs (DD5V). Current mode architecture is used for fast load transient response. At no load, the input supply current is reduced to 15 µA (Typ). It is possible to provide stable output voltage under an automotive cold cranking condition until the input voltage falls to 2.5V. This IC is suitable for power supply solutions of automotive and Industrial applications. Each output voltage can be adjusted by external resistors. Both DD1V and DD5V support the switching frequencies up to 2.4 MHz to allow use of small size inductors, which can reduce a part mounting area. To decrease EMI, this IC equips a SYNC function that synchronizes to an external clock signal and a spread spectrum clock generator (SSCG). When not inputting an external clock, it operates by an internal clock. The SSCG is valid both internal clock and external clock. Moreover, this IC has power good (PG) monitors for each output and a thermal-warning indicator.

Features

■Wide input voltage range : 2.5V to 42V (DD3V)

Adjustable output volta	age with pairs of resistors
□ DD1V	: 1.0V to 1.3V
🗆 DD3V	: 3.2V to 3.4V
🗆 DD5V	: 5.0V to 5.2V

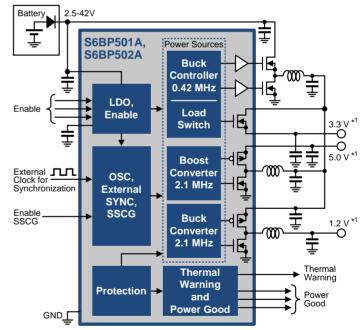
Switching frequency range (synchronizable to external clock by SYNC function)

DD1V, DD5V

Internal clock operation : 2.1 MHz (Typ)

External clock operation : 1.8 MHz to 2.4 MHz

□ DD3V (one-fifth-divided clock) Internal clock operation : 420 kHz (Typ)


External clock operation : 360 kHz to 480 kHz

- Super-high efficiency by PFM operation (DD3V, DD5V : When fixing SYNC pin to a low level)
- Automatic PWM/PFM switching and fixed PWM operations are settable by SYNC pin (DD3V, DD5V)
- ■Operable on up to 100% duty (DD3V)
- ■Built-in phase compensators
- ■Built-in SSCG
 - (spread spectrum clock generator)
- Synchronous rectification current mode architecture
- Shutdown current : 1 µA (Typ)
- ■Quiescent current : 15 µA (Typ)
- ■Load-independent soft-start
- Power good monitors for each output
 OVD (over voltage detection)
 UVD (under voltage detection)
- Enhanced protection functions
 UVLO (under voltage lockout)
 OVP (over voltage protection)
 OCP (over current protection)
 - □ TSD (thermal shutdown)
 - □ TWI (thermal warning indicator)
- ■Wettable QFN-32 package : 5 mm × 5 mm
- ■AEC-Q100 compliant (Grade-2)

Applications

- Instrument cluster
- ■Automotive applications
- ■Industrial applications

Block Diagram

*1: Output voltages are finely adjustable with external resistive dividers

More Information

Cypress provides a wealth of data at www.cypress.com/pmic to help you to select the right PMIC device for your design, and to help you to quickly and effectively integrate the device into your design. Following is an abbreviated list for S6BP501A and S6BP502A:

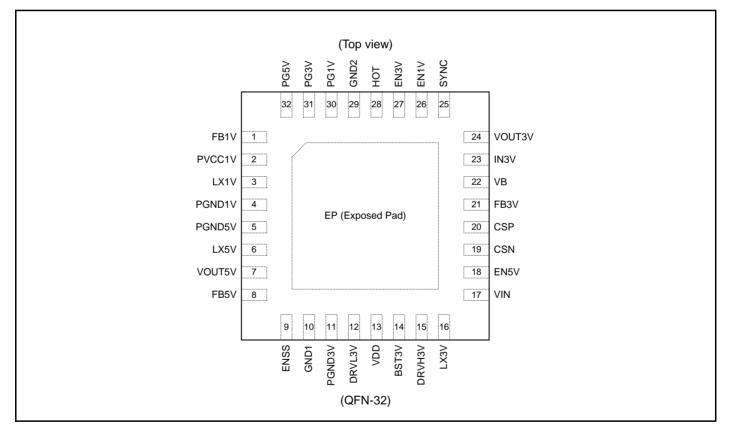
- Overview: Automotive PMIC Portfolio, Automotive PMIC Roadmap
- Product Selector:
 S6BP501A, S6BP502A:
 3ch Automotive PMIC for Instrument Cluster
- ■Application Notes: Cypress offers S6BP501A and S6BP502A application notes. Recommended application notes for getting started with S6BP501A and S6BP502A are: □ AN99435: Designing a Power Management System □ AN201006: Thermal Considerations and Parameters
- Evaluation Kit Operation Manual:
 S6SBP501A00VA1001, S6SBP502A00VA1001:
 Power block of automotive instrument cluster

■Related Products:

□ S6BP201A, S6BP202A, S6BP203A: 1ch Buck-Boost Automotive PMIC □ S6BP401A: 6ch Automotive PMIC for ADAS

Contents

Features	. 1
Applications	. 1
Block Diagram	. 1
More Information	. 2
1. Product Lineup	. 3
2. Pin Assignment	. 3
3. Pin Descriptions	. 4
4. Architecture Block Diagram	
5. Absolute Maximum Ratings	. 6
6. Recommended Operating Conditions	. 7
7. Electrical Characteristics	. 8
8. Functional Description	12
8.1 Operation Sequence	12
8.2 Each Function Block	13
8.3 Output State and Protection Function Table	16
9. Application Circuit Example and Parts List	17
10. Application Note	19
10.1 Setting the Operation Conditions	19
11. Usage Precaution	20
12. RoHS Compliance Information	20
13. Ordering Information	20
14. Package Dimensions	21
Document History	
Sales, Solutions, and Legal Information	23


1. Product Lineup

To order a product, select an item from the product lineup blow. For information on the ordering part number, please see "13. Ordering Information".

Product Name		S6BP501A	S6BP502A	
Pin co	punt	3	2	
Power supply v	oltage range	2.5V t	o 42V	
	DD1V	1.0V to	o 1.3V	
Output voltage range	DD3V	3.2V to 3.4V		
	DD5V	5.0V to	o 5.2V	
	DD1V	1.4A	2.0A	
Maximum output current	SW3V (*1)	1.6A	1.9A	
	DD5V	1.3A 1.3A		
Packa	age	QFN-32 (VNG032)	

*1: Load switch for DD3V. Each value is the maximum output current via SW3V.

2. Pin Assignment

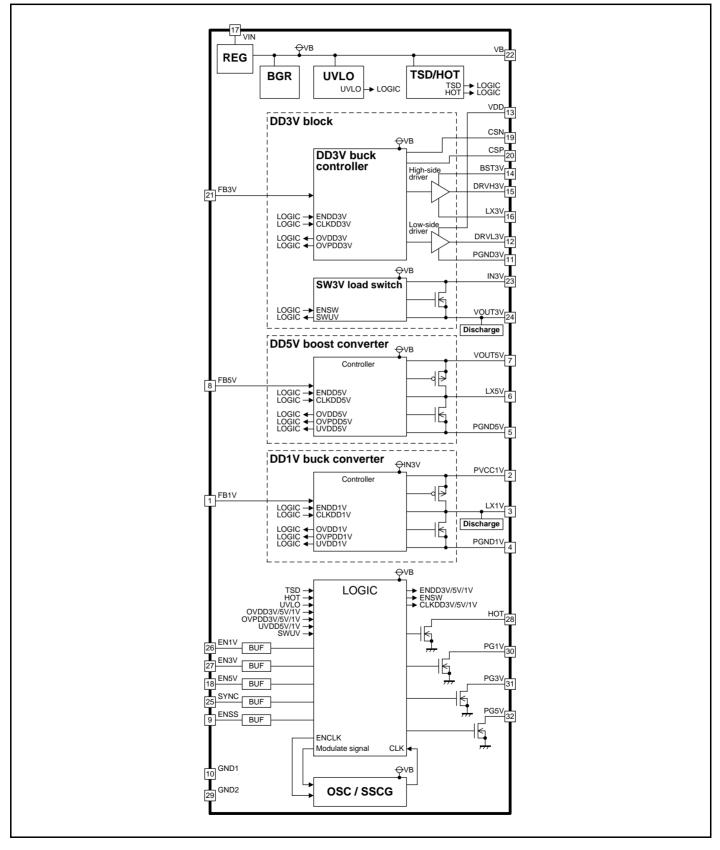

3. Pin Descriptions

Table 3-1 Pin Descriptions

Pin No.	Pin Name	I/O	Description
1	FB1V		Feedback pin for DD1V output voltage
2	PVCC1V	-	Power supply pin for DD1V
3	LX1V	0	Inductor connection pin for DD1V
4	PGND1V	-	Power ground pin for DD1V
5	PGND5V	-	Power ground pin for DD5V
6	LX5V	0	Inductor connection pin for DD5V
7	VOUT5V	0	Voltage output pin for DD5V
8	FB5V	I	Feedback pin for DD5V output voltage
9	ENSS	I	Enable pin for SSCG (When not being used, connect this pin to ground pin. For the pin setting, see "Table 8-1 SSCG Pin Setting".)
10	GND1	-	Ground pin
11	PGND3V	-	Power ground for DD3V
12	DRVL3V	0	Low-side FET gate driver output pin for DD3V
13	VDD	I	Power supply pin for gate driver for DD3V
14	BST3V	I	Boost capacitor connection pin for DD3V
15	DRVH3V	0	High-side FET gate driver output pin for DD3V
16	LX3V	0	Inductor connection pin for DD3V
17	VIN		Power supply pin connecting battery
18	EN5V	I	Enable pin for DD3V and DD5V
19	CSN	I	Negative current sense pin
20	CSP	I	Positive current sense pin
21	FB3V	I	Feedback pin for DD3V output voltage
22	VB	0	Bias voltage output pin and power supply pin for logic Do NOT connect any loads to this pin
23	IN3V		Power supply pin for load switch (SW3V) and DD1V
24	VOUT3V	0	Voltage output pin for DD3V via load switch (SW3V)
25	SYNC	I	External clock input / SYNC function setting pin (For the pin setting, see "Table 8-2 SYNC Pin Setting".)
26	EN1V		Enable pin for DD1V
27	EN3V		Enable pin for SW3V load switch (SW3V)
28	НОТ	0	Open drain type power good output pin for thermal warning indicator (When not being used, connect this pin to ground pin)
29	GND2	-	Ground pin
30	PG1V	0	Open drain type power good output pin for DD1V (When not being used, connect this pin to ground pin)
31	PG3V	0	Open drain type power good output pin for DD3V (When not being used, connect this pin to ground pin)
32	PG5V	0	Open drain type power good output pin for DD5V (When not being used, connect this pin to ground pin)

4. Architecture Block Diagram

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ra	ating	Unit
Parameter	Symbol	Condition	Min	Max	Unit
	V _{VIN}	VIN pin	-0.3	+48	V
	V _{VB}	VB pin	-0.3	+6.9	V
Power supply voltage (*1)	V _{VDD}	VDD pin	-0.3	+6.9	V
	V _{PVCC1V}	PVCC1V pin	-0.3	+6.9	V
	VIN3V	IN3V pin	-0.3	+6.9	V
	V _{BST3V}	BST3V pin	-0.3	+48	V
	V _{CSN}	CSN pin	-0.3	V _{VB}	V
	V _{CSP}	CSP pin	-0.3	V _{VB}	V
	V _{FB1V}	FB1V pin	-0.3	V _{VB}	V
	V _{FB3V}	FB3V pin	-0.3	V _{VB}	V
	V _{FB5V}	FB5V pin	-0.3	+6.9	V
	V _{EN1V}	EN1V pin	-0.3	+6.9	V
Pin voltage (*1)	V _{EN3V}	EN3V pin	-0.3	+6.9	V
	V _{EN5V}	EN5V pin	-0.3	+48	V
	V _{PG1V}	PG1V pin	-0.3	+6.9	V
	V _{PG3V}	PG3V pin	-0.3	+6.9	V
	V _{PG5V}	PG5V pin	-0.3	+6.9	V
	V _{HOT}	HOT pin	-0.3	+6.9	V
	VENSS	ENSS pin	-0.3	V _{VB}	V
	V _{SYNC}	SYNC pin	-0.3	+6.9	V
	V _{LX1V}	LX1V pin	-0.3	+6.9	V
LX voltage (*1)	V _{LX3V}	LX3V pin	-0.3	+48	V
	V _{LX5V}	LX5V pin	-0.3	+6.9	V
	V _{BST3V_LX3V}	BST3V to LX3V	-0.3	+6.9	V
	V _{DRVH3V_LX3V}	DRVH3V to LX3V	-0.3	+6.9	V
	V _{DRVH3V} LX3V	DRVL3V to PGND3V	-0.3	+6.9	V
	V _{LX5V_VOUT5V}	LX5V to VOUT5V	-0.3	+6.9	V
	V _{LX1_PVCC1V}	LX1 to PVCC1V	-0.3	+6.9	V
Difference voltage	V _{PGND1_GND}	PGND1V to GND1, PGND1V to GND2	-0.3	+0.3	V
ŭ	V _{PGND3 GND}	PGND3V to GND1, PGND3V to GND2	-0.3	+0.3	V
	VPGND5_GND	PGND5V to GND1, PGND5V to GND2	-0.3	+0.3	V
	V _{VIN_EN5V}	VIN to EN5V	-0.3	+48	V
	Vvb_input	VB to EN1V, VB to EN3V, VB to FB1V, VB to FB3V, VB to FB5V	-0.3	+6.9	V
Outraut aurrant	I _{PG}	PG1V, PG3V, PG5V sink current	-3	0	mA
Output current	I _{HOT}	HOT sink current	-3	0	mA
Power dissipation (*1)	PD	Ta ≤ ±25°C	0	4280 (*2)	mW
Storage temperature	T _{STG}	-	-55	+150	°C

*1: PGND1V = PGND3V = PGND5V = GND1 = GND2 = 0V

*2: When the product is mounted on 76.2 mm × 114.3 mm, four-layer FR-4 board

Warning:

1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

6. Recommended Operating Conditions

Parameter	Symbol		Condition		Value		Unit	
Parameter	Symbol		Condition		Тур	Max	Unit	
	V _{VIN_START}	VIN pin	At initial start-up	+6.8	-	I	V	
			After start-up	+4.5	+12	+42	V	
			After start-up, Ta = 25°C	+3.7	+12	+42	V	
Power supply voltage (*1)	V _{VIN}	VIN pin	After start-up, Ta = 25° C, VOUT5V current = 1 mA, V _{EN1V} = V _{EN3V} = 0V	+2.5	+12	+42	V	
	V _{VDD}	VDD pin		-	V _{VOUT5V}	-	V	
	V _{PVCC1V}	PVCC1V p	pin	-	+3.3	-	V	
	VIN3V	IN3V pin		-	+3.3	-	V	
	V _{EN1V}	EN1V pin		0	-	+5.5	V	
	V _{EN3V}	EN3V pin		0	-	+5.5	V	
	V _{EN5V}	EN5V pin		0	-	V_{VIN}	V	
	V _{PG1V}	PG1V pin		0	-	+5.5	V	
Pin voltage (*1)	V _{PG3V}	PG3V pin		0	-	+5.5	V	
	V _{PG5V}	PG5V pin		0	-	+5.5	V	
	V _{HOT}	HOT pin		0	-	+5.5	V	
	VENSS	ENSS pin		0	-	V _{VB}	V	
	V _{SYNC}	SYNC pin		0	-	+5.5	V	
Input clock frequency	F _{SYNC}	SYNC pin		1.8	2.1	2.4	MHz	
Input clock duty range	D _{SYNC}	SYNC pin		48	50	52	%	
LX voltage (*1)	V _{LX5V}	LX5V pin		0	-	+5.5	V	
DD1V output voltage (*1)	V _{VOUT1V}	Voltage of	DD1V output capacitor	1.0	-	1.3	V	
DD3V output voltage (*1)	V _{IN3V} (*2)	Voltage of	DD3V output capacitor, IN3V pin	3.2	-	3.4	V	
DD5V output voltage (*1)	V _{VOUT5V}	VOUT5V p		5.0	-	5.2	V	
BST capacitance	C _{BST}	BST3V to	LX3V	0.068	0.1	0.47	μF	
VB capacitance	C _{VB}	VB to GND)	2.2	4.7	10	μF	
Operating ambient temperature	Та		_	-40	+25	+105	°C	

*1: PGND1V = PGND3V = PGND5V = GND1 = GND2 = 0V

*2: VIN3V is defined as DD3V output voltage, and VVOUT3V (VOUT3V pin voltage) is defined as the DD3V output voltage via SW3V.

Warning:

- 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
- 2. Any use of semiconductor devices will be under their recommended operating condition.
- 3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
- 4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

7. Electrical Characteristics

 $V_{VIN} = V_{EN5V} = 12V, V_{PVCC1V} = 3.3V, V_{VB} = V_{VDD} = V_{EN1V} = V_{EN3V} = 5.0V$

(Unless specified otherwise, these are the electrical characteristics under the recommended operating environment.)

	Deremete-	Currence al	^	dition		Value		11014
	Parameter	Symbol		dition	Min	Тур	Max	Unit
	Shutdown current	I _{SHDN}	VIN pin current, $V_{VIN} = 12V$, $V_{EN1V} = V_{EN3V} = 100$	V _{EN5V} = 0V	-	1.0	_	μA
Supply current	Quiescent current	lq	VIN pin current, $V_{VIN} = 12V, V_{SYN}$ $V_{EN1V} = V_{EN3V} =$ All DC/DC conve External FET: N	$0V, V_{EN5V} = 12V,$ erters with no load,	-	15 (*1)	25 (*1)	μΑ
	VB supply current	I _{VB}	VB pin current, $V_{VB} = 5V$, V_{SYNC} $V_{EN1V} = V_{EN3V} =$ All DC/DC conve	= V _{VB} , 5V, V _{EN5V} = 12V, erters with no load	-	20	-	mA
UVLO	IC operation start voltage	V _{UVLO_START}	VB pin, V _{VB} risin		4.3	4.4	4.5	V
block	IC shutdown voltage	V _{UVLO_SHDN}	VB pin, V _{VB} fallir	ng	4.2	4.3	4.4	V
	Feedback voltage	V _{FB1V}	FB1V pin		0.591 (-1.5%)	0.6	0.609 (+1.5%)	V
	Output regulation	-	DD1V output vo $V_{PVCC1V} = V_{IN3V} =$ $I_{VOUT1V} = 0$ to 2.0	= 3.3V,	-1.5 (*1)	-	+1.5 (*1)	%
	Over voltage protection (OVP) voltage	V _{OVPR_1V}	Monitoring V _{FB1V} rising –		128.0	131.5	135.0	%
	Over voltage protection release voltage	V _{OVPF_1V}			-	-	0.94 (*1)	V
DD1V block	High-side FET ON resistance	R _{ONH_1V}	$I_{LX1V} = 50 \text{ mA} (P$	VCC1V to LX1V)	-	130	-	mΩ
DIOCK	Low-side FET ON resistance	$R_{ONL_{1V}}$		LX1V to PGND1V)	-	100	-	mΩ
	FET leak current	I _{LEAK_1V}	$V_{PVCC1V} = 5.0V, V_{PVCC1V} = 5.0V, V_{PVCV} = 5.0V, V_$		-	-	3	μA
	Maximum output current	I _{OUTMAX_1V}	L = 1.5 µH	S6BP501A S6BP502A	1.4 (*1) 2.0 (*1)	-	-	A A
	Over current protection current (LX peak current)	I _{LXPEAK_1V}	L = 1.5 µH	S6BP501A S6BP502A	1.75 (*1) 2.5 (*1)	-	-	A A
	Discharge resistance	R _{DIS_1V}	LX1V pin	0001 002/1	2.5(1)	400	_	Ω
	Soft-start time	tss 1V		_	-	1.0	_	ms
	Feedback voltage	V _{FB3V}	FB3V pin		0.8865 (-1.5%)	0.9	0.9135 (+1.5%)	V
	Output regulation	_	IN3V pin, V _{VIN} = 4.5V to 42 I_{IN3V} = 0A to 5.1A	$V_{VIN} = 4.5V$ to 42V,		_	+1.25 (*1)	%
5501	PWM/PFM switching current	IPWMPEM 3V		-	-	1000 (*1)	-	mA
DD3V block	Over voltage protection (OVP) voltage	Vovpr_3v	Monitoring V _{VOU}	_{T3V} rising	3.70	3.85	4.00	V
	Over voltage protection release voltage	V _{OVPF_3V}		-	-	-	0.94 (*1)	V
	Dead time	t _{DEAD_3V}		-	10	20	-	ns
	Maximum duty cycle	D _{MAX_3V}	$V_{VIN} < V_{IN3V}$		-	-	100	%
	Soft-start time	t _{SS_3V}		-	-	1.0	-	ms

		s specified officialities, the	-				Value	,	,
	Par	ameter	Symbol	Cor	ndition	Min	Тур	Max	Unit
	High-side	ON resistance	R _{ONH_3V}	DRVH3V pin c (BST3V to DRV	urrent = 10 mA, /H3V)	-	15	-	Ω
	output driver	ON resistance	R _{ONL_3V}	(DRVH3V to L)		-	1	-	Ω
	Low-side output	ON resistance	R _{ONH_3V}	DRVL3V pin cu (PLX3V to DR)	/L3V)	-	1.5	-	Ω
	driver	ONTESIStance	R _{ONL_3V}	(DRVL3V to LX	urrent = −50 mA, (3V)	-	0.75	-	Ω
DDay (Boost	ON resistance	R _{ON_BSTSW}	$I_{BST3V} = 10 \text{ mA}$		-	8	24	Ω
DD3V	switch	Leak current	I _{R_BSTSW}	$V_{BST3V} = 47V$		-	-	2	μA
block	Output	Over current limit	-	V _{CSP} - V _{CSN}		60	80	100	mV
	current	CSP input current	I _{CSP}	Fixed PWM op		-	2	5	μA
	monitor	CSN input current	I _{CSN}	Fixed PWM op		-	8	20	μA
		ON resistance	R _{ON_SW3V}		3V current = 50 mA	-	1	100	mΩ
		Maximum output		S6BP501A		1.6 (*1)	1	-	Α
	SW3V	current	ILOAD_SW3V	S6BP502A		1.9 (*1)	-	-	Α
	block	Leak current	ILEAK_SW3V	$V_{IN3V} = 3.3V, V$	_{EN3V} = 0V	-	-	3	μA
		Discharge resistance	R _{DIS_SW3V}		-	-	400	-	Ω
		Soft-start time	t _{SS_SW3V}		-	-	2.0	-	ms
	Feedback	voltage	V _{FB5V}	FB5V pin		1.182 (−1.5%)	1.2	1.218 (+1.5%)	V
	Output reg		_		oltage (V _{VOUT5V}), _{OUT5V} = 0A to 1.3A	-3.0 (*1)	I	+3.0 (*1)	%
		switching current	IPWMPFM_5V		_	-	300 (*1)	-	mA
	voltage	ge protection (OVP)	Vovpr_5v	Monitoring V_{VO}	_{UT5V} rising	5.6	5.8	6.0	V
DD5V	voltage	ge protection release	V _{OVPF_5V}		-	-	-	0.94 (*1)	V
block	High-side I	ET ON resistance	R _{ONH_5V}	$I_{LX5V} = 50 \text{ mA}$ (VOUT5V to LX5V)	-	130	-	mΩ
	Low-side F	ET ON resistance	R _{ONL_5V}	I _{LX5V} = −50 mA (LX5V to PGNI		-	100	-	mΩ
	FET leak c	urrent	ILEAK_5V	$V_{VOUT5V} = 5.0V$	$V_{EN5V} = 0V$	-	-	3	μA
	Movimum			L = 1.5 µH	S6BP501A	1.3 (*1)	-	-	A
	Maximum	output current	I _{OUT_MAX5V}	∟ = 1.5 µ⊓	S6BP502A	1.3 (*1)	-	-	Α
	Over curre	nt protection current		L = 1.5 µH	S6BP501A	2.5 (*1)	-	-	Α
	(LX peak c		I _{LX_PEAK5V}	-	S6BP502A	2.5 (*1)	-	-	Α
	Soft-start t	me	t _{SS_5V}	$V_{VOUT5V} = 3.3V$	> 5.0V	-	0.5	-	ms

 $V_{VIN} = V_{EN5V} = 12V$, $V_{PVCC1V} = 3.3V$, $V_{VB} = V_{VDD} = V_{EN1V} = V_{EN3V} = 5.0V$ (Unless specified otherwise, these are the electrical characteristics under the recommended operating environment.)

$V_{VIN} = V_{EN5V} = 12V$, $V_{PVCC1V} = 3.3V$, $V_{VB} = V_{VDD} = V_{EN1V} = V_{EN3V} = 5.0V$
(Unless specified otherwise, these are the electrical characteristics under the recommended operating environment.)

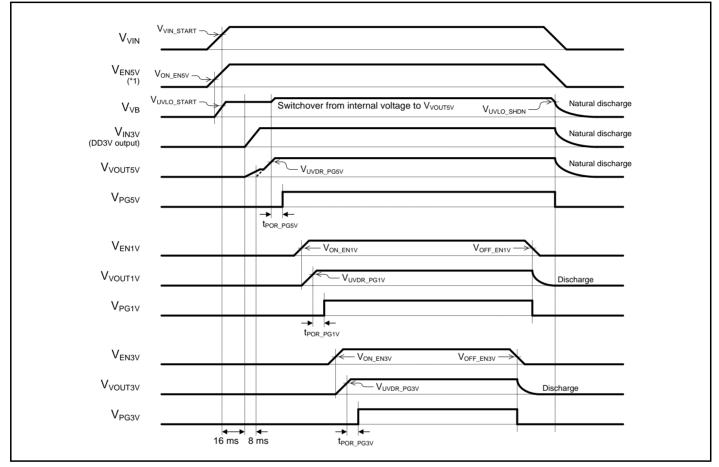
	Deremeter	Parameter Symbol Condition			Value		Unit
			Condition	Min	Тур	Max	•
	ON condition	V _{ON_EN1V}	-	2.0	-	-	V
EN1V	OFF condition	V _{OFF_EN1V}	-	-	-	0.4	V
pin	Input current	I _{ON_EN1V}	$V_{EN1V} = 5.0V$	-	50	I	μA
	Pull down resistance	R _{PULL_EN1V}	_	50	100	150	kΩ
	ON condition	V _{ON_EN3V}	_	2.0	-	I	V
EN3V	OFF condition	V _{OFF_EN3V}	_	-	-	0.4	V
pin	Input current	I _{ON_EN3V}	$V_{EN3V} = 5.0V$	-	50	I	μA
	Pull down resistance	R _{PULL_EN3V}	_	50	100	150	kΩ
	ON condition	V _{ON_EN5V}	-	2.5	-	-	V
EN5V	OFF condition	V _{OFF_EN5V}	-	-	-	0.2	V
pin	Input current	I _{ON_EN5V}	$V_{EN5V} = 12.0V$	-	1	3	μA
	Input current	IOFF_EN5V	$V_{EN5V} = 0V$	-	0	-	μA
	Over voltage detection (OVD) voltage	VOVDR_PG1V	Monitoring V _{FB1V} rising	105.0	106.5	108.0	%
	Over voltage detection release voltage	VOVDF_PG1V	Monitoring V _{FB1V} falling	-	105.5	-	%
PG1V	Under voltage detection (UVD) voltage	VUVDF_PG1V	Monitoring V _{FB1V} falling	92.5	94.0	95.5	%
pin	Under voltage detection release voltage	V _{UVDR_PG1V}	Monitoring V _{FB1V} rising	-	95.0	-	%
рш	Leak current	ILEAK_PG1V	$V_{PG5V} = 5.0V$	-	-	1	μA
	Low level voltage	V _{LOW_PG1V}	I _{PG5V} = 3 mA	-	0.15	0.30	V
	Power-on reset time	t _{POR_PG1V}	$V_{SYNC} = 0V$	8	10	12	ms
	Over voltage detection (OVD) voltage	V _{OVDR_PG3V}	Monitoring V _{FB3V} rising	104.5	106.0	107.5	%
	Over voltage detection release voltage	V _{OVDF_PG3V}	Monitoring VFB3V falling	-	105.0	-	%
PG3V	Under voltage detection (UVD) voltage	V _{UVDF_PG3V}	Monitoring VVOUT3V falling	3.004	3.050	3.096	V
pin	Under voltage detection release voltage	V _{UVDR_PG3V}	Monitoring V _{VOUT3V} rising	-	3.080	-	V
рш	Leak current	ILEAK_PG3V	$V_{PG3V} = 5.0V$	-	-	1	μA
	Low level voltage	V _{LOW_PG3V}	I _{PG3V} = 3 mA	-	0.15	0.30	V
	Power-on reset time	t _{POR_PG3V}	$V_{SYNC} = 0V$	8	10	12	ms
	Over voltage detection (OVD) voltage	V _{OVDR_PG5V}	Monitoring V _{FB5V} rising	106.0	108.0	110.0	%
PG5V	Over voltage detection release voltage	VOVDF_PG5V	Monitoring V _{FB5V} falling	-	107.0	-	%
	Under voltage detection (UVD) voltage	VUVDF_PG5V	Monitoring V _{FB5V} falling	90.0	92.0	94.0	%
	Under voltage detection release voltage	VUVDR_PG5V	Monitoring V _{FB5V} rising	-	93.0	-	%
pin	Leak current	ILEAK_PG5V	$V_{PG5V} = 5.0V$	-	-	1	μA
	Low level voltage	VLOW_PG5V	$I_{PG5V} = 3 \text{ mA}$	-	0.15	0.30	V
	Power-on reset time	t _{POR_PG5V}	$V_{SYNC} = 0V$	8	10	12	ms

	Parameter	Parameter Symbol Condition			Unit		
	Falailletei	Symbol		Min	Тур	Max	
TSD	Operation shutdown temperature	T _{TSDR}	Tj (*2) rising	-	+165 (*1)	-	°C
block	Operation restart temperature	T _{TSDF}	Tj (*2) falling	-	+155 (*1)	-	°C
	Thermal warning indicator temperature	T _{TWIR_HOT}	Tj (*2) rising	-	+140 (*1)	-	°C
HOT pin	Thermal warning indicator release temperature	T _{TWIF_HOT}	Tj (*2) falling	_	+130 (*1)	-	°C
	Leak current	ILEAK_HOT	$V_{HOT} = 5.0V$	-	-	1	μA
	Low level voltage	VLOW_HOT	I _{PG} = 3 mA	-	0.15	0.30	V
OSC	Switching froguenov	F _{osc1}	DD1V, DD5V, In internal clock operation	2.0	2.1	2.2	MHz
block	Switching frequency	F _{OSC2}	DD3V, $F_{OSC2} = F_{OSC1} / 5$, In internal clock operation	0.40	0.42	0.44	MHz
	High level voltage	V _{HIGH_SYNC}	In external clock input	2.0	-	-	V
	Low level voltage	V_{LOW_SYNC}	In external clock input	-	-	0.4	V
	Input current	I _{IN_SYNC}	$V_{SYNC} = 5.0V$	-	50	-	μΑ
SYNC	Pull down resistance	R _{PULL_SYNC}	-	50	100	150	kΩ
Pin/	Input frequency	FIN_SYNC	In external clock input	1.8	-	2.4	MHz
SYNC block	Switching frequency	F _{OSC1_SYNC}	In external clock operation	1.8	-	2.4	MHz
	Switching frequency	Fosc2_sync	DD3V, $F_{OSC2_SYNC} = F_{IN_SYNC} / 5$, In external clock operation	0.36	-	0.48	MHz
SSCG	Modulation range	-	$V_{ENSS} = V_{VB}$	-	6 (*1)	-	%
block	Modulation frequency	F _{MOD}	-	-	4	-	kHz
ENSS	ON condition	V _{ON_ENSS}	SSCG function ON	V _{VB} × 0.8	-	-	V
	OFF condition	V _{OFF_ENSS}	SSCG function OFF	-	-	$V_{VB} \times 0.2$	V
pin	Input current	I _{ENSS}	_	-0.1	-	+0.1	μA

 $V_{VIN} = V_{EN5V} = 12V$, $V_{PVCC1V} = 3.3V$, $V_{VB} = V_{VDD} = V_{EN1V} = V_{EN3V} = 5.0V$

*1: The electrical characteristic is ensured by statistical characterization and indirect tests.

*2: Junction temperature



8. Functional Description

8.1 Operation Sequence

The operation sequence of this IC is described in this section.

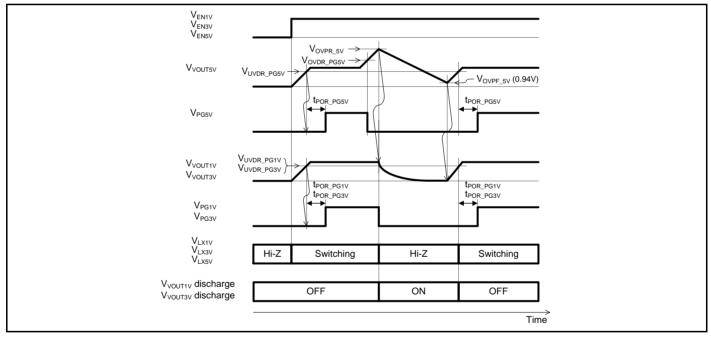
Figure 8-1 Turn On and Turn Off Sequence

*1: When the V_{EN5V} drops to the V_{OFF_EN5V} while supplying a power to the VIN pin, the voltages, V_{PG1V} , V_{PG3V} , V_{PG5V} and V_{HOT} , are undefined.

PRELIMINARY

8.2 Each Function Block

Each function block is described in this section.

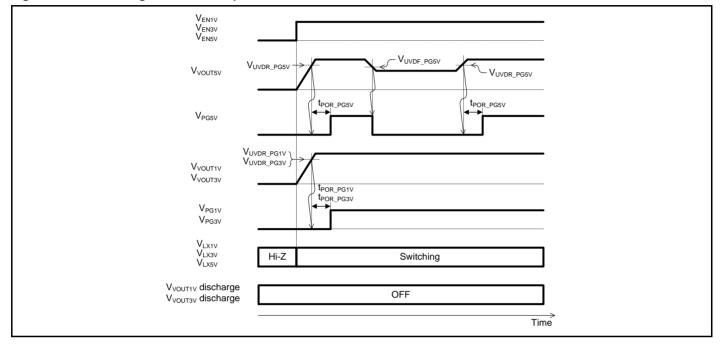

Under Voltage Lockout (UVLO)

This IC equips an UVLO function in order to prevent itself from operating unintentionally and from destructing or deteriorating its subsequent devices. The UVLO block monitors the VB voltage. Once VB unintentionally drops below the IC shutdown voltage (V_{UVLO_SHDN}) , UVLO block prohibits the regulators and controllers switching FETs until VB becomes higher than the IC operation start voltage (V_{UVLO_START}) .

Over Voltage Detection and Protection (OVD, OVP)

When an output voltage exceeds the over voltage detection (OVD) voltage, the corresponding PG is asserted the low level. In case any output voltage exceeds the over voltage protection (OVP) voltage, all output channels stop working to protect the connected devices. When all output voltage fall below the over voltage protection release voltage, this IC returns to the normal operation.

Figure 8-2 Over Voltage Detection and Over Voltage Protection Sequence



Under Voltage Detection (UVD)

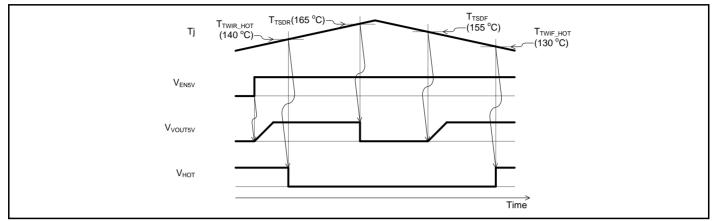
When an output voltage falls below the under voltage detection (UVD) voltage, the corresponding PG pin is asserted the low level while the corresponding output channel keeps working. When the output voltage exceeds the under voltage detection release voltage, each PG will be recovered Hi-Z.

Figure 8-3 Under Voltage Detection Sequence

Over Current Protection (OCP)

In order to protect FETs from an excessive current, each output channel equips the OCP (over current protection) that sets current limits by monitoring the corresponding over current protection current (LX peak current).

Thermal Shutdown (TSD)


The Thermal shutdown prevents this IC from a thermal destruction. If the junction temperature exceeds +165°C, all DC/DC converters stop working. When the junction temperature falls below +155°C, this IC returns to the normal operation.

Thermal Warning Indicator (HOT)

Prior to TSD, this IC is able to notice its subsequent devices that it is close to the limit temperature. The HOT pin is an open-drain output. If the junction temperature reaches +140°C, the HOT pin is asserted the low level. When the junction temperature falls below +130°C, the HOT pin will be recovered Hi-Z.

Figure 8-4 Thermal Shutdown and Thermal Warning Indicator Sequence

SSCG

This IC equips a SSCG (spread spectrum clock generator) function. When SSCG function turns on, it decreases EMI noise immediately. SSCG function modulates the clock signal by 0% to +6%, which clock signal can be sourced from the internal oscillator or an external clock source.

Table 8-1 SSCG Pin Setting

ENSS Pin Setting (*1)	SSCG Operation
L	SSCG function turns off. DD1V, DD3V and DD5V are provided with non-modulated clock
Н	SSCG function turns on. DD1V, DD3V and DD5V are provided modulated.

*1: The H means $V_{ENSS} > V_{ON_ENSS}$. The L means $V_{ENSS} < V_{OFF_ENSS}$.

SYNC

This IC equips a SYNC function that is to synchronize with an external clock signal supplied from SYNC. Also, the switching between the automatic PWM/PFM switching operation or the fixed PWM operation is set by the SYNC pin. The Table 8-2 shows the state corresponding to each operation by the SYNC pin setting. Please refer to the Table 8-3 for the switching signals to be inputted to the SYNC pin and the availability. The switching frequency of the DD3V (F_{OSC2}) is a signal obtained by one-fifth dividing an internal clock or an inputted external clock.

Table 8-2 SYNC Pin Setting

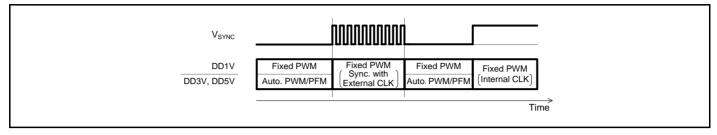

SYNC Pin Setting	DD1V Operation	DD3V Operation	DD5V Operation			
L	Fixed PWM operation with internal clock	Automatic PWM/PFM switching operation with internal clock	Automatic PWM/PFM switching operation with internal clock			
Н	Fixed PWM operation with internal clock					
CLK	Fixed PWM operation synchronized with external clock					

Table 8-3 Switching signals to be inputted to the SYNC pin

Signals to be inputted to SYNC pin	Ena	able Pin Sett	ing	A	
Signals to be inputted to STNC pill	EN1V	EN3V	EN5V	Availability	
	L	L	Н	Prohibited	
$L \leftrightarrow CLK$ $L \leftrightarrow H$	L or H	Н	Н	Available	
L⇔II	Н	L or H	Н	Available	
$H \leftrightarrow CLK$	L or H	L or H	Н	Available	

Figure 8-5 SYNC Function Sequence

8.3 Output State and Protection Function Table

The following table shows the state of each output and each protection function.

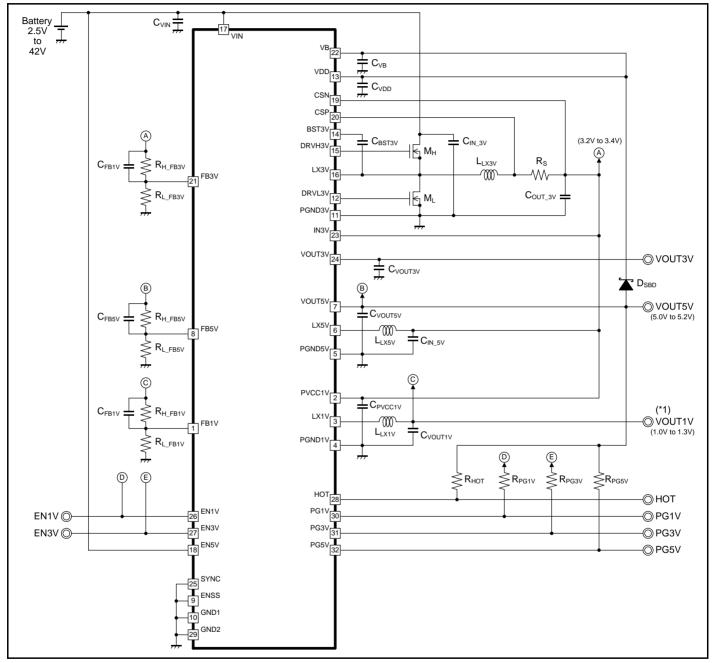
Table 8-4 Output State and Protection Function Table

State		Enable Pin Setting (*1)		Output State (*2)		PG Pin Output (*3)					
		EN3V	EN5V	DD1V	DD3V	SW3V	DD5V	PG1V	PG3V	PG5V	Remarks
DD1V, SW3V, DD5V are inactive	Х	Х	L	INA	INA	INA	INA	L	L	L	-
DD5V is active	∟	∟	Н	INA	Α	INA	Α	L	L	Hi-Z	-
SW3V, DD5V are active	L	Н	Н	INA	Α	Α	Α	L	Hi-Z	Hi-Z	-
DD1V, DD5V are active	Н	L	Н	Α	Α	INA	Α	Hi-Z	L	Hi-Z	-
DD1V, SW3V, DD5V are active	Н	Н	Н	Α	Α	Α	Α	Hi-Z	Hi-Z	Hi-Z	-
V _{VOUT1V} OVD	Н	Н	Н	Α	Α	Α	Α	L	Hi-Z	Hi-Z	$V_{VOUT1V} > V_{OVDR_PG1V}$
V _{VOUT3V} OVD	Н	Н	Н	Α	Α	Α	Α	Hi-Z	L	Hi-Z	$V_{VOUT3V} > V_{OVDR_PG3V}$
V _{VOUT5V} OVD	Н	Н	Н	Α	Α	Α	Α	Hi-Z	Hi-Z	L	$V_{VOUT5V} > V_{OVDR_PG5V}$
V _{VOUT1V} OVP	H	Х	Н	INA	INA	INA	INA	L	L	L	$V_{VOUT1V} > V_{OVPR_{1V}}$
V _{VOUT3V} OVP	Х	Н	Н	INA	INA	INA	INA	L	L	L	$V_{VOUT3V} > V_{OVPR_{3V}}$
V _{VOUT5V} OVP	Х	Х	Н	INA	INA	INA	INA	L	L	L	V _{VOUT5V} > V _{OVPR_5V}
V _{VOUT1V} UVD	Н	Н	Н	Α	Α	Α	Α	L	Hi-Z	Hi-Z	V _{VOUT1V} < V _{UVDF_PG5V}
V _{VOUT3V} UVD	Н	Н	Н	Α	Α	Α	Α	Hi-Z	L	Hi-Z	V _{VOUT3V} < V _{UVDF_PG3V}
V _{VOUT5V} UVD	Н	Н	Н	Α	Α	Α	Α	Hi-Z	Hi-Z	L	V _{VOUT5V} < V _{UVDF_PG5V}
TSD	Х	Х	Η	INA	INA	INA	INA	L	L	L	Tj > T _{TSD}

*1: The H means that each enable pin voltage is $V_{EN1V} > V_{ON_EN1V}$, $V_{EN3V} > V_{ON_EN3V}$, $V_{EN5V} > V_{ON_EN5V}$.

The L means that each enable pin voltage is $V_{EN1V} < V_{OFF_EN1V}$, $V_{EN3V} < V_{OFF_EN3V}$, $V_{EN5V} < V_{OFF_EN5V}$.

The X means that each enable pin voltage is the high level or the low level.


*2: The A means the active state. The INA means the inactive state.

*3: Each of the PG pins is formed as an open drain structure. In outputting the Hi-Z, the internal MOSFET is in the OFF state.

9. Application Circuit Example and Parts List

Figure 9-1 Application Circuit Example

*1: The VOUT1V is a pin name only for this circuit.

S6BP501A, S6BP502A

Table 9-1 Parts List

Block	Symbol	ltem	Value	Part Number	Vendor	Size [mm]	Remarks
	C _{VIN}	Capacitor	0.1 µF	CGA3E2X7R1H104K080AA	TDK	1.6 × 0.8 × 0.8	X7R, Rated voltage: 50 V _{DC}
	C _{VB}	Capacitor	4.7 µF	CGA4J3X7R1C475K125AB	TDK	2.0 × 1.2 × 1.25	X7R, Rated voltage: 16 V _{DC}
Common	C_{VDD}	Capacitor	0.1 µF	CGA3E2X7R1E104K080AA	TDK	1.6 × 0.8 × 0.8	X7R, Rated voltage: 25 V _{DC}
	D_{SBD}	SBD	V _F : 0.5V	RB521S30T1G	ON	1.6 × 0.8 × 0.6	V _R : 30 V _{DC} , I _F : 200 mA, I _{FSM} : 1.0A
	$R_{H_{FB1V}}$	Resistor	270 kΩ (*1)	RK73H1JTTD2703F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
	$R_{L_{FB1V}}$	Resistor	270 kΩ (*1)	RK73H1JTTD2703F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
DD1V	C_{FB1V}	Capacitor		CGA3E2C0G1H120J080AA	TDK	$1.6 \times 0.8 \times 0.8$	C0G, Rated voltage: 50 V _{DC}
	L _{LX1V}	Inductor	1.5 µH	CLF6045NI-1R5N-D	TDK	7.4 × 7.0 × 4.8	DCR: 13 mΩ, I _{DC_MAX} : 4.5A
	C_{PVCC1V}	Capacitor		CGA4J3X7R1C475K125AB	TDK	2.0 × 1.2 × 1.25	X7R, Rated voltage: 16 V _{DC}
	C _{VOUT1V}	Capacitor	22 µF × 2	CGA6P1X7R1C226M250AC	TDK	3.2 × 2.5 × 2.5	X7R, Rated voltage: 16 V _{DC}
	D		200 kΩ (*2)	RK73H1JTTD2003F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
	$R_{H_{FB3V}}$	Resistor	120 kΩ (*2)	RK73H1JTTD1203F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
	$R_{L_{FB3V}}$	Resistor	120 kΩ (*2)	RK73H1JTTD1203F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
	C _{FB3V}	Capacitor	-	_	-	-	Unnecessary for this circuit
	L _{LX3V}	Inductor	4.7 µH	CLF12577NIT-4R7N-D	TDK	12.8 × 12.5 × 8	DCR: 8.7 mΩ, I _{DC_MAX} : 9.6A
	CIN_3V	Capacitor	10 µF	CGA9N3X7R1H106K230KB	TDK	5.7 × 5.0 × 2.3	X7R, Rated voltage: 50 V _{DC}
DD3V	C _{OUT_3V}	Capacitor	47 µF × 10	CGA9N3X7R1C476M230KB	TDK	5.7 × 5.0 × 2.4	X7R, Rated voltage: 16 V _{DC}
	M _H	N-ch MOSFET	R _{ON_MAX} : 32 mΩ	NVTFS5826NL	ON	3.3 × 3.3 × 0.75	V _{DS} : 60V, I _D : 10A
	ML	N-ch MOSFET	R _{ON_MAX} : 32 mΩ	NVTFS5826NL	ON	3.3 × 3.3 × 0.75	V _{DS} : 60V, I _D : 10A
	C _{BST3V}	Capacitor	0.1 µF	CGA3E2X7R1H104K080AA	TDK	1.6 × 0.8 × 0.8	X7R, Rated voltage: 50 V _{DC}
	Rs	Resistor	10 mΩ	KRL2012-M-R010-F-T1	KOA	2.0 × 1.25 × 0.5	Rated power: 1W
SW3V	C _{VOUT3V}	Capacitor	22 µF	CGA6P1X7R1C226M250AC	TDK	3.2 × 1.6 × 1.6	X7R, Rated voltage: 16 V _{DC}
	R _{H_FB5V}	Resistor	2 MΩ (*3)	RK73H1JTTD2004F	KOA	$1.6 \times 0.8 \times 0.45$	Rated power: 0.1W
		Resistor	1.8 MΩ (*3)	RK73H1JTTD1804F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
	$R_{L_{FB5V}}$	Resistor	1.2 MΩ (*3)	RK73H1JTTD1204F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
DD5V	C_{FB5V}	Capacitor	3 pF	CGA3E2C0G1H030C080AA	TDK	1.6 × 0.8 × 0.8	C0G, Rated voltage: 50 V _{DC}
	L _{LX5V}	Inductor	1.5 µH	CLF6045NI-1R5N-D	TDK	7.4 × 7.0 × 4.8	DCR: 13 mΩ, I _{DC_MAX} : 4.5A
	C_{IN_5V}	Capacitor	4.7 μF	CGA4J3X7R1C475K125AB	TDK	2.0 × 1.2 × 1.25	X7R, Rated voltage: 16 V _{DC}
	C _{VOUT5V}	Capacitor	47 µF × 5	CGA9N3X7R1C476M230KB	TDK	5.7 × 5.0 × 2.4	X7R, Rated voltage: 16 V _{DC}
	R _{HOT}	Resistor	100 kΩ	RK73H1JTTD1003F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
HOT/	R _{PG1V}	Resistor	100 kΩ	RK73H1JTTD1003F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
PG	R _{PG3V}	Resistor	100 kΩ	RK73H1JTTD1003F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
pins	R _{PG5V}	Resistor	100 kΩ	RK73H1JTTD1003F	KOA	1.6 × 0.8 × 0.45	Rated power: 0.1W
a				barriar diada	•	•	· · · · ·

Capacitor: Ceramic capacitor, SBD: Schottky barrier diode

*1: V_{VOUT1V} setting \approx 1.2V

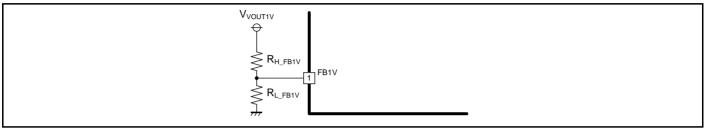
*2: V_{IN3V} setting ≈ 3.3V

*3: V_{VOUT5V} setting ≈ 5.0V

TDK: TDK Corporation KOA: KOA Corporation ON: ON Semiconductor Corporation

Note:

 The values of capacitors and resistors are subjects to consider according to a subsequent system. The values shown in the table are very dependable system whose current consumption varies dynamically from 0A to the full-load condition (maximum output current) in 10 μs.

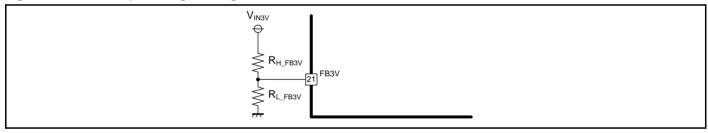

10. Application Note

10.1 Setting the Operation Conditions

DD1V Output Voltage

The DD1V output voltage (V_{VOUT1V}) of this IC can be adjusted by changing the external resistors connecting the FB1V pin.

Figure 10-1 DD1V Output Voltage Setting


The DD1V output voltage (V_{VOUT1V}) can be calculated using the formula below.

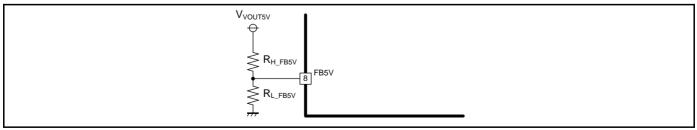
$$V_{VOUT1V} [V] = \frac{R_{H_FB1V} + R_{L_FB1V}}{R_{L_FB1V}} \times V_{FB1V}$$

DD3V Output Voltage

The DD3V output voltage (VIN3V) of this IC can be adjusted by changing the external resistors connecting the FB3V pin.

Figure 10-2 DD3V Output Voltage Setting

The DD3V output voltage (V_{IN3V}) can be calculated using the formula below.


$$V_{IN3V} [V] = \frac{R_{H_FB3V} + R_{L_FB3V}}{R_{L_FB3V}} \times V_{FB3V}$$

DD5V Output Voltage

The DD5V output voltage (V_{VOUT5V}) of this IC can be adjusted by changing the external resistors connecting the FB5V pin.

Figure 10-3 DD5V Output Voltage Setting

١

The DD5V output voltage (V_{VOUT5V}) can be calculated using the formula below.

$$V_{\text{VOUTSV}} [V] = \frac{R_{\text{H}_{\text{FBSV}}} + R_{\text{L}_{\text{FBSV}}}}{R_{\text{L}_{\text{FBSV}}}} \times V_{\text{FBSV}}$$

PRELIMINARY

11.Usage Precaution

Printed circuit board ground lines should be set up with consideration for common impedance.

Take appropriate measures against static electricity.

Containers for semiconductor materials should have anti-static protection or be made of conductive material.

- □ After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
- □ Work platforms, tools, and instruments should be properly grounded.
- \Box Working personnel should be grounded with resistance of 250 k Ω to 1 M Ω in serial body and ground.

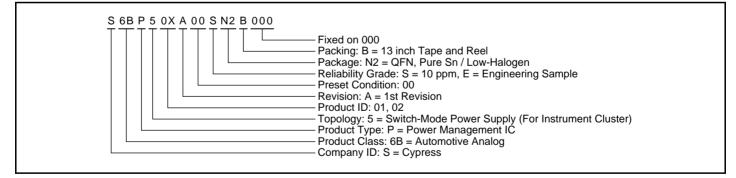
Do not apply negative voltages.

The use of negative voltages below -0.3 V may make the parasitic transistor activated to the LSI, and can cause malfunctions.

12. RoHS Compliance Information

This product has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

13. Ordering Information


Part Number (MPN)	Package
S6BP501A00SN2B000 (*1)	
S6BP501A00EN2B000 (*2)	Plastic, Wettable QFN (0.50 mm pitch), 32-pin
S6BP502A00SN2B000 (*1)	(VNG032)
S6BP502A00EN2B000 (*2)	

MPN: Marketing Part Number

*1: Commercial sample (CS)

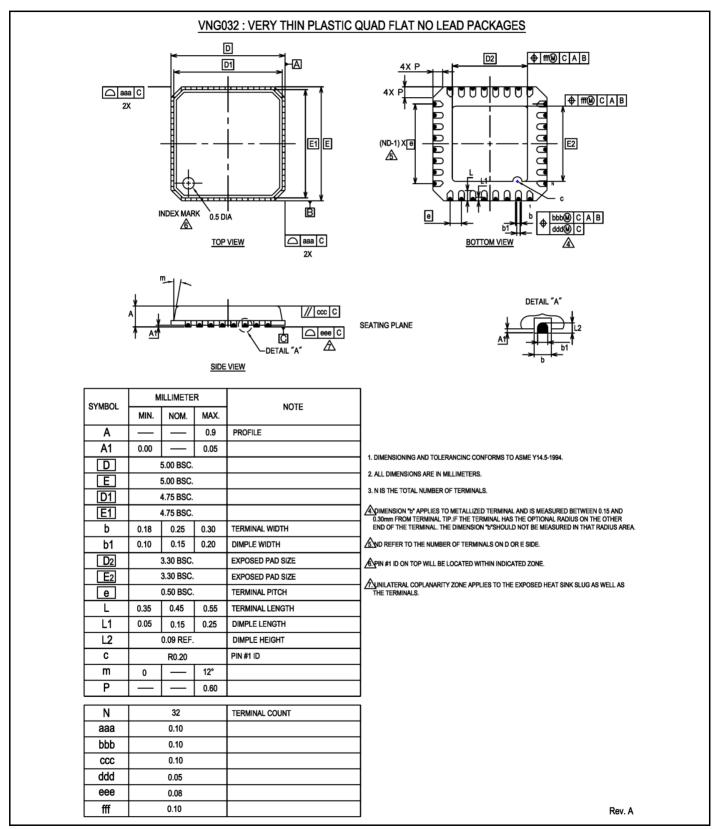

*2: Engineering sample (ES)

Figure 13-1 Ordering Part Number Definitions

14. Package Dimensions

Document History

Document Title: S6BP501A, S6BP502A 3ch DC/DC Converter IC for Automotive Cluster

Document Number: 002-03396

Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	4921966	HIXT	09/16/2015	New Spec.	
*A	4998578	HIXT	11/02/2015	Added Errata.	
*В	5107300	HIXT	01/26/2016	Updated the description for the pin name, IN3V in the Table 3-1. Updated the following Electrical Characteristics. I_{LEAK_1V} : Condition I_{LXPEAK_1V} : Min values t_{SS_3V} : Typ value $R_{ON,BSTSW}$: Typ value $R_{ON,BSTSW}$: Typ and Max values I_{R_BSTSW} : Condition and Max value I_{LOAD_SW3V} : Min values I_{LEAK_SW3V} : Condition t_{SS_SW3V} : Typ value I_{PWMPFM_SV} : Typ value I_{LEAK_SV} : Condition I_{LX_PEAK5V} : Typ value VovDF_PGIV: Typ value Updated the description and the Table 8-2 of the SYNC in the Section 8.2. Added the remarks for the DD5V output in the Table 8-3. Updated the following parts in the Table 9-1 C_{VDD} : value, part number and remarks R_{H_FB3V} : value and part number R_{L_FB3V} : value and part number R_{S} : value Added "Development Support" Updated Errata.	
*C	5198555	HIXT	05/16/2016	Added "AEC-Q100 compliant (Grade-2)" in Features. Updated Architecture Block Diagram. Deleted Errata item1, item2, item4, and item5 from Errata. Errata item3 in Errata is under confirmation with Rev.2 silicon.	
*D	5325274	HIXT	09/09/2016	Added Block Diagram Added More Information Updated the values in Electrical Characteristics DD3V block: Boost switch R_{ONH_3V} : Condition (DRVH3V pin current = 50 mA \rightarrow 10 mA), Typ value (8.5 $\Omega \rightarrow$ 15 Ω) R_{ON_BSTSW} : Typ value (3 $\Omega \rightarrow$ 8 Ω), Max value (10 $\Omega \rightarrow$ 24 Ω) I_{R_BSTSW} : Max value (3 $\mu A \rightarrow$ 2 μA) Deleted "Development Support" Added Figure 13-1 Ordering Part Number Definitions Deleted Errata	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC® Solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training | Components

Technical Support cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries

© Cypress Semiconductor Corporation, 2015-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software or form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.